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Abstract

This paper deals with input design in conditional set membership identification. The problem is how to choose the input signal
in order to minimize the global worst-case identification error. A characterization of the ℓ∞ identification error is provided,
showing that the optimal input is the one that minimizes the ℓ∞ radius of a suitable set. Moreover, sufficient conditions under
which the impulse input is optimal are provided.
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1 Introduction

Conditional set membership identification [8,3,6,2] is a
line of research that falls into the broader area of ro-
bust identification. The bottom line of this research is
that the system to be identified belongs to a set which
lies in a complex infinite-dimensional space and only ap-
proximate information (data, a priori knowledge, etc.) is
available on it. The model class lives in a finitely param-
eterized linear space (see e.g. [16,17,14]) and its param-
eters need to be estimated according to a criterion that
accounts for the worst-case modelling error in some suit-
able norm, with respect to the set of all feasible systems.
This paper addresses the problem of optimal input de-
sign in the context of conditional set membership identi-
fication.While the literature on robust identification has
grown considerably in recent years, relatively few papers
have considered the problem of input selection. Most
contributions on input design in a worst-case setting con-
cern ℓ1 identification. Classes of binary sequences were
shown to minimize the ℓ1 worst-case error in [10,13]. In
[7], it was proven that the unitary impulse is optimal
under certain conditions. The evaluation of the mini-
mum sample complexity in a worst-case identification
setting has been also widely studied [12,5,4]. A general
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information-based approach to worst-case system iden-
tification has been introduced by Zames and coworkers
[18]. In particular, they have shown that the identifica-
tion error can be split in two parts, namely the inherent
error and the representation error, and that only the first
one is affected by the choice of the input signal [9]. Op-
timal input design in a different deterministic setting,
not relying on the set membership paradigm, has been
addressed in [15].
In this paper, the input design problem is formulated
in the conditional set membership identification setting.
The considered model class consists in the linear combi-
nation of truncated impulse response sequences. Under
mild a priori assumptions on the system generating the
data, it turns out that the optimal input design problem
can be cast as a double min-max optimization in a finite
dimensional space. The first contribution of this paper
is to show that the ℓ∞ identification error is given by the
larger of two quantities: the representation error, which
does not depend on the input signal, and the ℓ∞ radius
of a suitable set, depending on a the priori information
and on the input signal. A consequence of this character-
ization is that in general the impulse is not the optimal
input signal, in the sense of minimizing the worst-case
ℓ∞ identification error. Motivated by this, sufficient con-
ditions under which an impulsive input is optimal are
provided.
The paper is organized as follows. Section 2 introduces
the main features of conditional set membership identi-
fication. In Section 3 the optimal input design problem
is formulated and some useful bounds on the worst-case
identification error are derived. In Section 4 a character-



ization of the ℓ∞ identification error is reported, while
in Section 5 the impulse input is analyzed and optimal-
ity results are given. Section 6 provides some concluding
remarks.

2 Conditional set membership identification

In set membership identification, the uncertainty asso-
ciated to an identified model is usually measured ac-
cording to the worst-case error with respect to a set of
admissible systems. This set, called feasible system set,
accounts for two main information sources: i) a priori
knowledge on the plant; ii) input/output measurements.
The former may be represented by a set to which the
true system is assumed a priori to belong; the latter is
typically a finite record of noisy data, and assumptions
are made on the nature of the noise.
In this paper, LTI discrete-time SISO systems are con-
sidered. The impulse response of a system is denoted by
h = {hi}

∞
i=0, and belongs to a linear normed space H,

equipped with the norm ‖ · ‖H. A priori knowledge on
such system is expressed as h ∈ S, where S is a set con-
tained in H. Let h̄ ∈ S be the true system generating
the data. Data consists of a set of N input/output pairs
z = {(uk, yk), k = 0, . . . , N − 1}, related by

yk =

k∑

i=0

h̄iuk−i + ek (1)

where ek is the disturbance affecting the measurement
yk. Equation (1) can be written in compact form as

y = T (u)h̄N + e (2)
where y = [y0 . . . yN−1]

′, u = [u0, . . . , uN−1]
′, h̄N =

[h̄0 . . . h̄N−1]
′, e = [e0 . . . eN−1]

′ and T (u) is the lower
triangular Toeplitz matrix of inputs, i.e.

