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Abstract

An industrial microgrid (IMG) consists in a microgrid involving manufacturer plants which
are usually equipped with distributed generation facilities, industrial electric vehicles, energy
storage systems, etc. In this paper, the problem of IMG efficient operation in presence of plug-
in electric vehicles is addressed. To this purpose, schedule of the different device operations of
IMGs has to be optimally computed, minimizing the operation cost while guaranteeing electri-
cal network stability and production constraints. Such a problem is formulated in a receding
horizon framework involving dynamic optimal power flow equations. Uncertainty affecting
plug-in electric vehicles is handled by means of a chance constraint approach. The obtained
nonconvex problem is then approximately solved by exploiting suitable convex relaxation
techniques. Numerical simulations have been performed showing computational feasibility
and robustness of the proposed approach against increased penetration of electric vehicles.

keywords: Industrial microgrids, receding horizon control, dynamic optimal power flow, plug-in
electric vehicles, chance constraints.

Nomenclature and abbreviations

Acronyms

CHP Combined heat and power

CVaR Conditional Value at Risk

DOPF Dynamic optimal power flow

DG Distributed generation

ESS Energy storage system

FU Factory unit

IMG Industrial microgrid

PEV Plug-in electric vehicle

PV Photovoltaic

Mathematical notation

R™ Real space of dimension m

Sm Space of symmetric (m x m) matrices
v Transpose of vector v

Tr(X) Trace of matrix X.

[k, k+ T Time interval from step k to step k + T
z (underbar) Lower bound of variable z

T (overbar) Upper bound of variable

x; (subscript) Value of variable z related to the bus i
x(k) (time in- Value of variable x at time k

dex)

P(e) Probability that event e occurs

E[z] Expected value of random variable
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Nomenclature
Sampling time

T Horizon length
CCHP Cost of electricity production by the CHP system at bus ¢
ck Cost of heat production by the boiler at bus i
o Cost of electricity from the main grid
ik k1) Objective function to be minimized over the interval [k, k + T
pPCHP Active power generated by the CHP system at bus 4
¢HP Reactive power generated by the CHP system at bus i
ic HP Electric efficiency of the CHP system at bus ¢
cZ-CH P Operation cost of the CHP system at bus ¢ per unit of electrical power generated in a time slot
9 Gas price
pPB Heat power produced by the boiler at bus ¢
B Efficiency of the boiler at bus 4
PEV Active power generated by the PV system at bus ¢
e Electricity price
PV Operation cost of the PV system at bus ¢ per unit of electrical power generated in a time slot
P Net active power injected at bus ¢
Q; Net reactive power injected at bus ¢
Pt ESS connected to bus i charge power
Pisf ESS connected to bus i discharge power
PF Active power demand of the i-th factory unit
F Reactive power demand of the i-th factory unit
Pi’EhV Charge power of the h-th PEV connected to bus @
PiG Active power generation at bus ¢
PiD Active power demand at bus 4
Gij Real part of the electrical admittance between bus ¢ and bus j
B;j; Imaginary part of the electrical admittance between bus ¢ and bus j
Vi Voltage magnitude at bus ¢
0 Voltage phase difference between bus i and bus j
alHP Waste heat factor of the CHP system at bus ¢
R Thermal power required by the IMG
E? Energy stored in the ESS connected to bus ¢
is + Charging efficiency of ESS connected to bus 4
77? B Discharging efficiency of ESS connected to bus ¢
EEY Energy stored in the battery of the h-th PEV connected to bus 4
nF}Y Battery charging efficiency of the h-th PEV connected to bus ¢
kd, Arrival time (starting charging time) of the h-th PEV connected to bus i
k;fi h Departure time (stopping charging time) of the h-th PEV connected to bus 4
K; Number of vehicles associated to bus ¢
Hik Set of indices of vehicles connected to bus i which are charging at time k

Hikk+1) Set of indices of vehicles connected to bus ¢ whose minimum arrival time belongs to [k, k+T)
€ Failure tolerance level

vi.n(k) Binary random variable denoting if PEV h connected to bus i is charging at time k
Lin Random vector containing ~; (k)

Oin Support of random vector I'; 5,

ﬂf(;l Vector of charging powers related to h-th PEV connected to bus i during [£f,, th]
II(k) Decision variable vector at time k

IT* (k) Optimal decision variable vector at time &

ik kg1 Decision variable vector sequence in [k, k + T

ij’ prr)  Optimal decision variable vector sequence in [k, k + T

kS ox Maximum departure time for all the vehicles belonging to H; x U H,; (1 k41 for any ¢



