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Abstract

Demand response is expected to play a fundamental role in renewable energy

communities to alleviate the electricity demand-supply mismatch, especially

in the presence of stochastic load and generation. In this paper, we con-

sider an electric vehicle charging station that participates in incentive-based

demand response programs. A real-time charging scheme is devised to opti-

mize the charging station operation by coordinating the charging process of

the electric vehicles, and complying with the incoming demand response re-

quests. In this context, vehicle demand is assumed uncertain, while demand

response requests ask for a change in the charging profile over certain time
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intervals, in exchange for a monetary reward. By exploiting the probability

distributions describing the vehicle charging process, a stochastic formula-

tion is employed to devise a novel charging algorithm aimed at reducing the

charging station operational cost. Such a procedure can (i) handle the uncer-

tainty affecting the charging process in different settings and scenarios, and

(ii) exploit the information collected in real-time to refine forecasts and hence

ensure a higher demand flexibility. Numerical results show that the proposed

approach ensures considerable cost reduction compared to the benchmarks,

and features highly scalable runtimes.
Keywords: Electric Vehicles, Charging Stations, Demand Response,

Receding Horizon

1. Introduction

Demand response (DR) programs play a key role in restoring the balance

between electricity demand and supply in renewable energy communities

(RECs). DR incentivizes users to change their electricity demand profiles

with respect to their usual consumption patterns in response to time-based

rates (price-based schemes) or financial incentives (incentive-based schemes)

[1], hence providing several benefits for the grid stability [2, 3].

With the increasing penetration of electric vehicles (EVs), the question

of whether they are suitable targets for DR programs comes naturally. The

answer appears to be positive for two reasons. First, the EV power demand

is expected to significantly contribute to the overall grid power consumption.

In fact, differently from low power appliances like domestic ones, EVs can

be considered high power appliances, being devices that require a significant
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amount of power during the charging process. Indeed, it is expected that

public charger capacity will be around 600 GW by 2030 [4]. Second, differ-

ently from other kinds of high power appliances (like industrial loads), EVs

feature higher potential flexibility since their charging process may be shifted

or even interrupted over time. Consequently, the charging schedule can be

managed to comply with EV owners charging requirements, while satisfying

the incoming DR signals.

Despite the expected flexibility potential of EVs, the adoption of DR

schemes in the mobility sector introduces some challenges. On one side,

if the charging process of EVs is left uncoordinated, it can lead to energy

shortage issues, and threaten the reliability and stability of the power system

[5]. On the other side, EV charging loads are inherently stochastic, as they

depend on users driving habits and traffic conditions. It is therefore clear

that the development of strategies to handle and coordinate the stochastic

EV demand is essential to achieve suitable levels of flexibility for participating

in DR programs.

Related works. The importance of the investigated topic is testified by the

growing body of literature proposing control methodologies for allowing the

participation of EV charging stations (EVCSs) in DR programs (see surveys

[6], [7] and [8]). Several problem settings and optimization approaches have

been considered. In [9], a DR program requiring power reduction of an EVCS

where vehicles are charged by exploiting an on-off policy is considered. In

[10], an incentive-based DR scheme focused on the deviation from the nom-

inal profile is analyzed, and control techniques based on deep reinforcement

learning to minimize the daily EVCS cost in real-time are proposed. Further-
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more, [11] focuses on DR for load shaping and evaluates its impact on the

distribution network, while [12] exploits dynamic programming for determin-

ing the optimal charging schedule for vehicle-to-grid regulation services. The

use of particle swarm optimization routines to maximize the daily profit in-

cluding DR incentives is considered in [13]: here the uncertainty on renewable

generation is taken into account, while this is not the case as far as demand

is concerned. Contributions concerning the development of receding-horizon

algorithms to shave the peak power of an EVCS under EV uncertainty have

been proposed in [14, 15, 16, 17, 18]; however, these approaches are not

compatible with incentive-based DR structures. Similarly, [19] develops a

dynamic programming approach for pricing schemes and relies on a “deduc-

tion” method to handle unknown information about the future behavior of

vehicles. On a different direction, two-stage day-ahead settings are consid-

ered in [20], where the authors rely on stochastic programming to develop

an EV pricing strategy for profit maximization, and in [21], where approx-

imate dynamic programming is adopted to determine the optimal charging

scheduling under total capacity constraints. In [22], a chance constrained

approach is exploited to formulate a day-ahead planning for gathering EV

charging flexibility where customers response to DR incentive prices is un-

certain. A bilevel approach allowing the participation of energy communities

with EVCSs in DR programs is described in [23]. Such a procedure re-

lies on Montecarlo simulations to generate plausible scenarios for renewable

sources and loads. In [24], a stochastic programming approach is proposed

for optimal charging scheduling that can fit different types of DR programs

(price-based and incentive-based) under renewable sources and market price
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uncertainties. However, both [23] and [24] are not suitable to operate in

real-time. More recently, in [25] an end-to-end learning and optimization

framework for price-responsive EV charging scheduling is proposed, while

[26] develops an optimization-based approach to enable the participation of

EVCSs into incentive-based DR programs. However, [26] does not consider

the potential flexibility of incoming vehicles, hence offering less adaptation

to DR programs.

Novelty and contribution. In this paper, we consider an EVCS that is

part of a REC and participates in DR programs to help maintain the lo-

cal demand-supply balance. According to the concept of “flexibility for en-

ergy” [27], we assume the existence of a contract between the REC manager

and the charging station owner, where the EVCS gets compensated if it re-

duces/increases its energy consumption during certain time windows with

respect to a nominal profile. In the considered setting, DR requests are dis-

closed to the EVCS with a limited lead time, hence leaving little time to

react. To allow a flexible and resilient EVCS management, a novel stochas-

tic receding-horizon methodology that coordinates the EV charging schedule

of incoming vehicles is designed. Specifically, forecasting procedures that

estimate the EVCS future load flexibility are embedded into the proposed

algorithm to manage the charging schedule and comply with the incoming

DR requests.