T (u) =




u0 0 . . . . . . 0

u1 u0 0 . . .
...

u2 u1 u0
. . .

...
...

. . .
. . .

. . . 0

uN−1 . . . u2 u1 u0




. (3)

It is assumed that e is unknown-but-bounded, i.e.

‖e‖Y ≤ ε (4)
where ‖ · ‖Y denotes a suitable norm in R

N and ε is
a known positive scalar. According to (2) and (4), the
feasible system set is defined as

F = {h ∈ S : ‖y − T (u)hN‖Y ≤ ε}. (5)
Following the terminology of the Information-Based
Complexity (IBC) theory (see [11] for a thorough treat-
ment), an identification algorithm φ is a mapping from
the measurement space to the model space. When the
latter coincides with the space of systems H, the al-
gorithm φ is such that: φ : RN → H. The worst-case

identification error associated to the identification algo-
rithm turns out to be

E[φ] = sup
h∈F

‖h− φ(y)‖H.

In robust identification, it is customary to identify
reduced-complexity models that are suitable for robust
control design techniques. A typical choice is to select a
linearly parameterized model class such as

M = {g ∈ H : g = Mθ, θ ∈ R
n}

where M is a linear operator, M : R
n → H and θ

is the n-dimensional parameter vector to be identified,
n < N . A conditional identification algorithm is defined
as a mapping φ : RN → M. The model class M can
be chosen as a collection of impulse responses of linear
filters, such as Laguerre or Kautz functions [16,17], or
Generalized Orthonormal Basis Functions [14].
The identification of a model within the class M has
been addressed in the literature as conditional set mem-
bership identification [8,3,6,2,1]. In particular, the opti-
mal model is given by the so-called conditional central
algorithm, which minimizes the worst-case error among
the elements of M, i.e.

φcc(y) = arg inf
g∈M

sup
h∈F

‖h− g‖H. (6)

A procedure for computing φcc(y) has been given in [2]
for the case ‖ · ‖H = ‖ · ‖Y = ℓ2, while suboptimal
identification algorithms have been considered in [1].

3 Optimal input design

3.1 Problem formulation

Let TN denote the truncation operator in H, such that
TNh = hN = {hi}

N−1
i=0 , and RN be the remainder opera-

tor RNh = {hi}
∞
i=N . In the following, it is assumed that

the model class M is fixed, and inputs are bounded in
ℓ∞ norm (this is a common constraint essentially due to
input saturations):

‖u‖∞ ≤ δ. (7)
Moreover, w.l.o.g. we assume u0 6= 0.
Let us define the following quantities:
• U = {U : U = T (u), u ∈ R

N , ‖u‖∞ ≤ δ} is the set
containing all feasible input matrices;
• BY = {e ∈ R

N : ‖e‖Y ≤ 1} is the unit ball in the
Y -norm.
Let u be fixed and U = T (u). By definition of feasible
set (5), it follows that

F = {h ∈ S : ‖UhN − y‖Y ≤ ε}

= {h ∈ S : hN = U−1y + εU−1α, α ∈ BY }. (8)

Let us define the set

V(c) = {h : hN = c+ εU−1BY } (9)
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where c = U−1y = U−1(Uh̄N +e) = h̄N +U−1e . Notice
that c is the symmetry center of TNV(c).
Taking into account the prior information S and the
bound (4) (concerning h and e respectively), one can
introduce the set of admissible centers of TNV(c) as C =
TNS + εU−1BY ⊂ R

N . Then, the feasible set (8) turns
out to be F = V(c) ∩ S with c ∈ C.
The problem addressed in this paper is that of finding the

optimal input U
∗
such that the worst-case error (with

respect to both a priori information and noise bound)
associated to the optimal model, i.e. the model provided
by the conditional central algorithm (6), is minimized.
In other words, one has to compute

U
∗
(U, ε,S,M) = arg inf

U∈U

E∗(U, ε,S,M) (10)

where

E
∗(U, ε,S,M)= sup

h̄N∈TNS,e∈εBY

inf
g∈M

sup
h∈V(h̄N+U−1e)∩S

‖h−g‖H

= sup
c∈C

inf
g∈M

sup
h∈V(c)∩S

‖h− g‖H. (11)

Note that E∗ is the error of the conditional central al-
gorithm for the worst possible system in S and noise
realization in εBY .