1 Introduction

Due to the technological development of low carbon technologies such as renewable generation
sources, local energy storage systems and electric vehicles, several issues came up to properly
integrate these new features into existing power systems. In fact, the intermittent nature of the
energy from renewables may affect negatively network stability and grid power quality. To this
end, attention of the scientific community has focused on local communities, and in particular
on microgrids [1-3]. In [4], a novel model of microgrid in the presence of renewables and electric
vehicles has been presented, whereas in [5], a coordinated electric vehicle charging algorithm has
been proposed to guarantee the power quality of the system. In this framework, secure grid
operation under huge penetration of plug-in electric vehicles (PEVs) has been addressed [6, 7].
In [8], a battery swapping strategy to maximize the profit of a charging station has been developed,
while in [9], a profit optimization procedure to manage an airport parking lot has been presented.
Moreover, a peak-load reduction controller exploiting the coordinated response of photovoltaic
(PV) systems, energy storage systems (ESSs) and PEVs has been developed in [10], whereas
in [11] a smart charging control to minimize the operation cost under different user preferences is
reported. Also, studies on sizing and siting of batteries, PV plants and electric vehicle charging
stations have been carried out. In particular, optimal allocation of renewable sources and electric
vehicles charging stations into a microgrid was addressed in [12]. In [13], an optimization method
has been proposed for proper sizing and siting of DG units, energy storage systems and PEV
charging stations, while an optimal storage sizing procedure to minimize the microgrid planning
cost has been presented in [14].

Besides residential microgrids, recent years have witnessed a growing interest towards industrial
microgrids (IMGs), i.e., microgrids involving manufacturing plants. In addition to the above
mentioned features, this kind of microgrids has to take into account production loads, industrial
electric vehicles, and possibly spatially distributed combined heat and electrical power generation
sources [15]. In [16], an optimal microgrid planning for an industrial site in the presence of
distributed generation (DG) plants has been proposed, while in [17] a multi-objective optimization
of an industrial microgrid considering demand response, maximization of the total revenue, and
total emission reduction, has been developed.

To guarantee a robust operation of microgrids, uncertainties affecting various aspects of the
considered systems should be handled, as well. These uncertainties may affect directly the system
behavior leading to possible violations of both technological and security constraints. In fact, since
these constraints often depend on uncertain variables, a suitable modeling paradigm is needed to
formulate them in probabilistic terms. A rigorous way to model this uncertainty is to make use
of chance constraints [18,19], which generally lead to complex formulations difficult to handle. In
order to overcome this issue, several approximation techniques have been proposed, e.g., scenario-
based [20] or distributionally chance constraint approaches [21]. For instance, a scenario-based
approach has been introduced in [22] to guarantee network performance against uncertainties of
power loads and electric vehicles arrivals, and in [23] to tackle uncertainty on renewable generation
in a PEV parking lot.

In this paper, we consider an industrial microgrid involving a manufacturing plant composed
of several spatially distributed buildings, hereafter referred to as factory units (FUs), connected
to different buses. Such FUs perform different tasks of the production plan and some of them
are assumed to be equipped with DG systems. In particular, PV systems coupled with electrical
energy storage systems are considered. Further, we assume that FUs are provided with combined
heat and power (CHP) systems able to produce electrical and heat power to be exchanged inside
the IMG. In addition to CHP systems, heat power can also be generated through boilers. A fleet
of plug-in electric vehicles is assumed to be assigned to each FU. Such vehicles can be of different
types, ranging from picker to lift trucks, from bucket to delivery trucks [15]. The arrival (charging)
time of each PEV is assumed to be uncertain, while the departure (plug-out) time is considered
to be known in advance, since it is assumed to be scheduled in the FU production plan. In this
setting, vehicle-to-grid power exchange will not be allowed. A sketch of the considered IMG is
reported in Fig. 1.
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Figure 1: Sketch of an industrial microgrid.

The aim of the paper is to derive an optimal management and control policy for the IMG in
order to minimize the energy bill, while satisfying electrical network stability constraints, heat and
power exchange among FUs, and guaranteeing a suitable charge level to PEVs. Electricity and gas
prices change over time and they are assumed to be known in advance. The optimization problem is
formulated in a receding horizon framework [24,25], where at each time step a sequence of dynamic
optimal power flow (DOPF) instances [26,27] is solved. To tackle the uncertainty associated to
each PEV, a chance constraint approach [18] is adopted. Due to power flow equations and chance
constraints, the obtained optimization problem is nonconvex. Relaxations based on [28] and [21]
make it possible to reformulate the nonconvex constraints as a set of linear matrix inequalities for
power flow and chance constraints, respectively.