To the best of the authors’ knowledge, there are no available receding

horizon techniques that explicitly consider and model the EV uncertainty on

plug-in and plug-out times under incentive-based DR programs. This paper

aims to fill such a research gap through the following contributions:
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1. a stochastic formulation to optimally schedule the charging process of

EVs in a charging station participating in an incentive-based DR pro-

gram is proposed. To deal with the randomness of vehicles aggregated

demand, we introduce a formulation that allows one to consider differ-

ent settings and scenarios with no specific assumption on the structure

of the underlying probability distributions. Contrary to [26], the pro-

posed approach takes explicitly into account the potential flexibility of

future incoming vehicles, thus improving the EVCS performance and

providing significant cost reduction, as witnessed by the reported nu-

merical simulations.

2. a receding horizon algorithm that takes advantage of the information

acquired online to derive load forecasts is designed to solve the above

problem. The procedure requires the solution of an optimization pro-

gram involving binary variables whose number scales with the number

of daily DR requests. For fixed values of the binary variables the opti-

mization problem is convex, making it affordable to branch and bound

solution techniques. The scalability of the algorithm is demonstrated

via numerical simulations.

Paper structure. In Section II, the problem formulation is described.

In Section III, the receding horizon algorithm aimed at finding the optimal

charging schedule to ensure daily cost minimization in the presence of DR

requests is derived. In Section IV, numerical results to evaluate the effective-

ness and the computational feasibility of the proposed approach are reported.

Finally, conclusions and future research lines are reported in Section V.
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Notation and nomenclature. N denotes the set of natural numbers, while

R the set of real numbers. We define a probability space W as a unique

tuple W = {Ω, F , P}, where Ω is its sample space, F its σ-algebra of events,

i.e., the collection of all possible subsets of Ω, and P its probability measure

that assigns a probability P(A) to every event A ∈ F . For an event A ∈ F ,

the probability that A occurs is written as P(A), whereas the probability of

its complement is P(A) = 1 − P(A). Consider two events A, A′ ∈ F , then

the joint probability that A and A′ both occur is denoted by P(A, A′) :=

P(A∩A′), while the conditional probability that A occurs given A′ is denoted

by P(A|A′) := P(A∩A′)
P(A′) . We define a random variable X as a F -measurable

function defined on the probability space W mapping its sample space Ω

to the real line R, i.e., X : Ω → R. For a random variable X, we denote

by E[X] its expected value, whereas E[X|t] represents the expectation of X

conditioned to the available information at time t. Nomenclature is reported

in the following table.
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Symbol Description

∆ Sampling time

ta
v Arrival time of vehicle v

tc
v Time when charging ends for vehicle v

td
v Departure time of vehicle v

τ f
v

Fulfillment duration of vehicle v under nominal power

charging schedule

τ p
v Parking duration of vehicle v

τ c
v Charging duration of vehicle v

Ef
v Declared energy requirement of vehicle v

Sv(t) Energy charged into vehicle v at time t

Pv(t) Average charging rate of vehicle v in the time interval [t, t+1]

rv(t) Nominal charging profile of vehicle v at time t

N Daily number of incoming vehicles

Q(t) Incoming vehicles after time t

H(t) Number of vehicles charging at time t

W (k, t) Number of vehicles charging at time k incoming after t

V(t) Set of vehicles charging at time t

A(t) Number of arrived vehicles up to time t

EF (t)
Forecast of day-ahead aggregated energy consumption at

time t

ES(t) Actual aggregated energy consumption at time t

EU(t)
Aggregated energy consumption under uncoordinated

nominal charging policy at time t
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P0 Nominal charging power

P̄ Maximum charging power

η Charging efficiency

tb
r Begin time of DR request r

te
r End time of DR request r

tn
r Notice time of DR request r

Br, Br Upper and lower energy bound for DR request r

δr Energy violation associated to DR request r

γr Monetary reward associated to DR request r

tin
v,r Last time instant when vehicle v is charging during request r

τ in
v,r Number of time slots when a vehicle is charging inside request r

τ out
v,r Number of time slots when a vehicle is charging before request r

P in
v,r Reduced power of vehicle v inside request r

P out
v,r Incremented power of vehicle v before request r

σin
v,r(t)

Power reduction w.r.t. the nominal profile at time t of vehicle v

inside request r

σout
v,r (t)

Power increase w.r.t. the nominal profile at time t of vehicle v

before request r

νr(t)
Expected value of the power reduction/increase at time t

for request r

cg Grid electricity price

cd Unitary deviation cost

k Unitary reward
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2. Problem formulation

We adopt a discrete time setting where the sampling time is denoted

by ∆, and consider a reference day divided into T time slots with running

index t = 0, . . . , T − 1. The charging station is assumed to participate in a

DR program to provide flexibility to the REC in exchange for a monetary

incentive. The contract between the REC manager2 and the charging station

is structured as follows:

• the REC manager provides a discounted constant electricity price cg to

the charging station;

• at the beginning of each day, the charging station communicates a fore-

cast of its daily energy consumption, denoted by EF(t), t = 0, . . . , T −1,

to the REC manager. This forecast can be the result of a day-ahead

planning problem (see, for example, [28]);

• in addition to the energy price, the charging station is subject to a fee

cd that is proportional to the deviation between EF (t) and the actual

demand profile ES(t). Roughly speaking, this penalty encourages the

charging station to provide a load profile that is as close as possible to

EF (t), hence helping the balancing operations of the REC manager;

• when needed by the community, the REC manager sends a DR request

to the EV charging station asking for a load reduction or increase over

a given time window in exchange for a monetary reward.

2For ease of exposition, the REC manager and the electricity retailer are supposed to

be the same entity.

10



Figure 1: Graphical overview of the DR contract in place. Black arrows denote the

information exchanged between the EVCS and the REC manager at the beginning of the

day. The red arrow denotes a DR signal sent to the EVCS during the day.

An overview of the communication scheme between the charging station

and the REC is reported in Fig. 1.