3.2 Error bounds

In the Information-Based Complexity framework [11],
E∗ is usually indicated as the global error. Notice that
this is the same worst-case error considered in [9]. In
that paper, however, E∗ is not minimized directly, but
it is first separated into the inherent error

δ(u) = sup
h∈S:UhN∈εBY

‖h‖H

and the representation error

d = sup
h∈S

inf
g∈M

‖h− g‖H. (12)

In [9] it was shown that

max{δ(u), d} ≤ E∗ ≤ 3max{δ(u), d}

and the input selection was performed by minimizing
δ(u). This is a suboptimal input design strategy, because
minimizing δ(u) does not guarantee that E∗ is mini-
mized. In this paper, direct minimization of E∗ with re-
spect to u is considered.
The next lemma shows that the solution of (10) is
achieved by an input signal such that ‖u‖∞ = δ (i.e.
the upper bound in (7) is achieved).

Lemma 1 Let U = T (ū) be an optimal solution of (10)

such that ‖ū‖∞ < δ. Then U = T (u), with u =
ū

‖ū‖∞
δ

is an optimal solution of (10).

Proof. Let α = ‖ū‖∞ < δ. Since U = δ
α
U , one has

c+ εU−1BY = c+ ε
α

δ
U

−1
BY ⊂ c+ εU

−1
BY .

Therefore, E∗(U, ε,S,M) ≤ E∗(U, ε,S,M) and hence
also U is a solution of (10). ✷

Without loss of generality, it is possible to assume ε = 1;
in fact this is equivalent to scaling all signals by a factor
ε and set, according to Lemma 1

‖u‖∞ = η =
δ

ε
. (13)

The set of admissible input matrices becomes

U = {U : U = T (u) , u ∈ R
N , ‖u‖∞ = η}.

Now, equations (10) and (11) can be rewritten as

U∗(U,S,M) = arg inf
U∈U

E∗(U,S,M) (14)

and

E∗(U,S,M) = sup
c∈C

inf
g∈M

sup
h∈V(c)∩S

‖h− g‖H (15)

where V(c) = {h : hN = c + U−1BY } and C = TNS +
U−1BY .
Remark 1 From the above scaling, it follows that if U∗

is a solution of (14)-(15), the optimal input solving (10)-
(11) is given by u∗ = U∗[ε, 0, . . . , 0]′.
Let S andM be fixed. The next proposition gives upper
and lower bounds to the worst-case identification error
E∗ in (15).
Proposition 1 Define

E = inf
g∈M

sup
h∈S

‖h− g‖H (16)

and

E = sup
h∈S

inf
g∈M

‖h− g‖H. (17)

Then,

E ≤ E∗(U,S,M) ≤ E (18)
Proof. If |u0| → ∞ the set TNV(c) collapses into a
singleton (its center c). Then, this is the condition for
which the feasible set is minimized (it cannot be empty if
a priori assumptions are correct and data are consistent).
Moreover, the set of feasible centers C tends to be equal
to TNS. Therefore, one has

lim
|u0|→∞

E∗(U,S,M) = sup
c∈TNS

inf
g∈M

sup
h∈S:hN=c

‖h− g‖H

≥ sup
h∈S

inf
g∈M

‖g − h‖H = E.

If ‖u‖ → 0 (or more generally V(c) ∩ S ≡ S), then the
feasible set is maximized and one has

lim
||u||→0

E∗(U,S,M) = sup
c∈C

inf
g∈M

sup
h∈S

‖h− g‖H
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= inf
g∈M

sup
h∈S

‖h− g‖H = E.