The novel contribution of this paper with respect to the existing literature can be summarized
as follows:

i) the uncertainty related to PEVs is managed through a chance constraint approach. This solution
allows one to consider also vehicles which are not in charge in the optimization problem;

ii) nonconvex constraints arisen by using chance constraints are relaxed by means of worst-case
Conditional Value at Risk (CVaR) constraints [21], allowing for computationally feasible solution
of the optimization problem.

Numerical simulations are performed to assess performance and computational feasibility of
the proposed approach.

The paper is organized as follows. In Section 2, the problem of optimal control of an IMG
is formulated, while in Section 3 the receding horizon approach is presented. A simulation case
study is provided in Section 4. Conclusions and future developments are presented in Section 5.

2 Formulation of the Optimal Control of an IMG

In this paper, a discrete-time approach with sampling time A is considered. Let x be a generic
variable, the notation z(k) stands for the average value of = from time step k to k + 1, i.e., from
time kA to (k + 1)A. Let the number of buses involved in the IMG be denoted by N. By z; we
mean a generic variable x related to bus i.

The aim of this work is to minimize the overall cost of an IMG while respecting the physical
and security constraints imposed by its components, i.e., power lines, DG facilities, ESSs, PEVs,
etc. Moreover, operation constraints related to heat requirements and PEV charging set-points
have to be respected, as well.



2.1 Objective Function

Let k denote the present time step and let T" be the horizon length. The objective function to be
minimized is defined as the sum of all the costs of the IMG over the time interval [kA, (k+ T)A].
Electrical power can be generated by PV and CHP systems or it can be drawn from the main
grid. Heat may be produced by boilers and CHP systems. Thus, for all the factory units, the cost
of using CHP systems (CSHP) and boilers (CF) has to be taken into account in the objective
function, as well as the cost of the electricity drawn from the main grid (C). Thus, the objective
function to be minimized is:

N k+T N k+T k+T
Tram =22 IO+ ) D GO0+ OO0 M
i=1 t=k i=1 t=k t=k

Let PEHP be the electrical power produced by the i-th CHP system, and let n¢#F and p9
be the CHP efficiency and the gas price, respectively. Denoting by ciCH P the operation cost of
the i-th CHP system per unit of electrical power generated in a time slot, the CHP cost can be
expressed as:

PEHEP(B)A

CHP
s

Let PB be the heat power generated by the i-th boiler, then the corresponding cost is:

SRR (k) + PO (k) 71

PB(k)A

C.B(k) = e

p?(k)

where nP denotes the boiler efficiency.

Let us denote the net active and reactive power at bus i by P; and @Q;, respectively. By
convention, the slack bus is indexed by 1, so the net active and reactive powers drawn from the
main grid correspond to P; and @)1, respectively. Let p®(k) be the electricity price at time k, the
overall electricity cost from the main grid can be written as:

CY(k) = Pi(k)Ap°(k) .

It is worthwhile to remark that Pj(k) is the difference between the overall electric power needed
by the IMG (for factory operation, power losses, PEV and ESS charging), and the electric power
generated by CHP and PV systems.

In this work, to avoid arbitrage on electricity price, it is assumed that the IMG cannot inject
electric power into the main grid, i.e., P;(k) > 0 for all k.

2.2 Physical and Security Constraints

In this subsection, the physical and security constraints needed to ensure safe operation and
physical stability of the IMG are defined.

First, the power balance equations are recalled. Let Pf be the active power demand of the
factory unit connected to bus ¢ and let the charge/discharge power of the i-th ESS be denoted
by PZ-S * and PiS ~, respectively. For a generic PEV h connected to bus ¢, PZEhV(k) represents the
charge power at time k. Denoting by PiG and PP the total generated and demanded active power
at bus 4, one has:

P (k) = PP (k) + PPV (k) + PP~ (k)

PP (k) = PF (k) + P (k) + Z PEY (k)

where K is the set containing the indices of the vehicles connected to bus 3.



