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Abstract

This paper deals with the problem of cost-optimal operation of smart buildings that integrate a

centralized HVAC system, photovoltaic generation and both thermal and electrical storage devices.

Building participation in a Demand-Response program is also considered. The proposed solution

is based on a specialized Model Predictive Control strategy to optimally manage the HVAC sys-

tem and the storage devices under thermal comfort and technological constraints. The related

optimization problems turn out to be computationally appealing, even for large-scale problem in-

stances. Performance evaluation, also in the presence of uncertainties and disturbances, is carried

out using a realistic simulation framework.

Keywords: Smart buildings; Energy Management Systems; Model Predictive Control;

Demand-Response; Mathematical Modeling; Optimization

1. Introduction

It is well-known that buildings represent one of the major electricity consumers worldwide.

About a half of the total energy consumption is devoted to heating, ventilation and air conditioning

(HVAC). While HVAC devices in older buildings are operated through simple rules, newer buildings

exploit the opportunities offered by information and communication technologies to efficiently

operate such appliances [1]. An efficient control of most of the building devices yields to a global

reduction of energy consumption, with a consequent reduction of emissions and energy bills [2].

Although a large part of the currently deployed building management systems are rule-based,

Model Predictive Control (MPC) is gaining a lot of importance, owing to its flexibility and its

ability to take a number of different requirements and constraints into account [3]. Indeed, to

optimize the building operation cost, several applications of MPC can be found in the literature,

where both linear [4] and non-linear [5] dynamics are considered. In [6], an MPC-based enthalpy
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control algorithm has been derived. Other works deal with uncertainty in models and/or exogenous

variables by using stochastic MPC approaches. Specifically, in [7, 8] a tractable reformulation using

chance constraints has been devised, while a scenario-based approach has been exploited in [9].

In order to reduce the computational complexity which often affects MPC implementations, in

[10] a machine learning approach based on multivariate regression and dimensionality reduction

algorithms has been proposed, and a case study involving a 6-zone building has been carried out.

In [11], a cooperative Fuzzy MPC has been implemented on a real building composed of five zones.

Due to the relevance of buildings as players in smart grids, an important aspect recently consid-

ered in the building management literature is participation in Demand-Response (DR) programs,

which enables end-users to become active players in the electricity system [12–14]. DR is usually

managed by an intermediary player (known as the aggregator [15]) whose role is to gather flexi-

bility from its affiliated consumers, in order to build services to be sold either to the grid operator

or on the wholesale market. In response to the aggregator’s requests, which become known in ad-

vance, consumers may choose to adjust their consumption patterns in order to comply and receive

a monetary reward [16, 17]. Reduction of energy cost in presence of DR has been studied in [18]

via an agent-based modeling approach.

Considering the growing importance of distributed generation and the relevant share of energy

consumption by buildings, energy storage systems are expected to become increasingly used. Such

systems are employed to achieve high levels of self-sufficiency, as well as system resiliency [19, 20].

Furthermore, optimal sizing and efficient management of electrical storage in smart buildings,

mainly in the presence of photovoltaic (PV) generation [21] and plug-in electric vehicles [22], is a

widely investigated topic. In view of the participation of a building in DR programs, the presence

of energy storage facilities contributes to achieve a high level of consumption flexibility.

1.1. Paper contribution

The aim of this work is to propose a novel MPC-based control strategy aimed at the minimiza-

tion of the electricity bill in a large-scale building. The building is assumed to be equipped with

a central HVAC system powered by heat pumps (HPs), a PV plant, thermal (TES) and electri-

cal (EES) storage devices, and to participate in a DR program. In the proposed approach, heat

pumps, heater actuators, storage devices, and PV generation facilities are managed in an optimal

fashion by a centralized control unit. The employed DR paradigm consists of price-volume signals

sent by an aggregator, which specify a monetary reward granted to the building operator upon

the fulfillment of energy consumption constraints within a given time period [23, 24].

The control law for the different actuating devices of the overall HVAC system is computed

through a receding horizon algorithm involving a two-step optimization strategy. Several con-

straints are taken into account, namely thermal comfort, DR programs, operating limits of heat
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exchangers, PV power availability, storage capacity and maximum charging/discharging rates.

Meteorological variables, building occupancy, light and internal appliance loads are considered as

exogenous disturbances, of which the availability of measured/predicted values is assumed.

The main contributions of the paper in the above context are as follows.