2.1. Charging station model

We consider a parking lot equipped with charging units that serve the

charging needs of plug-in electric vehicles. As a customer satisfaction criteria,

it is assumed that the charging station guarantees an average (or nominal)

charging power rate P0 to every customer at any time. When vehicle v

arrives at the charging station at time ta
v, it declares its requirement in terms

of energy to be charged, denoted by Ef
v . Let η be the vehicle charging

efficiency, and let τ f
v =

⌈
Ef

v

η∆P0

⌉
be the number of time slots required to

satisfy the request by charging the EV at nominal power rate, which we refer

to as the fulfillment duration. Moreover, denote by τ p
v the parking duration

of the v-th vehicle, then the related charging duration τ c
v equals to

τ c
v = min

{
τ p

v , τ f
v

}
.
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Let Sv(t) denote the energy charged up to time t. To assure customer satis-

faction, the following inequality must be enforced

rv(t) ≤ Sv(t) ≤ Ef
v t = ta

v, . . . , tc
v, (1)

where rv(t) = min{η∆P0(t − ta
v), Ef

v } is the nominal charging profile and

tc
v = ta

v + τ c
v is the time when charging ends. Constraint (1) requires the

charging station to ensure a minimum average charging power rate P0 to

its customers, avoiding situations in which a vehicle is charged less than

expected at departure. On the other hand, it prevents users to claim the

full energy amount Ef
v when they leave early (i.e., τ f

v > τ p
v ). We assume

that the charging station is equipped with enough charging units to satisfy

all the incoming vehicles. As a consequence, a vehicle can be ignored after

tc
v. Indeed, an EV may in principle keep a charging unit busy for longer

time than the actual charging duration. However, after tc
v such a vehicle will

not be considered in the charging schedule since it either left the charging

station, or its charging requirements have been fulfilled.

Let Pv(t) denote the average charging rate of the vehicle in the time

interval [t, t+1]. Then, the charged energy at time step t+1 evolves according

to

Sv(t + 1) = Sv(t) + η∆Pv(t) t = ta
v, . . . , tc

v − 1. (2)

Finally, it is assumed that the charging power is bounded by

0 ≤ Pv(t) ≤ P̄ t = ta
v, . . . , tc

v − 1, (3)

where P̄ ≥ P0 denotes the maximum charging power of a single charging unit.

In the considered framework, we assume no hard upper bound on the main
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grid power capacity to supply the charging station (constraints involving this

aspect will be the object of future studies).

2.2. Demand response model

The DR program consists of time windows during which the total energy

demand of the charging station must lie within predefined bounds. These

energy requirements may arise in situations where the REC manager needs

to adjust the REC demand profile in response to forecasts concerning either

renewable energy production or periods of high energy demand. Monetary

incentives are provided to the charging station for complying with these re-

quests. Let R denote the number of requests in a day, tb
r and te

r respectively

the start time and end time of request r = 1, . . . , R, and tn
r ≤ tb

r the time

when the REC manager sends the DR signal to the charging station, which

we refer to as the notice time.

The r-th DR signal consists of an upper bound Br and a lower bound Br

of the total EVCS energy demand in the associated time window. If we let

ES(t) be the energy consumed by the charging station in the time interval

[t, t + 1], we define the energy violation δr associated to the r-th DR window

as

δr = max


te
r−1∑

t=tb
r

ES(t) − Br, Br −
te
r−1∑

t=tb
r

ES(t), 0
 . (4)

The monetary DR reward γr is modeled as a function of the violation δr

γr = gr(δr) =


fr(δr) if δr ≤ δr,

0 otherwise.

(5)

where fr(·) is assumed to be a positive concave non-increasing function and

δr is a given parameter that denotes the maximum allowed violation. If
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gr(δr)
fr(δr)

δrδr

0

Figure 2: Example of monetary reward γr (red) and of function fr(δr) (black dashed).

the charging station wants to comply with the r-th request, then it seeks to

coordinate the vehicle charging in such a way that the overall energy demand∑te
r−1

t=tb
r

ES(t) lies within the interval [Br, Br] and the maximum reward fr(0)

is provided. If the overall demand is outside [Br, Br], then the incentive

decreases as a function fr(δr) of the violation incurred during the DR window,

according to (5). Finally, if the violation is above δr, then no reward is

provided to the charging station. A graphical representation of a reward

function is depicted in Fig. 2

Remark 1. Note that, in this setup, the participation into the DR program

is provided by the charging station rather than each single vehicle. In fact, the

charging station is committed to both ensure user satisfaction (guaranteeing

a nominal power P0) and support community tasks (by following the declared

profile and participating to the DR program). From the EV perspective, this

setup ensures the charging service without asking for the active participation

of each customer. From the community perspective, the EVCS can optimize

the charging schedule to provide a flexible and resilient operation to boost

REC performance.
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2.3. EV stochastic charging process description

The number of daily incoming vehicles for different days is assumed to

be independent, identically distributed according to some probability dis-

tribution. Similarly, the charging parameters (ta
v, τ p

v , τ f
v ) are assumed to be

independent and identically distributed for different vehicles according to

day-invariant probability distributions. Moreover, assume that the related

probability distributions (or an estimate of them) are available to the EVCS.

Let EU(t) be the load profile generated by considering an uncoordinated

charging strategy at constant nominal power P0. Clearly, such a profile can-

not be known in advance due to the uncertainty affecting vehicles. However,

since all the EVs are charged by using the same power rate P0, the energy

drawn at each time slot depends only on the number of connected vehicles

at that time slot. The distribution of the number of vehicles, H(t), charging

at time t is given by

P(H(t)=n) =
N∑

m=n

P(H(t)=n|N =m) P(N = m) ,

where

P (H(t) = n|N = m) =
(

m

n

)
P(ta ≤ t, tc > t)nP(ta ≤ t, tc > t)m−n

, (6)

and N denotes the upper bound of the daily number of incoming vehicles,

which is assumed to be known. The interested reader may refer to [15] for a

detailed derivation of (6). Finally, let us define

EF(t) = E[EU(t)] = ∆P0

N∑
n=1

nP (H(t) = n) .