The net active and reactive power at bus ¢ can be written as [26,27,29]:

N
Pi(k) = Vi(k) Y Vj(k)(Gij cos bi; (k) — Bijsiny;(k)) ,

N
Ql(k) = ‘/z(k‘) Z %(k‘) (Gi]‘ sin 9”(16) — Bij COS 9”<k‘)) 5

where G;; and B;; are the real and imaginary part of the electrical admittance between bus ¢ and
7, Vi is the voltage magnitude at bus 7, and 0;; is the voltage phase angle difference between buses
i and j. Thus, the active power balance equality constraint at bus ¢ is:

Pi(k) = PE (k) + PP (k) =0.

The reactive powers of the PV systems and PEVs are neglected since these small generators are
typically connected to the network through high quality grid-tie converters that feature a fixed
power factor close to 1 [30]. The reactive power demand consists of the reactive power of the
different FU loads. Denoting by Q¢f” and QI the reactive powers exchanged by the CHP
system and the FU connected to bus i, the reactive power balance equation is:

Qi(k) — QYFP (k) + QF (k) =0

Let us now introduce the inequality constraints concerning network security, CHP and boiler
systems, PV systems and PEVs. The network security constraints enforce limits on voltages at
the different buses and capacities of the lines, the latter depending on physical properties of the
lines [30]. No voltage limits are set on the slack bus since it is considered a fixed-voltage bus. As
previously stated, we assume that the slack bus is labeled with ¢ = 1. Let us denote by P;;(k)
the power flowing from bus ¢ to bus j in the k-th time slot. Network security constraints can be
written as:

V,<Vik) <Vi,  i=2..,N,

and

while the slack bus constraints are:

where P, Q1 and @, are given bounds.

Constraints on active and reactive power generation by the i-th CHP system are expressed as:
EZ_CHP < BCHP(k) < ﬁiCHP 7
QUM < Qfr (i <"
while the heat power produced by a generic boiler i is constrained as:
0<PB(k) <P’ .

Let Ef be the energy stored in the ESS connected to bus i, and let nf+ and nf_ be the
corresponding charging/discharging efficiency, respectively. The constraints involving the ESS
enforce limits on the charge/discharge power, the storage capacity and the energy balance. Thus:

0< PSR <P)T



0< PP

ES <ES(k) <E; ,

ES(k)=ES(k—1)+n°TP T (k- 1)A - %Pf‘ (k—1)A.

Regarding PEVs, let us consider the generlc vehicle h connected to bus ¢ and denote by Ez n

the energy stored in its battery and by 77 V' the corresponding charging efficiency. The electrical
vehicle charging process is represented by the following constraints:

Efy (k) = B (k=1) + 0l P (k= 1A (2)
0 < PEV(K) <Py (3)

—FEV
Ef5 (k) <Eij - (4)

2.3 Operational Constraints

Let k{), and ka ;, denote the time a generic PEV h connected to bus 7 starts and stops the charging
process, respectively. We assume that the departure time kd ', 1s known, being it related to the
factory production schedule, while the arrival time k{ ', 18 uncertain. We also assume that the
battery capacity at plug-in time is known. To assure that a vehicle is fully charged at the time it
is plugged-out, the following constraint is introduced. It enforces the stored energy at departure
time to be equal to the maximum battery capacity:

—EV

z, (k )_ ih (5)

In the considered setting, we assume that factory units can exchange heat among themselves,
and that their CHP systems and boilers cooperate to satisfy the overall heat requirement. Denoting
by aS'HP the waste factor that describes how much useful heat power is generated per electric

power produced by the i-th CHP system, the constraint on the overall heat demand R of the IMG
can be expressed as:

(af TP PRI (k) + PP(K)) = R(k) -

M=

i=1

3 Optimal Control Implementation

In this section, a receding horizon algorithm ensuring optimal operation of the IMG is derived.
To this purpose, the objective function (1) has to be minimized in order to compute the optimal
control sequence.

Let k& denote the current time step. The arrival time of a vehicle is supposed to be uncertain,
and therefore the constraint representing its charging process is meaningful only when that PEV
<k< k‘f’h} as the set
of indices identifying vehicles plugged into the i-th bus at time k. Since the cardinality of this set
varies over time, the optimization procedure needs to be adapted at each time step. Therefore,
an adaptive optimization problem need be formulated at each time step in order to find the best
solution for the IMG operation.

Notice that H; j takes into account only the vehicles charging at time k, but it provides no
information about the incoming ones. Ignoring such an aspect may lead to situations in which
network safety constraints may be violated, e.g., due to voltage drops and/or power overloads
caused by arrivals of vehicles in future steps. Thus, in order to prevent these events, a chance
constrained approach is adopted to handle uncertainty affecting PEVs arrival times.

i,h

is plugged into the network. For this reason, let us define H; ; = {h k¢



3.1 Uncertainty Modeling

The real arrival time of the h-th vehicle at bus i, ki), is supposed to be a random variable with a

bounded closed support [Ef hs EZ 5], and let us assume that the corresponding discrete distribution
function is known.