• Since the computational complexity of the control algorithm is a crucial aspect when dealing

with large-scale buildings, a framework is adopted in which heat flows in the different building

zones are regulated by controlling the air mass flow through each fan coil. This choice, along

with approximate linear modeling of the building zones, allows for formulating the optimal

control problem at each step as a Linear Program (LP). Hence, the involved computational

burden scales nicely with the problem dimension and the solver provides a fast solution even

for a large number of optimization variables and constraints [25]. Actually, the presence of

DR programs calls for the introduction of binary decision variables, changing the nature of

the problem from LP to Mixed Integer Linear Program (MILP). Nevertheless, the number of

such variables amounts at most to few units, i.e., the number of time intervals that contain a

DR request falling inside the optimization horizon and, more importantly, it is independent

of the building size (i.e., the number of zones). As a result, the computational burden of

the overall optimization algorithm is affordable even for large-scale instances, making the

proposed approach suitable for real-world applications with hundreds of zones.

• As it is well-known in the literature, multiple sources of uncertainty come into the picture

when dealing with building heating/cooling control, such as modeling inaccuracies, distur-

bances, weather forecasting errors and possibly undersized HVAC system. For this reason,

when implementing a constrained MPC strategy, the presence of such uncertainties often

causes infeasibility of the optimization problem. A standard way to deal with this issue is

to replace hard bounds with soft bounds on the constraints and introduce penalties in the

cost function accounting for constraint violations. Unfortunately, the choice of appropriate

weights for the different penalty terms becomes a formidable task, especially in view of the

high number of variables/constraints involved and the hard-to-predict ”size” of constraint

violations. To overcome these issues, this paper proposes a different approach based on a

two-step optimization strategy. At each time step, first an ancillary LP is solved in order

to reset the comfort constraints, by minimizing the l1 norm of the bound violations. Then,

the feasible overall optimization problem is solved using the modified constraints. A further

advantage of this approach is that it allows for quick recovery from realistic situations in

which the original comfort constraints cannot be satisfied.

To validate the proposed control algorithm, numerical simulations have been performed on Ener-

gyPlus [26], an industry-standard realistic building model simulator. In particular, performance
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analysis in the presence of uncertain forecasts of exogenous variables has been carried out.

The paper is organized as follows: in Section 2 an overview of the proposed control architecture

is presented, in Section 3 the relevant models are introduced. In Section 4 the control problem is

formulated, its solution derived and implementation issues discussed. The test cases are presented

in Section 5 and discussed in Section 6. Finally, conclusions are drawn in Section 7.
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Nomenclature

Name Description

Acronyms

BCVTB Building Controls Virtual Test Bed

DR Demand-Response

EES Electrical Energy Storage

FIT Best FIT index

HP Heat Pump

HVAC Heating, Ventilation and Air Conditioning

LP Linear Program

MILP Mixed Integer Linear Program

MPC Model Predictive Control

PV PhotoVoltaic

PVUSA PhotoVoltaics for Utility Systems Applications

TES Thermal Energy System

Mathematical notation

R Real space

B = {0, 1} Binary set

x ∈ R Real scalar

x = [x1x2 . . . xm]′ m−dimensional real vector

X = {xi,j} Real matrix with entries xi,j

X′ Transpose of X

X Generic set

Xm Cartesian product of m sets identical to X

X\{x} Set X without its element x

K = {0, 1, . . .} Set of discrete time indices

k ∈ K Generic time index

I(k, λ) = [k, k + λ) ⊆ K Generic time interval

U(k, λ) = [u(k) . . . u(k + λ− 1)]
′

Matrix grouping u(l) for l ∈ I(k, λ)

Basic notations

m Number of building zones

Zi i−th zone of the building

Hi Heat exchanger device of zone i

HPH , HPC Heat pump used for heating/cooling

τs Sampling time

λ Horizon length (number of time steps inside the horizon)
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Nomenclature