Notice that the probability distribution of the charging time is not ex-

plicitly expressed, but depends on the realizations of the parking time and
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the fulfillment duration. Since the random variables related to each vehicle

are assumed to be independent and identically distributed, we can derive the

explicit form of the charging time probability distribution as

P (τ c = k) = P
(
min{τ p, τ f} = k

)
= P

(
k − 1 < min{τ p, τ f} ≤ k

)
= P

(
min{τ p, τ f} > k − 1

)
− P

(
min{τ p, τ f} > k

)
= P

(
τ p ≥ k, τ f ≥ k

)
− P

(
τ p > k, τ f > k

)
,

where

P
(
τ p ≥k, τ f ≥k

)
=

τf∑
τ=k

P
(
τ p ≥k|τ f =τ

)
P
(
τ f =τ

)
, (7)

and τ f is a known upper bound on the fulfillment duration.

3. Receding horizon formulation

Let V(t) be the set of electric vehicles that are parked and charging at

time t,

V(t) =
{
v ∈ N : ta

v ≤ t < td
v, Sv(t) < Ef

v

}
, (8)

where td
v = ta

v + τ p
v is the departure time of the v-th vehicle. The set of DR

requests R(t) to be considered in the optimization horizon is defined as

R(t) = {r ∈ N : tn
r ≤ t ≤ te

r − 1} , (9)

and comprises requests announced by the REC manager (t ≥ tn
r ) and not yet

expired (t ≤ te
r − 1).
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3.1. Objective function

Optimization is performed over a shrinking horizon, starting from the

current time step t up to the end of the day. The objective function J(t)

represents the operating costs of the charging station from time t up to time

T − 1 comprising

J(t)=
T −1∑
k=t

(
E[ES(k)|t]cg︸ ︷︷ ︸
Electricity cost

+
∣∣∣E[ES(k)|t] − EF(k)

∣∣∣ cd︸ ︷︷ ︸
Deviation cost

)
−
∑

r∈R(t)
γ̃r︸ ︷︷ ︸

DR reward

, (10)

where cg is electricity price of the energy purchased from the grid, cd is the

unitary cost for the deviation around the profile EF(k) and γ̃r is the decision

variable concerning the reward of the r-th DR request. Note that in (10), all

the quantities are computed according to the information available at time

t.

3.2. Charging station energy demand

The expected value of the energy demand at time k ≥ t is given by

E[ES(k)|t] =
∑

v∈V(t)
∆Pv(k) · P(td

v > k|td
v > t) + E[EU(k)|t], (11)

where E[EU(k)|t] is the expectation of the energy demand for future incom-

ing vehicles assuming the uncoordinated charging at constant power rate P0

conditioned on the current information up to time t. Note that for vehicles in

V(t), since the related energy to be charged Ef
v and consequently the fulfill-

ment duration τ f
v are provided at their arrival, the only source of uncertainty

is related to the parking time τ p
v and hence to td

v. This means that to com-

pute the expected value of the energy demand of the connected vehicles, it

one can only consider td
v in the probability computations.
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Concerning future charging events, let A(t) be the number of vehicles

that have arrived up to time t, and suppose that it equals to na. Moreover,

denote by W (k, t) the number of incoming after time t and that are charging

at time k, then

E[EU(k)|t] = ∆P0

N−na∑
n=1

nP(W (k, t)=n|A(t)=na, ta >t). (12)

Let Q(t) be a random variable denoting the number of incoming vehicles after

time t. Then, its probability distribution conditioned to the information at

time t is equivalent to

P (Q(t) = m|A(t) = na, ta > t) = P (N = m + na|A(t) = na) . (13)

By using (13), the probability in (12) can be computed as

P(W (k, t)=n|A(t)=na, ta >t) =
N−na∑
m=n

P(W (k, t)=n|Q(t)=m, A(t)=na, ta >t)·P(Q(t)=m|A(t)=na, ta >t)

N−na∑
m=n

P(W (k, t)=n|Q(t)=m, ta >t)·P(N =m + na|A(t)=na) .

Further details about these computations can be found in [15].

18



3.3. DR constraints

To each request r ∈ R(t) we associate a variable lr = max{t, tb
r}. The

decision variable concerning the reward γ̃r is constrained as follows

zDR
r ∈ {0, 1} (14)

0 ≤ γ̃r ≤ MzDR
r (15)

γ̃r ≤ fr(δ̃r) (16)

δ̃r ≥ 0 (17)

δ̃r ≥

te
r−1∑

k=lr

E[ES(k)|t]
+ EP

r,t − Br − M(1 − zDR
r ) (18)

δ̃r ≥ Br −

te
r−1∑

k=lr

E[ES(k)|t]
− EP

r,t − M(1 − zDR
r ) (19)

δ̃r ≤ δrz
DR
r + M(1 − zDR

r ), (20)

where δ̃r is the forecast of the violation in the r-th DR window. Binary

variables zDR
r represent the choice of the charging station to comply with the

DR request (zDR
r = 1) or not (zDR

r = 0). In (15), the reward is constrained

to be positive, while (16) provides the epigraph representation of the DR

reward. In (17)-(19) the reformulation of the forecast of DR violation is

derived. Finally, in (20), if the charging station wants to comply with the

r-th request, the violation is enforced to be below δr. We make use of the

so-called “big M” formulation for the binary variables, where M denotes a

“big enough” constant, while EP
r,t represents the past energy consumption of

the system in the DR window up to time t which is defined as

EP
r,t =


t−1∑

k=tb
r

ES(k) if t > tb
r,

0 else.
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Finally, note that since f(·) is assumed to be concave, constraint (16) is

convex.