To take into account the incoming vehicles, let us define the index set H; [ k41 = {h ck <kl <k+ T}
which contains the indices of the vehicles whose minimum arrival time falls into the prediction hori-
zon. Notice that, by construction, sets H; . and H; [ x41) are disjoint, i.e., H;x N H; (g py1) = 0,
for all 7 and k.

Being the arrival time k7, a random variable, also the evolution of the vehicle state of charge

EEV becomes a random variable itself. So, to manage the charging process involving incoming
vehlcles constraint (5) is replaced by the following chance constraint:

—EV
P(EE () 2By ) 21— €, heHipum (6)

where 0 < € < 1 denotes a given failure tolerance level.
In order to model the uncertainty on the state of charge, let us define the binary random vector
Tin as

Lin= [%,h(&ﬁh)w-w 'Yi,h(EZh)}

where,
1 if k>k¢ —a
Yin(k) = { ek =k kg,

0 otherwise

describes if a vehicle is in charge at time k.
Combining (6) with I'; ,, the chance constraint can be rearranged as

Ta

kz,h k?,h*1
P(WA( S PR Muah+ > PR (1) =

t=k7 ), t=kj ,+1
E Ezh(zh)>21_€'

By using (2), the second sum can be rewritten as

( B SS PR () + BEY ()

t=k¢

—~i,h

EEY (R, +1) > B,y — EEY (k¢ )>>1—e

and finally
/
P(nf,YA (ﬂffh) zh+5 ) >1—ce¢, (7)
where, o /
i = [PEY (2h). s PRV
and
gzh - (k;i,) E (kzh+1) Ezh+E (zh)

Notice that, if the vehicle arrival time interval overlaps the current time, the arrival distribution
Iy, can be replaced by the corresponding conditional distribution.



3.2 Optimization Problem Formulation
Let us define the command row vector II(k) as
(k) = [PLY (k) ooy PE, (K), s PN (K), .oy P K (R),
P (), oo PR (), PP (), P (R),
PR k), ., PRI (R), QTP (R), ..., QRTT (K),

PE(k),... P (k)] ,

where K; denotes the maximum number of vehicles related to bus 7. Furthermore, let us introduce
the vector IIj; 47} in order to collect the control sequence over the time interval [k, k+T):

H[k,k—i—T] = [I(k),..., (k+T)].

The DOPF problem can be formulated as reported in Problem 1.




Problem 1: Dynamic Optimal Power Flow over time horizon [k, k + T7.

My rr) = argmin - Jy g7y
IT .
[k k+T]

subject to:

Py(t) =P () + PPV () + PP (1) -

Qi(t) = Q7" (1) —

|P(t)| < Pij , j #Z

B,‘CHP S PZ-CHP(t)
QU < QP (1) <
0<PPt)<P’
0< P () <P "
0<PS(t) < P;”
E¥ <ES(t)<E;
0< Pi(t) < Py
Q,<Qi(t) <Q,

M=

i=1

V, S Vi) <V
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B () =B (t—1)+n TP (-1

EEY (t) = BEY (t —1) +nF)

0< Pfhv(t) < Pi,h
B (1) < By

P(nzhA( )Fi,h+€z€f§/>0

—EV
EZE,}Y(k;i,h) Ez,h

heH; kUH; [k k+T)

(a"T P (1) + PP (1))

—P(t-1A

PthV(t - 1)A

P (t)

t=Fk .. k+T,

t=k,....,k+T

t=k,..k+T,
o N

t=k+1,..,k+T,
i=1

1=1,.
hGszUH [k k4T
i=1,.

hGH [k, k4T
i=1,.

hE’sz.

fios

}tk:“ +1,.., K
} h ik
}

}

Notice that, since H;r N H kx4 = 0, Vi, Vk, the last two constraints of Problem 1 are

mutually exclusive in the adaptive optimization procedure.

It is worthwhile to remark that this optimization problem is nonconvex. In fact, it involves
power flow equations, which describe a highly nonlinear system, and chance constraints in which

the feasible set is typically nonconvex.

From the optimal power flow perspective, the nonconvexity can be handled by using its dual
formulation and by relaxing a rank constraint to obtain a convex problem. It has been proven
that for radial networks like those considered in this paper, such a relaxation is exact, see [28] for

details.