Name Description

Zone Thermal model

hi Heat flow conveyed by Hi into zone Zi

h Vector of hi, i = 1, . . . ,m

Ti Indoor temperature of zone Zi

T Vector of Ti, i = 1, . . . ,m

[T i, T i] Thermal comfort range for zone Zi

T, T Vector of T i and T i, i = 1, . . . ,m

e Vector of measurements/predictions of exogenous inputs

ΦT Regression matrix of zone thermal model

kT, kh, ke Model order of T, h and e involved in ΦT

ΘT Parameter matrix of zone thermal model

CT Set of constraints of zone thermal model

C Set of comfort constraints

HVAC model

T SND, TRET Fluid temperature at the inlet/outlet of heat exchangers

vi Heat exchanger actuation signal (commanded air flow) for Hi

v Vector of vi, i = 1, . . . ,m

vi Maximum air flow rate allowed for Hi

γi Coefficient of heating performance of heat exchanger Hi

ChH , ChC Set of constraints of HVAC model in heating/cooling mode

Heating mode operation

THPH

in , THPH Fluid temperature at HPH inlet/outlet

THPH

0 HPH outlet temperature reference (HPH command signal)

WHPH HPH electrical energy consumption in heating mode

T TES TES fluid temperature

αHPH Coefficient of HPH energy consumption

ΦTES Regression vector of the heating mode operation model

ΘTES Parameter vector of the heating mode operation model

kTT , kTH , kTh Model order of T TES, THPH and h involved in ΦTES

CH Set of constraints of overall HVAC model in heating mode
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Nomenclature

Name Description

Cooling mode operation

THPC

in , THPC Fluid temperature at HPC inlet/outlet

THPC

0 HPC outlet temperature reference (HPC command signal)

WHPC HPC electrical energy consumption in cooling mode

αHPC Coefficient of HPC energy consumption

ΦC Regression vector of the cooling mode operation model

ΘC Parameter vector of the cooling mode operation model

kTC , kHC , kCh Model order of THPC

in , THPC and h involved in ΦC

CC Set of constraints of overall HVAC model in cooling mode

Electrical storage model

EEES Battery state of charge

E
EES

Battery capacity

WEES
+ , WEES

− Battery charge/discharge signal

WEES Energy exchanged by the battery

W
ESS

+ , W
ESS

− Battery maximum charge/discharge rate

η Battery charging/discharging efficiency

CEES Set of constraints of EES

Energy consumption and DR model

W Energy drawn from the grid by the building

p Unit energy price

W (k, λ) Total energy drawn from the grid within I(k, λ)

C(k, λ) Total cost of energy within I(k, λ)

Rj j−th DR request

Sj Total energy bound associated to Rj

Rj Monetary reward associated to Rj

P DR program (a sequence of DR requests)

P(k, λ) Set of DR requests that occur within I(k, λ)

J (k, λ) Set of indices j associated to Rj ∈ P(k, λ)

ǫj Binary variable associated to the fulfillment of Rj

CP(k, λ) Overall cost of operation under P within I(k, λ)

M Upper bound to the total building energy consumption per time step

CDR(k, λ) Set of constraints of DR model within I(k, λ)
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Nomenclature

Name Description

PV generation model

WPV Energy drawn from the PV plant

W
PV

Maximum energy production of the PV plant

I Global solar irradiance

TA Outside air temperature

θPV
1 , θPV

2 , θPV
2 Parameters of PVUSA model

ΘPV Parameter vector of the PV model

CPV Set of constraints of PV model

Optimization problem (common)

h∗
i , v

∗
i Optimal value of hi and vi

ê Forecasts/measurements of exogenous inputs

δi, δi Slack variables

∆(k, λ) Set including δi, δi within I(k, λ)

C∆ Relaxed comfort constraint set

∆feas(k, λ) Optimal value of ∆(k, λ) guaranteeing feasibility

⋆ (subscript) ⋆ = H denotes heating mode; ⋆ = C denotes cooling mode

Optimization problem (heating mode)

uH Vector grouping all command variables (heating mode operation)

UH(k, λ) Vector grouping all uH within I(k, λ)

u
opt
H , Uopt

H (k, λ) Optimal value of uH and UH(k, λ)

Tm Sensor measurement of T

T TES
m , THPH

m , EEES
m Sensor measurement of T TES, THPH and EEES

Optimization problem (cooling mode)

uC Vector grouping all command variables (cooling mode operation)

UC(k, λ) Vector grouping all uC(l) within I(k, λ)

u
opt
C , Uopt

C (k, λ) Optimal value of uC and UC(k, λ)

THPC

in,m , THPC

m Sensor measurement of THPC

in and THPC

Test cases

G′ Vector of internal heat gains of the building zones

d Noise signal affecting exogenous variables

α1, α2 Model coefficients of noise signal d

ε Zero-mean Gaussian distributed random variable

TA
true, T̂

A Real/forecast outdoor temperature
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2. System architecture overview

This paper focuses on a building composed of several zones and equipped with a central HVAC

system. Heating and cooling power is provided by electrical heat pumps. The heating pump