3.4. EV forecast handling

Since tc
v is unknown for plugged-in vehicles, constraints (1)-(3) need to

be adapted to be embedded into the optimization procedure. To this aim,

let us define tf
v = ta

v + τ f
v as the fulfillment time, then (1)-(3) become

rv(t) ≤ Sv(t) ≤ Ef
v t = ta

v, . . . , tf
v , (21)

Sv(t + 1) = Sv(t) + η∆Pv(t) t = ta
v, . . . , tf

v − 1, (22)

0 ≤ Pv(t) ≤ P̄ t = ta
v, . . . , tf

v − 1. (23)

Note that, from the definition of tc
v one has tf

v ≥ tc
v. Moreover, contrary to tc

v

which is a random variable, the fulfillment time is fixed as soon as the vehicle

arrives at the charging station.

Concerning vehicles that have not yet arrived at the charging station,

it may happen that the simple uncoordinated charging forecast may be too

restrictive during DR request windows. Therefore, a strategy providing more

flexibility to these forecasts is presented in the following. Consider a vehicle

v and let ta
v and tc

v be given. For a given request r satisfying ta
v < tb

r < tc
v,

define tin
v,r = min{tc

v, te
r} as the last time instant when the vehicle is inside

the DR request. Next, let τ out
v,r = tb

r − ta
v and τ in

v,r = tin
v,r − tb

r be the number

of time slots where a vehicle is charging before and inside the DR request,

respectively. Hence, we may define as

Êv = ∆P0(τ out
v,r + τ in

v,r)
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the amount of energy to be charged in the v-th vehicle from ta
v up to tin

v,r, by

charging at nominal power rate P0. The maximum charging power rate that

can be applied before the DR request begins is

P out
v,r = min

{
P ,

Êv

∆τ out
v,r

}
= min

{
P , P0

τ out
v,r + τ in

v,r

τ out
v,r

}
. (24)

If a power reduction is requested, the reduced power rate inside the DR

request is

P in
v,r =

Êv − ∆P out
v,r τ out

v,r

∆τ in
v,r

=
P0(τ out

v,r + τ in
v,r) − P out

v,r τ out
v,r

τ in
v,r

,

where P in
v,r ≥ 0 due to (24). By using P out

v,r and P in
v,r one can compute the

resulting average power increase occurring outside the DR request and the

average power reduction during the request period. Let σout
v,r (k) and σin

v,r(k)

be the average power increment and the average power reduction at time k,

respectively. These quantities can be expressed as

σout
v,r (k) =


P out

v,r − P0 if ta
v ≤ k < tb

r

0 else,

and

σin
v,r(k) =


P0 − P in

v,r if tb
r ≤ k < tin

v,r

0 else.

Note that
tin
v,r−1∑
k=ta

v

∆
(
σin

v,r(k)−σout
v,r (k)

)
= (P0 − P in

v,r)τ in
v,r∆ − (P out

v,r − P0)τ out
v,r ∆

= P0(τ in
v,r + τ out

v,r )∆−P in
v,rτ in

v,r∆ − P out
v,r τ out

v,r ∆

= P out
v,r τ out

v,r ∆ − P out
v,r τ out

v,r ∆ = 0,
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hence the increment of energy charged before the DR window equals the

reduced amount inside the DR request. Notice that, since these quantities

involve only vehicles that have not yet arrived (i.e., ta
v and tc

v are not known),

σin
v,r(k) and σout

v,r (k) are actually random variables. Thus, these quantities will

contribute to the demand forecasts by means of their expectation.

On aggregate level, the expected value of the energy reduction/increase

at each time step is computed as follows

νr(k)=E
[

N∑
v=1

∆
(
σin

v,r(k)−σout
v,r (k)

)]
=∆E

[
N∑

v=1
σin

v,r(k)
]
−∆E

[
N∑

v=1
σout

v,r (k)
]

.

(25)

Since σin
v,r(k) are independent of the index v,

E
[

N∑
v=1

σin
v,r(k)

]
= E[N ] · E[σin

v,r(k)],

where

E[σin
v,r(k)] =

tb
r−1∑
l=0

T −1∑
τ=tb

r

P(ta
v = l) · P(tc

v = τ |ta
v = l) · σin

v,r(k).

Note that we are considering all the charging time windows satisfying ta
v <

tb
r < tc

v. E
[∑N

v=1 σout
v,r (k)

]
can be obtained in a similar way, i.e.,

E
[

N∑
v=1

σout
v,r (k)

]
= E[N ] · E[σout

v,r (k)],

where

E[σout
v,r (k)] =

tb
r−1∑
l=0

T −1∑
τ=tb

r

P(ta
v = l) · P(tc

v = τ |ta
v = l) · σout

v,r (k).

Remark 2. The computation of the previous expected values can be adapted

for a given time step t by substituting to N the random variable Q(t), and by

conditioning the probability distributions to the current available information

(i.e., A(t) = na and ta > t).
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At this point, a set of auxiliary variables ν̃r(k) can be added satisfying

ν−
r (k) ≤ ν̃r(k) ≤ ν+

r (k) k = t, . . . , T, ∀r ∈ R(t) (26)
T∑

k=t

ν̃r(k) = 0 ∀r ∈ R(t), (27)

where ν−
r (k) = min{0, νr(k)} and ν+

r (k) = max{0, νr(k)}.

On the other hand, in situations where a demand increase is requested,

one can similarly compute the modified EV demand in the request window.

In this case, EVs will be charged with the maximum power rate inside the DR

window and then charged with a reduced power rate after the DR period.

To this end, assume that the expected value of the demand increment is

modeled via inside the variable ωr(k). Then, one can add another set of

auxiliary variables

ω−
r (k) ≤ ω̃r(k) ≤ ω+

r (k) k = t, . . . , T, ∀r ∈ R(t) (28)
T∑

k=t

ω̃r(k) = 0 ∀r ∈ R(t) (29)

where ω−
r (k) = min{0, ωr(k)} and ω−

r (k) = max{0, ωr(k)}. Finally, by com-
bining (11) with ν̃r(k) and ω̃r(k), the shaped forecast E[ẼS(k)|t] of the future
energy demand becomes

E[ẼS(k)|t] = E[ES(k)|t] −
∑

r∈R(t)
(ν̃r(k) + ω̃r(k)) ∀k = t, . . . , T, (30)

Thus, E[ẼS(k)|t] will be used as the forecast of the energy demand E[ES(k)|t]

in (10), (18) and (19), providing more flexibility to the optimization. In

fact, thanks to (26)-(29), it is possible to add more elasticity to the EV de-

mand forecasts by considering different charging strategies: the optimizer

can choose any energy profile between the modified and the nominal one.