Regarding chance constrained optimization, in the next subsection a method to approximate

such constraints is adopted.



3.3 Chance Constraint Approximation

In the literature, there exist mainly two approaches to approximate chance constraints. The first
one regards scenario based methods, where a number of realizations of the random process is
collected in order to approximate the original chance constraints [20,31]. The drawback of this
approach is that the number of samples needed increases considerably as the failure tolerance
level decreases, leading to computationally demanding problems when satisfaction probability
approaches 1. This feature may be dramatically amplified by the increasing number and dimension
of the random vectors necessary to model uncertainty. In the considered setting, the number of
PEVs employed into the IMG, and then the number of random vectors, amounts to tens or even
hundreds, leading to computationally unfeasible problems.

The second approximation family involves robust optimization methods, where chance con-
straints are relaxed by exploiting stochastic properties of the uncertain variables involved. Here-
after, we refer to the technique proposed in [21], where the first and second order moments of the
considered random variable are used to obtain a convex problem reformulation involving linear
matrix inequalities. Then, such a problem can be efficiently solved by using standard optimization
tools (e.g., [32-34]).

Thus, let us now focus on the random variable I'; j,, whose expected value is given by

—a /

E[Fi,h] = HKin = Mz‘,h(ﬁg,h)a ) Mz‘,h(k?i,h) )
where
pin(k) = E[vin(k)] = P(yvin(k) =1) = P(k), < k).
Let 3; 1, denote the covariance matrix of I'; 5, one has:

a

Ji,h(E?,ha E?h) cee Ui.,h(@?,h%i,h)
Sin = : : ,
Ui,h(Ei,ha j,h) cee Uz‘,h(Ez‘,mEi,h)
where
i 1—py if p <
oin(prq) = 4 PinPIL = rin(@) ifp<q
in(@)(1 = pan(p)) ifp>gq.

The first and second order moments of I'; ;, can be combined as follows:
Q) = [Zz}h + Binlin B
" i n 1
Let us refer to a generic h-th vehicle connected to bus i. In the following, for ease of notation,

subscripts ¢ and h are omitted. According to [21], chance constraint (7) can be approximated
through CVaR and then replaced with the following set of convex constraints:

B e R, M € SE —k"+2),

B R(ka—ka“rl)’ pc R(EG—EQ+1)7

A<0,

p<0,

B+ 1rr(MQ) <0,

Mo (k*—k +1)Wj)\j 0, (8)
=1

J
(k*—E*+1)
M + Z ijj—

0 —%nEVAwka
_%nEVA(ﬂ.k“)’ —EBV _ 3




where T'r(-) is the trace operator and W; are symmetric matrices of dimension k" — k 4+ 1. Such
matrices are used to approximate the support © of I' as:

6cC {F e RF'=E+1 . [/ 1]w, 1", 1]’ <0,
j:l,...,Ea—Ea+1} ,

where W; are such that each entry of I' must lie between 0 and 1.

3.4 Receding Horizon Implementation

Notice that the optimization Problem 1 does not take into account vehicles whose departure time
falls outside the prediction horizon. To overcome this issue, a dynamic adaptation of the prediction
horizon T is proposed as follows:

1. Let the nominal prediction horizon T" be given.

2. At time k, let us check for each bus i if there is any PEV with index h such that h €
Hik UHi kg1

(a) if there is not any PEV belonging to #H; U H; [ k+7], then the prediction horizon
remains unchanged;

(b) if there are some vehicles belonging to H; x U H; [ x+1], the corresponding departure

times k¢, have to be considered. Let us call k¢, the maximum departure time for all

the vehicles belonging to H; x U H; [k r+7)- The prediction horizon has to be updated

with the maximum value between k% and T.

max

The overall receding horizon algorithm is reported in Algorithm 1.

Algorithm 1: Receding Horizon procedure

1 Let Ty be the nominal prediction horizon;

2 Set k= 0;
3 Set T' = Tp;
4 fori=1to N do
5 for h € H;; do
6 Update the horizon as T = max {T, k;{h};
7 Add constraints (2)-(3)-(4)-(5) for vehicle h;
end
for h € H; (g py1,) dO
10 Update the horizon as T' = max {T, k;{h};
11 Add constraints (2)-(3)-(4)-(8) for vehicle h;
12 end
13 end

14 Solve Problem 1 to obtain HFch+T];

15 Apply command IT*(k);
16 k=k+1;
17 Repeat from step 3

4 Numerical simulations

In this section, an IMG is simulated in order to test the effectiveness and the computational
feasibility of the proposed approach.