✷

Remark 2 Note that E coincides with the representa-
tion error (12) (introduced in [9]), while E is the condi-
tional radius of the set S with respect to the subspace M
(see [2]).
Problem (14)-(15) is a double min-max optimization in
an infinite dimensional space H. However, it is useful to
notice that in the conditional set membership identifi-
cation setting of Section 2, several problems of interest
can be restricted to the finite dimensional space RN (see
e.g. [2], for the ℓ2 case).
In the following, we will address the optimal input de-
sign problem in the ℓ∞ norm, and we will consider a
truncated model classMN = TNM, i.e. we will assume
that the selected model class is a linear combination of
truncated impulse sequences of length N . Under mild
a priori assumptions on the system h̄, it is easy to see
that one can as well consider a truncated a priori set
SN = TNS. Indeed, let S = {si}

∞
i=0 ⊂ H, with ‖ · ‖H =

ℓ∞, |si| ≤ γi, ∀i. Let us write S ,

[
SN

S+

]
=

[
TNS

RNS

]

and M ,

[
MN

M+

]
=

[
TNM

0

]
. Then,

E∗(U,S,MN )= sup
c∈C

inf

g=





gN∈M
N

g+∈ 0





sup

h=





hN
∈ TN (V(c)∩S)

h+
∈ S

+





‖h−g‖∞

=max{Ea, Eb}

where

Ea = sup
c∈C

inf
gN∈MN

sup
hN∈TN (V(c)∩S)

‖hN − gN‖∞

=E∗(U,SN ,MN )

Eb = inf
g+∈0

sup
h+∈S+

‖h+−g+‖∞= sup
h+∈S+

‖h+‖∞= max
i≥N

γi.

So, ifEa ≥ Eb one hasE
∗(U,S,MN )=E∗(U,SN ,MN ).

Note that Ea ≥ Eb is not a strong assumption. For ex-
ample, it holds whenever min

j<N
γj ≥ max

i≥N
γi, which is

a typical a priori assumption on the impulse response
(e.g., when decaying bounds on the impulse response
samples are assumed). In fact, it can be checked that
Ea ≥ sup

hN∈SN

inf
gN∈MN

‖hN − gN‖∞ ≥ min
j<N

γj , while

Eb = max
i≥N

γi.

In the following we will assume that Ea ≥ Eb; hence, we
will set H = R

N and consider S, F and M as subsets
of RN . The main consequence is that the double min-
max optimization problem (14)-(15) is now defined in a
finite dimensional space. This will allow us to provide a

complete characterization of the worst-case ℓ∞ identifi-
cation error in the next section.

4 Characterization of the ℓ∞ identification error

Let H = R
N , ‖ · ‖H = ℓ∞ and M be a linear subspace

of RN . Moreover, let us make the following assumption.
Assumption 1 The a priori set S is an orthotope cen-
tered at the origin, i.e.

S=
{
h = [h

0
, ..., h

N−1
]′: |h

0
|≤γ

0
, ..., |h

N−1
|≤γ

N−1

}
. (19)

An example of a priori information commonly addressed
in the literature is that of FIRs of order N with expo-
nential decay response as

S = {h: |hi| ≤ Mρi , M > 0, |ρ| < 1 , i = 0, . . . , N−1},

which clearly satisfies (19).
IfF is a set, we denote by BOX(F) the minimum volume
box containing F . The ℓ∞ radius of F is defined as

rad∞(F) = inf
g∈H

sup
h∈F

‖h− g‖∞.

Moreover, let us define the ℓ∞ conditional radius of a set
F with respect to a linear manifold M as

radM∞ (F) = inf
g∈M

sup
h∈F

‖h− g‖∞.

The following result allows one to compute the ℓ∞ con-
ditional radius of a generic set.
Theorem 1 Let F be a set and let P = BOX(F). Let
µ = rad∞(F) and let M be a linear manifold. Let us
define:

E+ , sup
h∈P

inf
g∈M

‖h− g‖∞. (20)

Then

radM∞ (F) = max{E+, µ}.

Proof. See Appendix A. ✷

The next theorem provides the characterization of the
identification error (15).