23



Figure 3: Graphical representation of the main quantities involved. The green area denotes

the DR period, while the pink area denotes the energy increase (left area) and the energy

reduction (right area). Finally, tan(θ1) = ∆P0, tan(θ2) = ∆P out
v,r and tan(θ3) = ∆P in

v,r.

Several other valuable strategies to shape the forecast of the EV charging

process can be considered. The proposed procedure allows the charging sta-

tion to anticipate the maximum amount of energy outside/inside the request

windows for each vehicle, while guaranteeing the nominal charging profile as

in (1). As a consequence, this is a good trade-off that provides a lower/upper

bound on the energy demand inside DR requests. The scheme is summarized

in Fig. 3.

3.5. Receding horizon procedure

The proposed receding horizon strategy relies on the solution of an op-

timization problem at each time step t. The charging power commands for

the EVs in V(t) are obtained as the solution of the following problem
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Problem 1.

P ∗
v (t) = arg min

Pv(t):v∈V(t)
J(t)

s.t. (10) − (19)

(21) − (23)

(26) − (30).

This optimization problem is a convex program except for the binary vari-

ables whose number is equal to the number of DR requests falling inside

the optimization horizon. Since in real scenarios the number of DR requests

per day is typically low, i.e., less or equal than two [29], Problem 1 can be

effectively solved by standard optimization tools.

Algorithm 1 provides a sketch of the overall receding horizon procedure,

whereas in Fig. 4 the visual representation of the procedure is shown.

At each time step t, the procedure is based on two main steps:

1. all the problem quantities are updated on the basis of the information

available at time t;

2. Problem 1 is solved and the first command of the optimal solution is

applied.

4. Numerical results

4.1. Simulation settings

To test the performance of the presented approach, a 100 day simulation

with a sampling time of ∆ = 10 minutes was performed. For each day, the re-

alizations of the random variables concerning the EV charging process have
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Algorithm 1: Receding horizon algorithm.
Data: cg and cd, DR daily program, and distributions on the EV

charging process.

1 Set t = 1;

2 while t ≤ T do

3 na = |{v : ta
v ≤ t}|;

4 compute V(t) as in (8);

5 compute R(t) as in (9);

6 compute E[EU(k)|t], k = t, . . . , T − 1 as in (12);

7 compute νr(k), ∀r ∈ R(t), k = t, . . . , T − 1 as in (25);

8 compute ωr(k), ∀r ∈ R(t), k = t, . . . , T − 1;

9 solve Problem 1 and get P ∗
v (t), ∀v ∈ V(t);

10 Sv(t + 1) = Sv(t) + η∆P ∗
v (t), ∀v ∈ V(t);

11 t = t + 1;

12 end

been drawn from probability distributions estimated from real data. Dis-

tributions concerning arrival time, energy to be charged and parking time

have been estimated by using the historical data reported in [30], shown in

Fig. 5. Specifically, the estimates provided in Fig. 5 represent the normalized

histograms of the acquired data. The random variable concerning the daily

number of incoming vehicles has been modeled through a Gaussian distribu-

tion with mean 175 and standard deviation 9 to obtain realizations in the

interval [150, 200] vehicles with high confidence. The nominal charging power

P0 has been set to 11 kW, the maximum charging power rate P̄ to 22 kW

and the charging efficiency to 0.9.
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Figure 4: Graphical overview of the receding horizon algorithm proposed.

Figure 5: Charging process distributions. Top panel: Arrival time distribution. Middle

panel: Energy to be charged distribution. Bottom panel: Parking time distribution.
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For all days, the deviation cost cd is set to 0.20 e/kWh and the grid price

cg to 0.05 e/kWh. The number of DR requests per day, R, is randomly

chosen between 1 and 2 with equal probability. The starting time of each

request has been generated according to a uniform distribution ranging from

9:00 AM to 3:00 PM, while the related time window is distributed in the

interval [60, 90] minutes. If two requests are considered for a given day, the

minimum time between the end of the first request and the beginning of the

second is set to 3 hours. The charging station gets the notification about the

DR request according to a uniform distribution defined in a time window of

[6, 8] hours before the request begins. The DR bounds have been randomly

generated by selecting one of the following two scenarios:

1. an upper bound Br = 0.4∑te
r−1

t=tb
r

EF(t) and no lower bound, i.e., Br = 0;

2. a lower bound Br = 1.6∑te
r−1

t=tb
r

EF(t) and no upper bound, i.e., Br = ∞.

Finally, the maximum reward has been chosen according to the formula

gr(0) = ρ · max


te
r−1∑

t=tb
r

EF(t) − Br, Br −
te
r−1∑

t=tb
r

EF(t)
 ,

where ρ = 1 e/kWh. The reward decreases according to the piecewise affine

function

gr(δr) = f(0) · min
d=1,2,3

(αr,dδr + βr,d) .

whose coefficients αr,d and βr,d are reported in Tab. 1 and δr = −βr,3/αr,3.

Simulations have been run using MATLAB, the formulation has been built

using YALMIP [31] and solved by CPLEX [32] on an i7-11700K@3.6GHz

with 32GB RAM.
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Table 1: Values of αr,d and βr,d.