HPH is assumed to be connected to a thermal storage device (TES), while the cooling pump

HPC is not. Although thermal storage is quite common for both heating and cooling use, it is

here employed in the first case only, with the aim of illustrating the performance of the proposed

control strategy both in the presence and in the absence of a storage device. Heat exchange at zone

level is provided by fan coil units, one for each zone, exchanging heat with the TES at constant

water throughput. Heat flow regulation is achieved by controlling the air mass flow through each

fan coil. It is also assumed that each zone is equipped with a temperature sensor. The building

also features short-term electrical energy storage (EES) facilities (e.g., via a rechargeable battery

system) and PV generation. Participation of the building in a Demand-Response (DR) program

is also assumed. Regulation of the HPs, TES, fan coil air flow, EES and PV is implemented via a

digital centralized control unit that operates in discrete time with sampling period τs.

3. System modeling

A block diagram of the overall control system is depicted in Figure 1 along with the relevant

signals. The modeling of each component is detailed in the following subsections.

3.1. Zone thermal model

The m building zones are denoted by Z1, . . . ,Zm, and the respective heat exchanger devices

by H1, . . . ,Hm. All zones are equipped with temperature sensors, and the air flow of the heat

exchangers can be independently regulated by the control unit. The control action must ensure

that each room temperature satisfies a time-varying comfort constraint.

Let us define the following variables:

• hi(k) ∈ R: heat flow conveyed by Hi at time k into room Zi,

• h(k) = [h1(k) . . . hm(k)]′ ∈ R
m,

• Ti(k): indoor temperature of zone Zi at time k,

• T(k) = [T1(k) . . . Tm(k)]′ ∈ R
m,

• [T i(k), T i(k)]: thermal comfort range for Zi at time k,

• T(k) = [T 1(k) . . . Tm(k)]′ ∈ R
m, T(k) = [T 1(k) . . . Tm(k)]′ ∈ R

m,
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Figure 1: Overall HVAC and energy storage system architecture. Blue lines denote control signals.

The dynamics of the indoor temperatures T(k) depend on the heat flows h(k) and on exogenous

variables like outdoor temperature, solar radiation, appliances, lighting, occupancy, etc. For the

sake of simplicity, available measurements/forecasts of some/all of such variables are collected in

a vector e(k). Assuming linear time-invariant dynamics, the zone temperature vector evolution

can be modeled in regressive form as:

T(k + 1) = ΘT ΦT(k), (1)

where the regression matrix Φ(k) is given by

ΦT(k) = [T′(k) . . . T′(k − kT)

h′(k) . . . h′(k − kh)

e′(k) . . . e′(k − ke)]
′,

(2)

being kT, kh, ke suitable nonnegative integers that define the model order. The matrix ΘT collects

the model parameters.

According to the above, thermal comfort achievement at time k is expressed by the element-

wise constraint

T(k) ≤ T(k) ≤ T(k). (3)
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It is appropriate to group constraint sets (1),(2),(3) as follows:

CT (k) = {(1),(2)}, C(k) = {(3)}.

3.2. HVAC system model

The HVAC system operates at constant water flow rate. With reference to Figure 1, let us

define the following quantities:

• T SND(k) ∈ R: fluid temperature at the inlet of heat exchangers,

• TRET (k) ∈ R: temperature of return fluid,

• vi(k) ∈ R: heat exchanger actuation signal, i.e., commanded air flow at time k for Hi,

• v(k) = [v1(k) . . . vm(k)]′ ∈ R
m,

• vi: maximum air flow rate allowed for Hi, i.e.,

0 ≤ vi(k) ≤ vi. (4)

For each zone Zi, the heat flow rate hi(k) can be expressed as

hi(k) = γi
(
T SND(k)− Ti(k)

)
vi(k), (5)

where γi is a coefficient of heating performance pertaining to heat exchanger Hi. Note that, in

view of (5), enforcing limitation (4) for all zones yields the linear constraint sets

ChH(k) = {0 ≤ hi(k) ≤ γi
(
T SND(k)− Ti(k)

)
vi, i = 1, . . . ,m} (6)

and

ChC(k) = {0 ≥ hi(k) ≥ γi
(
T SND(k)− Ti(k)

)
vi, i = 1, . . . ,m} (7)

when the heat exchanger operates in heating and cooling mode, respectively.