Theorem 2 Let ρ , rad∞(V(0) ∩ S). Then,

E∗(U,S,M) = max{E, ρ}. (21)

In order to prove Theorem 2, we need the following
lemma.
Lemma 2 Let P = {h ∈ R

s : |hi| ≤ γi, i = 1, . . . , s}
and W be a convex and balanced set. Consider the set
W(c) = c+W. Then,

βi(BOX(W(c) ∩ P)) ≤ βi(BOX(W ∩P)) , i = 1, . . . , s.

where βi(B) denotes the length of the i-th semi-axis of
the box B.
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Proof. Let i, 1 ≤ i ≤ s, be fixed and select w, z ∈ W ,
such that w + c, z + c ∈ W(c) ∩ P and

βi(BOX(W(c) ∩ P)) =
1

2
|(wi + ci)− (zi + ci)|

=
1

2
|wi − zi|. (22)

Since w + c, z + c ∈ P one has

|wj−zj|= |(wj+cj)−(zj+cj)| ≤ 2 γj , ∀j=1, . . . , s.(23)

Let p = 1
2 (w − z) and q = 1

2 (z − w) = −p. Since W is
convex and symmetric, it follows that since w, z ∈ W ,
also p, q ∈ W . Moreover, due to (23)

|pj | = |qj | =
1

2
|wj − zj| ≤ γj , ∀j = 1, . . . , s

which means that p, q ∈ P . Therefore, p, q ∈ W∩P and,
using (22)

βi(BOX(W ∩P))≥
1

2
|pi − qi|

=
1

2

∣∣∣∣
1

2
(wi − zi)−

1

2
(zi − wi)

∣∣∣∣

=
1

2
|wi − zi| = βi(BOX(W(c) ∩ P)).

Since the same reasoning can be repeated for all i, 1 ≤
i ≤ s, the lemma is proved. ✷

Now, Theorem 2 can be proved.
Proof of Theorem 2: Let

r(c) , rad∞(V(c) ∩ S)

and
E(c) = sup

h∈BOX(V(c)∩S)

inf
g∈M

‖h− g‖∞.

By Theorem 1 one has

E∗(U,S,M) = sup
c∈C

inf
g∈M

sup
h∈V(c)∩S

‖h− g‖∞

= sup
c∈C

max{E(c), r(c)}

=max

{
sup
c∈C

E(c), sup
c∈C

r(c)

}
.

Since C ⊇ S,

sup
c∈C

sup
h∈BOX(V(c)∩S)

inf
g∈M

‖h−g‖∞=sup
h∈S

inf
g∈M

‖h−g‖∞=E.

Then, it remains to show that supc∈C r(c) = r(0) = ρ.
The proof follows immediately from Lemma 2 by not-
ing that r(c) = maxi βi(BOX(V(c) ∩ S)) and r(0) =
maxi βi(BOX(V(0) ∩ S)) = rad∞(V(0) ∩ S) = ρ. �

Remark 3 IfE ≥ ρ then all inputs are equivalent, in the
sense that they provide the same worst-case identification
error E∗. So, an input signal is optimal if it minimizes
ρ, or it allows ρ to be less than E.
Remark 4 The results in this section hold for any fea-
sible set (5), independently on the norm ‖ · ‖Y used to
bound the error in (4).

5 Properties of impulse input

In this section we will evaluate the error (21) assuming
that the input is an impulse, i.e. u = [η, 0, . . . , 0]′.
Let us denote by BY (c, r) the ball in Y -norm centered
in c with radius r. The following theorem holds.
Theorem 3 Let S be as in Assumption 1 and γ =
maxi{γi}. Let u = [η, 0, . . . , 0]′ and U = T (u). Then

E∗(U,S,M) =





E if η ≥ 1
E

min
{

1
η
, γ

}
if η < 1

E

Proof. Since u is an impulse, then F = BY (c, r) ∩ S
with r = 1

η
. By Theorem 2, one has:

E∗(U,S,M) = max{E, ρ},

where

ρ = rad∞(BY (0, r) ∩ S) = min{r, γ}. (24)
Moreover, we have that

E = sup
h∈S

inf
g∈M

‖g − h‖∞ ≤ sup
h∈S

‖h‖∞ = γ. (25)

The theorem follows from (24), (25) and Theorem 2. ✷
Remark 5 By (18), if η ≥ 1/E then the impulse input
is optimal. Hence, by Theorem 3 a sufficient condition
for impulse optimality is that the impulse value is larger
than the inverse of the representation error. If it is not
possible to feed the system with an impulse of size at least
1/E, then the optimal input sequence solving (14)-(15)
may not be an impulse.
It is worth observing that Theorem 3 does not depend
on the norm ‖ · ‖Y used to bound the noise in (4). In the
following, it is shown that the choice of this norm has an
influence on the optimality of the impulse input.