αr,1 αr,2 αr,3 βr,1 βr,2 βr,3

-4 -6 -6.67 1 1.10 1.17

4.2. Simulation results

To validate the effectiveness of the proposed receding horizon strategy

(RH), we compare its performance with three benchmarks:

• nominal charging policy (NCP): all the vehicles are charged at

nominal charging power rate P0;

• RH with no forecast handling (NFH): a receding horizon proce-

dure that considers νr(k) = ωr(k) = 0 for all k. This amounts to solving

Problem 1 without constraints (26)-(30). Upon appropriate modifica-

tions to fit the current setting, such an approach corresponds to that

reported in [26];

• omniscient oracle optimization (OR): a one-shot optimization prob-

lem with access to the realizations of all random variables. This amounts

to an a-posteriori optimization performed at the end of the day, so the

comparison is similar to evaluating the so-called “regret” of our strategy

[33]. OR is clearly an optimistic, non-causal benchmark that cannot

be implemented in practice.

The average daily cost of all the considered strategies is reported in Tab. 2,

whereas the RH daily cost comparison w.r.t. NCP and NFH are reported in

Fig. 6. The worst strategy is the NCP since it cannot coordinate the EV
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Table 2: Average daily cost for all the strategies.

RH NCP NFH OR

Cost [e] 199.27 412.24 226.19 115.29

OR distance [%] 72.93 257.75 96.30 0

Figure 6: Top panel: Daily cost difference between NCP and RH sorted in ascending order.

Bottom panel: Daily cost difference between NFH and RH sorted in ascending order.

charging to meet DR requests, nor track the declared profile EF(t). On the

other hand, NFH improves cost performance. The main difference to RH

is that the predictive capabilities of NFH are limited to the scenario where

during DR windows all incoming vehicles are charged at the nominal charging

power rate. By relaxing this constraint, the RH procedure further reduces the

charging station cost by around 11.9%. Considering the algorithm behavior

with respect to the OR, the RH daily cost is on average 83.98% larger. This

comes as no surprise since the OR is based on the unrealistic assumption of
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perfect knowledge of the charging process. In the considered simulations, the

number of fulfilled requests amounts to 101 for the RH procedure, to 2 for

the NCP, to 81 for the NFH, and to 124 for the OR over 132 total requests.

In Fig. 7, the energy profiles declared to the REC manager and the actual

energy consumption over three simulated days are reported. Fig. 7(a) con-

siders a day with only one DR request, where both RH and OR can satisfy

the request. In order to fulfill the incoming request and reduce vehicle de-

mand during the DR period, both the RH and OR procedures are forced to

anticipate vehicle charging. Fig. 7(b) considers a day with two DR requests,

one requiring a demand reduction and the other a demand increase. Similar

to the previous case, both RH and OR comply with the two requests. Dif-

ferently from Fig. 7(a), RH is forced to anticipate vehicle charging in order

to fulfill the first request since it does not have information about the ex-

act realization of the incoming vehicles. Fig. 7(c) considers a day with two

DR requests. Contrary to the previous cases, both requests have not been

satisfied by the RH procedure. The first request has not been fulfilled since

the actual EV demand is higher than the declared profile. In this case, the

OR procedure is not able to fulfill the request either. On the other hand,

the second request is satisfied by OR, but not by RH. RH fails to fulfill the

request due to the presence of an EV demand peak during the DR window

(see green profile) that has not been forecasted. The RH procedure first aims

to comply with the request (see the spike in the energy before the beginning

of the request). However, as the EV demand increases, the RH procedure

recognizes that the request cannot be satisfied. Hence, the RH strategy is

left with adapting the EV charging to match the declared profile.
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Figure 7: Energy profiles of the charging station of three days: energy forecast (yellow-

black dashed), proposed RH strategy (blue), OR (purple) and NCP (green). The DR time

interval is denoted by the grey area.

To show how the vehicle charging schedule changes according to different

strategies, the energy charged in a vehicle during a given day is shown in

Fig. 8. As a reference, the considered day is the same depicted in Fig. 7(a).

During the charging period both the RH and OR anticipate EV charging in

order to comply with the incoming DR request.
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Figure 8: Energy charged in a vehicle for a given day: Ef
v (black dashed), proposed RH

strategy (blue), OR (purple) and NCP (green).

4.3. Sensitivity analysis

In this section, some sensitivity analyses related to different parameters

used by the proposed technique are reported. First, the performance of

the considered algorithm has been evaluated with respect to changes of the

deviation cost cd and the DR reward ρ. Specifically, we have considered

problem instances where cd ∈ {0.1, 0.2, 0.4} e/kWh, while ρ = 1 e/kWh.

Concerning the DR unitary reward, we consider ρ ∈ {0.5, 1.5} e/kWh, while

cd = 0.2 e/kWh. To allow for a clear interpretation of the results, we

assume the same realizations of the EV events and DR requests for all the

considered setups. Daily operating costs of the EVCS according to price

variations are reported in Tab. 3. For the sake of completeness, deviation

cost, electricity cost and DR reward which compose the operation cost in

(10) are reported in Tab. 4, 5 and 6, respectively. It is worthwhile to

note that the costs reported in Tab. 3 are consistent with all the considered
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Table 3: Average daily cost of the considered procedures according to different prices.

Overall cost [e]

Price [e/kWh] RH NCP NFH OR

cd = 0.1, ρ = 1 125.52 331.46 164.26 53.07

cd = 0.2, ρ = 1 201.83 412.23 227.74 115.23

cd = 0.4, ρ = 1 343.45 573.77 356.09 237.33

cd = 0.2, ρ = 0.5 304.96 412.98 312.69 252.04

cd = 0.2, ρ = 1.5 95.89 411.49 145.01 -22.66

Table 4: Average daily deviation cost of the considered procedures according to different

prices.

Deviation cost [e]

Price [e/kWh] RH NCP NFH OR

cd = 0.1, ρ = 1 77.38 80.77 66.84 62.16

cd = 0.2, ρ = 1 149.03 161.54 130.51 124.32

cd = 0.4, ρ = 1 288.03 323.08 248.41 239.50

cd = 0.2, ρ = 0.5 142.87 161.54 117.43 119.75

cd = 0.2, ρ = 1.5 152.19 161.54 130.55 124.32

scenarios. Clearly, RH and NFH exhibit lower cost difference in setups where

the DR reward is less convenient than the deviation cost (i.e., when cd = 0.4

e/kWh, or when ρ = 0.5 e/kWh). However, by focusing on Tab. 6, RH shows

much better capabilities to comply with DR requests in all the investigated

instances. Concerning electricity cost, as reported in Tab. 5, it is evident

that the considered algorithms are less sensitive to price variations. On the

contrary, the deviation cost reported in Tab. 4 results more sensitive, but
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Table 5: Average daily electricity cost of the considered procedures according to different

prices.