3.2.1. Heating mode operation with thermal storage

The dynamics of the HVAC system in heating mode is now described. As pointed out in

Section 2, the heat pump HPH is coupled to a thermal energy storage (TES). Define:

• THPH

in (k) ∈ R: thermal fluid temperature at HP inlet,

• THPH (k) ∈ R: thermal fluid temperature at HP outlet,

• THPH

0 (k) ∈ R: HP outlet temperature reference, i.e., HP command signal,

• WHPH (k) ∈ R: HP electrical energy consumption within the k−th time step,
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• T TES(k) ∈ R: TES fluid temperature.

The inlet temperature of each heat exchanger Hi is assumed to be uniform and equal to the

TES outlet temperature, i.e.,

T SND(k) = T TES(k).

Under the realistic assumption that the time constants of the HP thermal fluid dynamics in

response to a change in the reference THP
0 (k) are much smaller than the control sampling period

τs, the HP outlet fluid temperature can be expressed by

THPH (k + 1) = THPH

0 (k), (8)

so that the HP can be modeled as a unit time step delay system.

A further reasonable assumption is that the heat exchange at TES level is efficient enough such

that

THPH

in (k) = T TES(k). (9)

It is worth noting that the above assumptions are indeed satisfied by the real-world devices em-

ulated by EnergyPlus [26], the widely used realistic building simulation software used here for

experimental validation.

The HP has to be switched on when the reference temperature is greater than the fluid temperature

at the HP inlet, i.e., as long as

THPH

0 (k) > THPH

in (k) = T TES(k),

which leads to an electrical energy consumption

WHPH (k) = αHPH

(
THPH

0 (k)− T TES(k)
)
, (10)

where αHPH represents a device specification. Otherwise, the HP is switched off and WHPH (k) =

0. Therefore, the condition

THPH

0 (k) ≥ T TES(k) (11)

can be assumed without loss of generality.

Concerning the TES dynamics, it is worth observing that T TES(k) depends on THPH (k) and on the

return water temperature TRET (k) = T TES
in , which in turn dynamically depends on T SND(k) =

T TES(k) and on the total heat exchange at the heater level, i.e., h(k) = h1(k) + · · · + hm(k).

Therefore, the TES temperature dynamics can be modeled in regressive form as

T TES(k + 1) = ΘTESΦTES(k), (12)

where the regression vector ΦTES(k) is given by

ΦTES(k) = [T TES(k) . . . T TES(k − kTT )

THPH (k) . . . THPH (k − kTH)

h′(k) . . . h′(k − kTh)]
′,

(13)
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being ΘTES the (row) parameter vector and kTT , kTH , kTh suitable model orders.

Given the models introduced above, and observing that the thermal energy stored in the TES

is proportional to T TES(k), it is worth remarking that full control of individual zone temperatures

and thermal energy storage can be achieved by manipulating the control variables THPH

0 (k) and

v(k).

3.2.2. Cooling mode operation

In order to derive a model of HVAC system in cooling mode, let us define the following:

• THPC

in (k) ∈ R: thermal fluid temperature at the inlet of the cooling heat pump,

• THPC (k) ∈ R: thermal fluid temperature at HP outlet,

• THPC

0 (k) ∈ R: HP outlet temperature reference, i.e., HP command signal,

• WHPC (k) ∈ R: HP electrical energy consumption within the k−th time step,

Similarly to the heating mode, the cooling HP dynamics can be modeled as:

THPC (k + 1) = THPC

0 (k). (14)

As long as THPC

0 (k) ≤ THPC

in , the HP is switched on and the corresponding electrical energy

consumption is given by

WHPC (k) = αHPC

(
THPC

in (k)− THPC

0 (k)
)
, (15)

where αHPC pertains to the given device. Otherwise, it is switched off and WHPC (k) = 0.

Therefore, it can be assumed that

THPC

0 (k) ≤ THPC

in (k). (16)

In this mode, it holds that T SND(k) = THPC (k) and TRET (k) = THPC

in (k). The latter quantity

dynamically depends on T SND(k) and on the total zone heat flow h(k) = h1(k) + · · · + hm(k).

Therefore, the following regressive model can be used for THPC

in (k):

THPC

in (k + 1) = ΘCΦC(k), (17)

where the regression vector ΦC(k) is given by

ΦC(k) = [THPC

in (k) . . . THPC

in (k − kTC)

THPC (k) . . . THPC (k − kHC)

h′(k) . . . h′(k − kCh)]
′

(18)

where ΘC is the (row) parameter vector and kTC , kHC , kCh define the model orders.