5.1 ℓ2-bounded noise

For an energy-bounded noise, i.e. ‖ · ‖Y = ℓ2 in (4) the
feasible set is the intersection between the a priori set S
and the ellipsoid

V(c) = {h : (h− c)′(U ′U)(h− c) ≤ ε2}

with c = U−1y.
The next example shows that the impulse is then not
always the optimal input.
Example. Let N = 2, δ = 1, ε = 1 and ‖ · ‖H = ℓ∞.
Consider problem (14)-(15) where

S = {h ∈ R
2 : |h0| ≤ 1, |h1| ≤ 0.2}
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Fig. 1. Example in which the step input is better than the
impulse input.

is the set containing the a priori information on the im-
pulse response and

M = {g ∈ R
2 : g =

[
1

0

]
θ, θ ∈ R}

is the model class of FIR filters of order 1. Notice that
in this case one has E = 1 and E = 0.2 in (16) and
(17). Let uimp = [1 0]′ be the impulse input and ustep =
[1 1]′ the step input. In Fig. 1 the worst-case errors
E∗
imp and E∗

step are depicted for impulse and step input
respectively. It can be seen that the impulse input is not
the best one. Indeed, for the impulse one has U = I2,
V(0) = {h : h′h ≤ 1} and ρimp = rad∞(V(0) ∩ S) = 1.
Hence, Theorem 2 states that E∗

imp = max{E, ρimp} = 1.
Conversely, for the step input

U =

[
1 0

1 1

]
,

V(0) = {h : 2h2
1 + 2h1h2 + h2 ≤ 1} and ρstep =

rad(V(0)∩S)= 0.8. Therefore,E∗
step = max{E, ρstep} =

0.8 < E∗
imp. It can be shown that the infimum with re-

spect to U in (14) is achieved by the following input sig-
nals:

u = [1 1]′ , u = [−1 − 1]′ , u = [1 − 1]′ , u = [−1 1]′.

Hence, the step is an optimal input in this case.

5.2 ℓ∞-bounded noise

Let us now consider the case of ℓ∞-bounded noise, i.e.
‖ · ‖Y = ℓ∞ in (4). In this case, the feasible set is given
by S ∩ V(c) where

V(c) = {h : ‖U(h− c)‖∞ ≤ ε}

with c = U−1y.

Let us denote by PAR(q, P ) the parallelotope

PAR(q, P ) = {h : ‖Ph− q‖∞ ≤ 1}.

Then, according to (13), the feasible set becomes

F = {h ∈ S : ‖Uh− y‖∞ ≤ 1} = PAR(y, U) ∩ S.

The next proposition shows that, if the error is ℓ∞-
bounded, then the impulse input is always optimal.
Proposition 2 Let ‖·‖Y = ℓ∞ and let u = [η, 0, . . . , 0]′.
Then such input minimizes E∗(U,S,M).
Proof.ByTheorem 2, in order to minimizeE∗(U,S,M)
it is necessary to minimize

ρ = rad∞(PAR(0, U) ∩ S).

Let Uimp = ηI be the impulse input matrix. By Theo-
rem 3 it follows that

ρimp = rad∞(PAR(0, Uimp) ∩ S)

= rad∞

(
1

η
B∞ ∩ S

)
= min

{
1

η
, γ

}
.

Now, let U = T (u) be the Toeplitz matrix (3) corre-
sponding to a generic input u (such that ‖u‖∞ = η). We
will show that

ρ(u) = rad∞(PAR(0, U) ∩ S) ≥ ρimp.

One has

‖Uh‖∞ ≤ 1 ⇐⇒





|u0h0| ≤ 1

|u0h1 + u1h0| ≤ 1

|u0h2 + u1h1 + u2h0| ≤ 1

. . .