Electricity cost [e]

Price [e/kWh] RH NCP NFH OR

cd = 0.1, ρ = 1 263.43 252.18 261.88 266.68

cd = 0.2, ρ = 1 263.54 252.18 262.25 266.68

cd = 0.4, ρ = 1 263.27 252.18 262.21 266.74

cd = 0.2, ρ = 0.5 263.29 252.18 261.67 266.74

cd = 0.2, ρ = 1.5 263.54 252.18 262.26 266.68

Table 6: Average daily DR reward of the considered procedures according to different

prices.

DR reward [e]

Price [e/kWh] RH NCP NFH OR

cd = 0.1, ρ = 1 215.30 1.49 164.46 275.78

cd = 0.2, ρ = 1 210.74 1.49 165.02 275.78

cd = 0.4, ρ = 1 207.85 1.49 154.53 268.90

cd = 0.2, ρ = 0.5 101.20 0.75 66.41 134.45

cd = 0.2, ρ = 1.5 319.84 2.24 247.80 413.67

it is linearly proportional to cd. Therefore, even though the overall cost

changes consistently with price variations, the presented algorithms show

similar behaviors in all the problem instances.

Additional analyses have been performed (i) by increasing the duration of

DR requests and (ii) by considering an inaccurate distribution for predicting

the daily number of EVs. In the first case, the DR program has been modified
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to generate DR requests whose duration ranges in the interval [1.5, 2.5] hours,

while the remaining parameters are left unchanged. Note that this scenario

provides more restrictive DR program, since the bound requirements are kept

the same as in Section 4.1. In this setting, the behavior of RH compared with

OR and NFH is similar to what obtained in the original setup. In fact, RH

cost is 11.7% lower than NFH cost, and 84.3% higher than OR cost, which is

in line with that reported in Table 2. Concerning DR fulfillment, the request

satisfaction rate for OR is 82.90%, 54.7% for RH, and 36.8% for NFH, over

117 requests.

Similar conclusions can be drawn when considering an inaccurate probabil-

ity distribution on the daily number of EVs. A 100-day simulation has been

run by providing RH and NFH a distribution on the daily incoming vehicles

modeled as a uniform distribution with support [150, 250] vehicles. Despite

the considered distribution is far from the actual one (both on expected value

and shape), the cost performance turns out to be slightly reduced. Specifi-

cally, RH provides a cost that is 11.3% lower than NFH, and 78.2% higher

than OR, while the request satisfaction rate remains almost unaffected, be-

ing 75%, 61.3%, and 93.9% for RH, NFH and OR, respectively. Simulations

with more inaccurate distributions have been performed, too. As expected,

in this case, both RH and NFH algorithms which rely on the knowledge of

EV distributions fail, returning a total cost much higher than that provided

by OR.

4.4. Scalability analysis

In this subsection, the feasibility of proposed approach for real-world

applications is assessed through simulations involving large-scale setups. To
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Figure 9: Average computation time to perform a loop iteration of Algorithm 1 according

to different EV penetrations.

showcase the scalability of our method, we consider the following two cases.

First, a more demanding scenario involving 5 DR requests per day has

been taken into account. The beginning time of the first request has been

randomly chosen between 8:00 AM and 9:30 AM according to a uniform

distribution, whereas the time duration between the end of one request and

the beginning of the following one is uniformly drawn from [30, 120] minutes.

The duration of each request is generated using a uniform distribution whose

support is [30, 60] minutes. In this setting, the average computation time to

run an iteration of Algorithm 1 amounts to 0.58 seconds, which amounts to

a small fraction of the considered sampling time.

Second, the computational burden has been analyzed by considering in-

creasing EV penetration. Specifically, a 100 days simulation has been run

by setting different mean values of daily number of incoming vehicles. These

values have been selected in a vehicle range starting from 175 up to 1750.

Results concerning the average time to perform an iteration of Algorithm 1

are reported in Fig. 9. As it may be noticed, the algorithm computation time
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grows almost linearly with respect to the number of vehicles, showing feasi-

ble times even for 1750 vehicles per day. It is worthwhile to report that also

the worst-case computation time is feasible for real applications. In fact, it

amounts to 1.39 and 3.45 seconds when the mean value of incoming vehicles

is 175 and 1750, respectively.

Notice that, for a fixed number of daily DR requests and vehicles, the

additional computational effort due to reducing the discretization step is

marginal, as it amounts to solving a larger linear program [34].

5. Conclusions

A stochastic receding horizon approach to manage an EV charging station

participating in DR programs for RECs has been proposed. The developed

procedure implements a stochastic approach that is (i) able to exploit online

information to schedule the EV charging such that the aggregated power

consumption lies within prescribed energy bounds during DR windows, and

is (ii) computationally feasible to be deployed in real-world applications.

Simulation results show that the proposed approach provides a substantial

cost reduction with respect to the uncoordinated charging, as well as an

increase of the performance of about 12% with respect to the optimization-

based benchmark that does not exploit future forecast flexibility. Moreover,

the computation time remains feasible even for scenarios involving a high EV

penetration. Ultimately, results suggest that EVCSs, acting as aggregators of

EVs, can be effective targets for DR programs: when smart charging policies

are implemented, EVCSs can successfully contribute to the local demand-

supply balance by suitably shifting their loads.
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Future works may include the description of the customer satisfaction

by probabilistic constraints, to allow for a greater degree of freedom, and

robustification against distributional ambiguity in the case of estimated dis-

tributions from finite historical data. Additional developments may regard

the adaptation of the procedure to dynamic traffic conditions, the integration

of renewable resources, and the experimental validation of the approach in

real-world RECs.
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