The constraint sets pertaining to the HVAC system operating in heating and cooling mode,

respectively, can be grouped as follows:

CH(k) = {(8),(10),(11),(12),(13)}, CC(k) = {(14),(15),(16),(17),(18)}.
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3.3. Electrical storage model

The characterization of the storage system based on rechargeable batteries used in this paper

is as follows (see, e.g., [27, 28]). Let EEES(k) represent the state of charge at time k. Denote

as WEES
+ (k) ≥ 0 and WEES

− (k) ≥ 0 the battery charge and discharge signals, i.e., the amount of

energy fed to and drawn from the battery in the k−th time interval, respectively. It holds that

EEES(k + 1) = EEES(k) + ηWEES
+ (k)−

1

η
WEES

− (k), (19)

where 0 < η < 1 is the battery efficiency. Furthermore, the amount of battery energy exchange in

the same interval reads

WEES(k) = WEES
+ (k)−WEES

− (k). (20)

The following additional constraints

0 ≤WEES
+ (k) ≤W

EES

+ , (21)

0 ≤WEES
− (k) ≤W

EES

− , (22)

0 ≤ EEES(k) ≤ E
EES

, (23)

where W
ESS

+ ,W
ESS

− and E
EES

depend on the storage size and technology, and represent the

maximum charge/discharge rate and capacity, respectively. The constraint sets pertaining to EES

can be grouped as:

CEES(k) = {(19),(20),(21),(22),(23)}.

In order for the model to be consistent, WEES
+ (k) and WEES

− (k) cannot both be nonzero. This can

be guaranteed by introducing the nonlinear constraint WEES
+ (k)WEES

− (k) = 0, ∀k. See Remark 2

in Section 4 on how the introduction of this constraint can be circumvented.

3.4. PV generation model

In this work, the well-known PVUSA model of a PV plant [29] is exploited. In this model, the

maximum energy that can be drawn from the plant in the k−th time interval is expressed as a

function of irradiance and environmental temperature as follows:

W
PV

(k) = θPV
1 I(k) + θPV

2 I2(k) + θPV
3 I(k)TA(k), (24)

where I(k) is the global solar irradiance and TA(k) is the outside air temperature. Despite

its simplicity, this model is very accurate when its parameters are fit to measured data and

several efficient methods for their estimation under various conditions have been proposed (see

[30],[31],[32] and references therein). Without loss of generality, it can be assumed that I(k),I2(k),

and I(k)Ta(k) are part of the exogenous variable vector e(k). Therefore, (24) can be written in

the form

W
PV

(k) = ΘPV e(k) (25)
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which represents a static linear-in-the-parameters model.

Denoting with WPV (k) the amount of energy drawn from the PV plant in the k−th interval,

the following constraint must hold:

0 ≤WPV (k) ≤W
PV

(k). (26)

The latter two equations are grouped in the constraint set

CPV (k) = {(25),(26)}.

3.5. Energy consumption and Demand-Response model

Let W (k) represent the amount of energy drawn from the grid by the building in the k−th

time interval. According to the model introduced above, the electrical energy balance equation

reads:

W (k) = WHP (k) +WEES(k)−WPV (k), (27)

with W (k) ≥ 0, since the possibility of injecting excess energy into the grid is not currently

considered.

Let p(k) represent the unit energy price or a forecast thereof, and consider a generic time

horizon I(k, λ). The total energy drawn from the grid within I(k, λ) is given by

W (k, λ) =
k+λ−1∑

l=k

W (l), (28)

and the total expected cost of energy in the same interval is equal to

C(k, λ) =

k+λ−1∑

l=k

p(l)W (l). (29)

A Demand-Response model based on price-volume signals is considered in this paper. Such

a model was introduced in [24] and is recalled next. A DR program is modeled as a sequence of

DR requests Rj , each carrying a time horizon I(hj , µj), a total energy bound Sj , and a monetary

reward Rj . A request Rj is satisfied if the total building consumption within I(hj , µj), i.e.,

W (hj , µj), is less or equal to the threshold Sj . In this case, a monetary reward Rj is granted.

Definition 1. A DR program P is a sequence of DR requests Rj, j = 1, 2, . . . , where Rj is the

set

Rj = {I(hj , µj), Sj , Rj} , (30)

being I(hj , µj) ⊆ K and I(hj1 , µj1) ∩ I(hj2 , µj2) = ∅, ∀j1 6= j2.