(26)

Let e0, e1, . . . be the canonical base vectors; let us de-
fine w+

0 = 1
η
e0, w

−
0 = − 1

η
e0, w

+
1 = 1

η
e1, . . ., w

−
N−1 =

− 1
η
eN−1. It follows that the vectors h = w+

i and h = w−
i

satisfy (26) for all i = 0, . . . , N − 1.
Since PAR(0, U) = {h : ‖Uh‖∞ ≤ 1}, it follows that
w+

i , w
−
i ∈ PAR(0, U), ∀i = 0, . . . , N−1, ∀u : ‖u‖∞ = η.

LetW = {w+
i , w

−
i , i = 0, . . . , N−1}. It can be seen that

BOX(W) ∩ S =

{
h : |hi| ≤ min

{
1

η
, γi

}}

=BOX(PAR(0, Uimp) ∩ S). (27)

Since W ⊆ PAR(0, U) one has

max
v∈PAR(0,U)

|vi| ≥
1

η
, i = 0, . . . , N − 1. (28)

6



Moreover,

max
v∈S

|vi| = γi. (29)

Since both PAR(0, U) and S are symmetric w.r.t. the
origin, (28) and (29) yield

max
v∈PAR(0,U)∩S

|vi| ≥ min

{
1

η
, γi

}
, i = 0, . . . , N − 1

and hence, due to (27)

BOX(PAR(0, U) ∩ S) ⊇ BOX(PAR(0, Uimp) ∩ S)

and therefore ρ(u) ≥ ρimp for any input u. Then, the
result follows from Theorem 2. ✷

6 Conclusions

Input design in conditional set membership identifica-
tion aims at choosing the input signal that minimizes the
worst-case identification error. In general, this requires
the solution of a high dimensional minimax optimization
problemwhich turns out to be intractable in most practi-
cal cases. Therefore, it is important to provide character-
ization results on specific classes of input signals. In the
ℓ∞ identification error measure, with energy-bounded
noise, the impulse input is optimal if the impulse size is
larger than the inverse of the representation error, which
is a measure of the distance between the set of a pri-
ori admissible systems and the chosen model class. Con-
versely, when the noise is amplitude bounded, the im-
pulse input is always optimal. Similar characterization
results for different identification error norms, like ℓ1 or
ℓ2, are the subject of the ongoing research. The results
on the ℓ∞ case presented in this paper can be seen as a
useful starting point towards this aim.

A Proof of Theorem 1

Note that E , radM∞ (F) = infg∈M suph∈P ‖h− g‖∞.
Let us now prove that if E+ ≥ µ then E = E+.
Let v+ ∈ P be a point where the sup in (20) is achieved

and let G+ be the related solution set of M, i.e.: G+ ,

{g ∈ M : ‖v+ − g‖∞ = E+}. Since P is a box, one can
choose v+ as a vertex of P . W.l.o.g. we may assume the
box centered at the origin and v+ = [β0, β1, . . . , βN−1],
βi ≥ 0, ∀i = 0, . . . , N − 1.

Let v− = −v+ and g+ , arg infg∈G+ ‖v− − g‖∞; it is
sufficient to prove that ‖v− − g+‖∞ ≤ E+.
To obtain a contradiction, let us suppose ‖v−−g+‖∞ =
E− > E+ and let I = {i : |v−i − g+i | = E−}.

Since g+ ∈ G+, one has |g+i − βi| ≤ E+, ∀i. Moreover,
when i ∈ I, |g+i +βi| = E− > E+. Hence g+i > 0, ∀i ∈ I.

Define v̄ =

{
βi i /∈ I

−βi i ∈ I
, and let ḡ = arg infg∈M ‖g −

v̄‖∞. By definition of E+, one has ‖v̄ − ḡ‖∞ ≤ E+. It

follows that

|ḡi − v+i | = |ḡi − v̄i| ≤ E+ , ∀i /∈ I. (A.1)

Let us define g̃ , αḡ + (1 − α)g+, 0 < α < 1. Due to
(A.1), since |g+i − v+i | ≤ E+, ∀i, one has

|g̃i − v+i | ≤ E+ , ∀i /∈ I. (A.2)

Conversely, when i ∈ I, one has |g+i − v̄i| = E− and then

|g̃i − v̄i| ≤ α|ḡi − v̄i|+ (1− α)E−

≤ αE+ + (1− α)E− < E− , ∀i ∈ I. (A.3)