12
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Figure 2: Structure of the considered 10-bus industrial microgrid. “B” denotes boilers while “PV”
photovoltaic plants.

4.1 Simulation setup

Simulations have been performed over three days with a sampling time A = 1 hour, a standard
prediction horizon T = 4 hours and a chance constraint failure tolerance level € = 0.1.

An IMG composed of 10 buses and 7 FUs is considered, see Fig. 2. Factory units are referred
to as FU;y , ..., FU; and they may be equipped with CHP systems, boilers, PV plants and PEVs.
DG facilities installed in each FU are summarized in Table 1.

Technical data regarding DG systems and PEVs are taken from [15]. Data of CHP systems,
that is, maximum and minimum active power generation, electric efficiency, waste heat factor
and operational cost are reported in Table 2, while technical data regarding boilers are given in
Table 3.

Each PV plant is assumed to be coupled with an ESS able to store the power in excess into
batteries. Technical specifications about storage systems are reported in Table 4.

Forecasts of factory load patterns, PV generation and heat requirements are assumed to be

Table 1: Distributed generation facilities assigned to each factory unit.
FU; | FU, | FU;3 | FU, | FU; | FUg | FU,
CHP system| X X X X X X X

Boiler X X X X X
PV plant X X
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Table 2: CHP systems technical data.

FU, FU, FUs FU, FU;| FU{ FU;
POEPEW] 150 90 | 9 | 9 | 3 | 3 | 3
—CHP
P [EW]| 15000 900 | 90 | 90 | 30 | 30 | 30
ncHP 0.27| 0.34] 0.31| 0.31] 0.30| 0.30| 0.26
aCHP 1.84| 1.20| 1.85| 1.85| 2.05| 2.05| 1.71
cCHP[E] | 0.006 0.009 0.013 0.013 0.018 0.018 0.011
Table 3: Boilers technical data.
FU, | FU, | FU; | FU, | FU;
p° [EW] | 800 | 400 80 80 80
nB 0.8 | 0.85 | 0.85 | 0.85 | 0.83

Table 4. ESS technical data.

FU, | FU,
ES [kWh] | © 0
E° [kWh] | 1000 | 250
P kW] | 350 | 100
P°T kW] | 350 | 100
0ot 0.92 | 0.9
0~ 0.92 | 0.9
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Figure 4: Overall photovoltaic generation.

known enough time in advance. The overall factory electrical load and heat requirement are
depicted in Fig. 3, whereas the overall PV generation is reported in Fig. 4. The IMG is supposed
to be equipped with three types of PEVs (light service vehicles, heavy service vehicles and large
industrial vehicles) each one divided in two subclasses. Technical data on PEV charging systems
are reported in Table 5, while in Table 6, the number of vehicles assigned to each FU is reported.

Daily arrival and departure schedules of PEVs are reported in Table 7. The actual arrival
times of vehicles are taken from a symmetric triangular distribution with a support of 4 hours.

For all buses, the nominal voltage magnitude is set to 230V, and the safety limits are given
by £10% of the nominal value. The slack bus is constrained to draw at most 6500 kW of active
power from the grid and the constraints on the reactive power are set to Q; = —Q; = 3150 kV AR.
All the other buses of the network are treated as load buses. o

Electricity and gas prices have been taken from the Italian electricity market [35] and they are
depicted in Fig. 5. Notice that, electricity price changes every hour while gas price is updated
once a day.

4.2 Simulation Results

The results obtained by simulating the considered IMG show that the proposed control strategy
is able to efficiently manage all the grid components.

From the electrical point of view, in Fig. 6 (top), one may observe the relationship among CHP
production, PV generation and main grid power consumption. As expected, when the electricity
price is low, the IMG power is mostly drawn from the main grid. In Fig. 6 (bottom), the total
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Table 5. PEVs technicalp%z%;ca. -
Vehicle Type nPEV | E P

Light Service 1 0.88 16 23
Light Service 2 0.88 24 4
Heavy Service 1 0.9 170 24
Heavy Service 2 0.92 85 14

Large Industrial 1 | 0.95 100 100
Large Industrial 2 | 0.95 200 200

Table 6: Number of vehicles for each FU.

FU; FU; FU; FU, FU;y FU; FU

Light Service 1 5 4 3 3 3
Light Service 2 10
Heavy Service 1
Heavy Service 2

Large Industrial 1

gt Ot 0o Ot

N W o =
S W O O =
S O O O B
O O O O =
S O O O =W
S O O O = W

Large Industrial 2

Table 7: Arrival and departure time of vehicles.