The request Rj is satisfied if and only if

W (hj , µj) ≤ Sj . (31)
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For any given time horizon I(k, λ), let

P(k, λ) = {Rj : I(hj , µj) ⊆ I(k, λ)} , (32)

be the set of DR requests that occur within the time horizon. Moreover, define J (k, λ) as the set

of indices identifying such DR requests, i.e.,

J (k, λ) = {j : Rj ∈ P(k, λ)} . (33)

To each request Rj , let us associate a binary variable ǫj ∈ B defined as

ǫj =





1 if Rj is satisfied

0 otherwise.
(34)

The overall expected cost of operation of the building HVAC system within the time horizon

I(k, λ) under the DR program P , is therefore given by

CP(k, λ) = C(k, λ)−
∑

j∈J (k,λ)

ǫjRj , (35)

i.e., the expected cost of energy minus the total reward for the satisfied DR requests. Let M be

an a-priori known upper bound to the total building energy consumption per time step. Then,

the set of constraints

CDR(k, λ) = {W (hj , µj) ≤ ǫjSj + (1− ǫj)Mµj , j ∈ J (k, λ), ǫj ∈ B} (36)

drives each variable ǫj to 1 if the respective DR request can be fulfilled, and to 0 otherwise.

The reader is referred to [24] for further details on this model and its MPC implementation.

4. Optimal HVAC and storage operation problem

The goal of this section is to devise an optimal schedule for the operation of the overall system

(HVAC, PV, thermal and electrical storage) in order to minimize the building electricity bill under

a DR program P , while preserving comfort constraints. On a given interval I(k, λ), such a problem

amounts to the optimal manipulation of the control variables v(l), THPH

0 (l) [THPC

0 (l)], WEES(l)

for l ∈ I(k, λ) in order to minimize CP(k, λ). To this purpose, it should be observed that the

model is not linear in the above variables due to (5). Nevertheless, the model becomes linear if

h(l) instead of v(l) are considered as decision variables. Once the optimal values h∗
i (l) of hi(l) are

available for zone Zi, the corresponding optimal heat exchanger actuation is given by

v∗i (l) =
h∗
i (l)

γi (T SND(l)− Ti(l))
. (37)

In the formulation of the optimization problem, suitable forecasts or sensor measurements ê(k) of

the exogenous variables are assumed to be available. Therefore, in the sequel, e(k) = ê(k).
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4.1. Heating mode operation with thermal storage

In order to formulate the optimal operation problem in heating mode over a time interval

I(k, λ), the set of command variables UH(k, λ), where

uH(l) = [h′(l), THPH

0 (l), WEES(l)]′,

is considered. Moreover, sensor measurements Tm(k), T TES
m (k), THPH

m (k), EEES
m (k) of T(k),

T TES(k), THPH (k), EEES(k), respectively, are assumed to be available. Hence, the problem of

minimizing the total energy cost CP(k, λ) over the time interval I(k, λ) can be cast as a mixed-

integer linear program (MILP) as follows.

Problem 1. Optimal combined heating/storage control under DR program P.

U
opt
H (k, λ) = arg min

UH(k, λ)

ǫj : j ∈ J (k, λ)

CP(k, λ)

subjected to

CT (l), C(l), ChH(l), CH(l), CEES(l), CPV (l) ∀l ∈ I(k, λ)

CDR(k, λ)

(38)

4.2. Cooling mode operation

In cooling mode, the set of control variables amounts to UC(k, λ), where

uC(l) = [h′(l), THPC

0 (l), WEES(l)]′.

Sensor measurementsTm(k), THPC

in,m (k), THPC

m (k), EEES
m (k) ofT(k), THPC

in (k), THPC (k), EEES(k),

respectively, are considered. The problem of minimizing the total energy cost over I(k, λ) has the

following formulation.

Problem 2. Optimal combined cooling/storage control under DR program P.

U
opt
C (k, λ) = arg min

UC(k, λ)

ǫj : j ∈ J (k, λ)

CP(k, λ)

subjected to

CT (l), C(l), ChC(l), CC(l), C
EES(l), CPV (l) ∀l ∈ I(k, λ)

CDR(k, λ)

(39)

4.3. Managing constraint violations and uncertainty

The feasibility of the optimization problems introduced in the previous subsections cannot

be guaranteed in general due to a number of circumstances that may occur in real use cases.