Since g+i > 0, ∀i ∈ I, there always exists a small positive
α such that also g̃i > 0, ∀i ∈ I. Then, using (A.3), one
has

0 < g̃i < g+i , ∀i ∈ I. (A.4)

Since |g+i −βi| ≤ E+ and βi ≤ µ ≤ E+, ∀i, (A.4) implies
that

|g̃i − v+i | = |g̃i − βi| ≤ E+ , ∀i ∈ I. (A.5)
Therefore, from (A.2) and (A.5) it follows that ‖g̃ −
v+‖∞ ≤ E+ and hence g̃ ∈ G+.
However, from (A.3) one has

|g̃i − v−i | = |g̃i − v̄i| < E− , ∀i ∈ I. (A.6)

At the same time, if i /∈ I, |g+i − v−i | < E−, and by a
continuity argument it is always possible to find a small
positive α such that

|g̃i − v−i | < E+ , ∀i /∈ I. (A.7)
Therefore, from (A.6) and (A.7) one has ‖g̃ − v−‖∞ <
E−. But since g̃ ∈ G+, this contradicts the definitions
of g+ and E−.
To complete the proof, it remains to show that ifE+ < µ,
then E = µ.
Let us denote the box by P(c) to emphasize its center
and

E(P(c),M) = inf
g∈M

sup
h∈P(c)

‖h− g‖∞.

To obtain a contradiction, let us supposeE(P(c),M)>µ.
Let P(c) be a family of boxes centered in c such that

P(c)={Pi(c)with semi-axesδj:βj≤δj≤µ, j=0,...,N−1}.

It follows that ∀Pi(c) ∈ P(c) one has P(c) ⊆ Pi(c) and
so

E(Pi(c),M) ≥ E(P(c),M) > µ , ∀Pi(c) ∈ P(c). (A.8)

Let P(c) ∈ P(c) be the box with all semi-axes equal to
µ; one has

sup
h∈P(c)

inf
g∈M

‖h− g‖∞ ≥ µ > E+ = sup
h∈P(c)

inf
g∈M

‖h− g‖∞
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and then, by a continuity argument, there exists at least
one Pk(c) ∈ P(c) such that

sup
h∈Pk(c)

inf
g∈M

‖h− g‖∞ = µ. (A.9)

Due to (A.9), the first part of this theorem guarantees
that E(Pk(c),M) = µ, which is in contradiction with
(A.8). Thus E(P(c),M) ≤ µ. Since the error can not be

less than µ, due to µ = rad∞(P(c)) ≤ radM∞ (P(c)), it
follows that E(P(c),M) = µ. ✷
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[10] P. M. Mäkilä. Robust identification and Galois sequences.
International Journal of Control, 54:1189–1200, 1991.

[11] M. Milanese and A. Vicino. Optimal estimation theory
for dynamic systems with set membership uncertainty: an
overview. Automatica, 27(6):997–1009, 1991.

[12] K. Poolla and A. Tikku. On the time complexity of worst-
case system identification. IEEE Transactions on Automatic

Control, 39(5):944–950, 1994.

[13] D. N. C. Tse, M. A. Dahleh, and J. N. Tsitsiklis. Optimal
asymptotic identification under bounded disturbances. IEEE
Transactions on Automatic Control, 38:1176–1190, 1993.

[14] P. M. J. Van den Hof, P. S. C. Heuberger, and J. Bokor.
System identification with generalized orthonormal basis
functions. Automatica, 31(12):1821–1834, 1995.

[15] S. R. Venkatesh and M. A. Dahleh. On system identification
of complex systems from finite data. IEEE Transactions on

Automatic Control, 46(2):235–257, 2001.

[16] B. Wahlberg. System identification using Laguerre models.
IEEE Transactions on Automatic Control, 36:551–562, 1991.

[17] B. Wahlberg. System identification using Kautz models.
IEEE Transactions on Automatic Control, 39:1276–1282,
1994.

[18] G. Zames, L. Lin, and L. Y. Wang. Fast identification of n-
widths and uncertainty principles for LTI and slowly varying
systems. IEEE Transactions on Automatic Control, 39:1827–
1838, 1994.

8