Charging cycles

Vehicle Type 1 2

ta E td ta ta td

Light Service 1 16:00 20:00 6:00| - - -
Light Service 2 16:00 20:00 6:00| - - -
Heavy Service 1 17:00 21:00 5:00| - - -
Heavy Service 2 16:00 20:00 6:00| - - -
Large Industrial 1 | 9:00| 13:00 15:00 18:00 22:00 6:00
Large Industrial 2 | 10:00 14:00 16:00 20:00 0:00| 5:00
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Figure 6: Electrical power side of the grid. Top: overall electrical power supply. Overall CHP
generation (blue), PV production (green), main grid power consumption (red). Bottom: overall
electrical power demand. Overall FU load (red) and PEV demand (blue).

FU electrical demand is reported, as well as the overall PEV charging profile, while in Fig. 7, the
state of charge of the storages related to FU; and FUjy is depicted.

Moving the attention on the heat demand reported in Fig. 8, CHP systems and boilers are
employed to satisfy such constraint. In particular, boilers are mainly used both when CHP systems
saturate and when producing electrical power through them is not convenient, e.g., around time
25. Concerning the overall heat generation, it can be noticed that the total produced heat always
coincides with the requirement except around time 57, when the heat produced by CHP systems
exceeds the overall requirement.

In Fig. 9, voltage magnitudes of buses 4, 6 and 8 are depicted. It can be observed that voltage
magnitudes remain in the working range at all times. The largest fluctuations can be observed at
bus 8 (red), which is connected to the most demanding FU, i.e. FU;.

In order to evaluate the performance of the proposed approach, a benchmark consisting in
Algorithm 1 without chance constraints (i.e., without lines 9-12) is considered. The two algorithms
have been compared over a three-day simulation, showing similar overall costs, as reported in
Table 8. On the other hand, to assess the robustness of the two procedures, an increased PEV
penetration has been considered. Under this new setting, the benchmark is no more capable to
satisfy grid constraints when the number of vehicles increases of about 30%, while the proposed
chance constraint approach is able to guarantee an optimal grid operation even for a number of
vehicles more than doubled. Hence, thanks to the adopted chance constraint control strategy, the
optimization procedure can suitably manage the incoming vehicles with a consequent improvement
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Figure 8: IMG heat requirement (red), overall CHP thermal generation (blue) and boiler heat
production (green).

of the grid security.

In Fig. 10, the electrical power side of the IMG under double penetration of vehicles is depicted.
In this setup, the grid is highly stressed. Indeed, the slack bus and the CHP systems reach often
their saturation limits due to the heavy demand of PEVs. However, the proposed algorithm
enforces the feasibility of the IMG network by spreading the PEV charging process over the whole
plug-in time.

Regarding computational aspects, the proposed algorithm results to be largely tractable. In
fact, the time needed by an iteration amounts to about 7 seconds.’

5 Conclusions

A receding horizon approach to the optimal control of an IMG in presence of PEVs has been
presented. To deal with the uncertainty affecting the arrival times of PEVs, a chance constraint
approach has been devised and a suitable relaxation technique has been adopted. Simulations
involving a 10-bus industrial microgrid have been performed. The proposed approach has been
compared with a deterministic method which does not employ chance constraints. Results show
that the overall energy bill is similar for both approaches. However, the proposed method out-
performs the benchmark when looking at robustness regarding PEV penetration. In fact, the

ISimulations have been carried out using CVXPY [36] to model the problem and MOSEK [32] to solve it on a
Intel(R) Core(TM) i7-7700 CPU @3.60 GHz with 32 GB of RAM.
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Table 8: Grid operation costs [€] over three days.

Day 1 Day 2 Day 3 Total
Proposed procedure | 8643.56 | 8457.12 | 9953.39 | 27054.07
Benchmark 8644.99 | 8461.27 | 9956.88 | 27063.13

benchmark is able to handle PEV increase of about 30%, after that network stability is no more
guaranteed, while the algorithm based on chance constraint can manage PEV growth of more than
100%, showing better robustness capabilities.

Future developments may involve the use of different kind of techniques for dealing with uncer-

tainty, like for instance, scenario-based approaches. Moreover, uncertainties on vehicle departure
times and on other aspects of the IMG (e.g., uncertain FU load profile and uncertain PV generation
forecasts) can be considered as well.
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