Among such factors are the presence of uncertainties in the building component models, errors
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in sensor measurements or exogenous variable forecasts ê(k), inappropriate sizing or faults of the

HVAC system, etc. Hence, a certain degree of constraint violation must always be accepted. In

order to mitigate this issue, a common approach in MPC is to resort to soft constraints, that is,

removing the relevant hard constraints and replace them with penalization terms in the objective

function. However, in complex scenarios such as the one dealt with in this paper, designing

suitable constraint penalization coefficients to be used in the cost function can be a very difficult

task, and the optimal solution of the relaxed problem may turn out to be very sensitive to such

design. To overcome this issue, a two-step procedure is adopted in this work, which is based on

the observation that the constraints that may actually incur violations are the comfort constraints

C(·). In the first step, such constraints are relaxed by introducing a set of slack variables, and a

modified version of Problem 1 or 2 is solved, in which the objective to be minimized is the 1−norm

of all constraint violations over I(k, λ). In the second step, Problem 1 or 2 is solved replacing

the original comfort constraints with the optimal relaxed bounds computed in the first step. Note

that this substitution always ensures feasibility of the latter problems.

In order to illustrate the procedure, the following set of positive slack variables pertaining to

each time interval I(k, λ) is introduced:

∆(k, λ) =
{
(δi(l), δi(l)), δi(l) ≥ 0, δi(l) ≥ 0, i = 1, . . . ,m, l ∈ I(k, λ)

}
,

along with the relaxed constraint set

C∆(k) =
{
T i(k)− δi(k) ≤ Ti(k) ≤ T i(k) + δi(k) ∀i = 1, . . . ,m

}
.

Then, the following linear program, which is a modified version of Problems 1 and 2, is considered:

Problem 3.

∆feas(k, λ) = arg min
∆(k,λ),U⋆(k,λ)

∑

l∈I(k,λ), i=1,...,m

δi(l) + δi(l)

subjected to

CT (l), C∆(l), C
h
⋆ (l), C⋆(l) ∀l ∈ I(k, λ)

Cm⋆ (k)

(40)

where ⋆ = H for heating mode (Problem 1) and ⋆ = C for cooling mode (Problem 2). All other

constraints (battery, DR, etc.) do not influence feasibility and can be omitted. Notice that the

optimum of Problem 3 represents the minimum 1-norm of the constraint violations that must be

accepted.

4.4. MPC algorithm

The proposed control procedure is implemented in a receding horizion fashion as the two-step

optimization strategy in Algorithm 1.
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Algorithm 1 MPC controller implementation

1: k ← 0

2: Acquire sensor measurements Tm(k), T TES
m (k), THPH

m (k) [THPC

in,m (k), THPC

m (k)], EEES
m (k) and

exogenous variable forecasts ê(l), l ∈ I(k, λ)

3: Solve Problem 3 for

∆feas(k, λ) =
{
(δi

feas(l), δi
feas

(l)), i = 1, . . . ,m, l ∈ I(k, λ)
}

4: Define the constraint set

Cfeas∆ (k) =
{
T i(k)− δi

feas(k) ≤ Ti(k) ≤ T i(k) + δi
feas

(k) ∀i = 1, . . . ,m
}
.

5: Solve Problem 1 [Problem 2] for Uopt
⋆ (k, λ) setting

C(l) = Cfeas∆ (l)

6: Actuate u
opt
⋆ (k)

7: k ← k + 1 and repeat from 2:

Remark 1. At each step k, the proposed procedure consists of the solution of an LP (Problem

3) and of a MILP (Problem 1 or 2) involving a number of binary variables equal to the number

of DR requests falling inside the prediction horizon I(k, λ). In realistic scenarios, the number of

integer variables in the MILP is at most a few units [15] . The number of continuous variables

as well as of constraints in all optimization problems scales in a linear fashion with the number

of building zones. This makes the proposed procedure readily applicable to real-world scenarios

involving large-scale buildings consisting of hundreds of zones, as demonstrated by the simulation

experiments reported in Section 5.

Remark 2. The formulation of the optimization problems involved in Algorithm 1 does not take

into account the constraint that the electrical storage cannot charge and discharge simultaneously,

i.e., that WEES
+ (l) and WEES

− (l) cannot be both nonzero. However, unless EEES(l + 1) = 0 or

EEES(l + 1) = E
EES

, such condition is always met because the battery efficiency satisfies η < 1.

On the contrary, when the battery state of charge hits one of the bounds, WEES(l) can be set such

that EEES(l + 1) = 0 or EEES(l + 1) = E
EES

according to (19),(20).

5. Test cases

In this section, the application of the proposed control technique to a large-scale building

is presented. Heating and cooling operations are considered in Sections 5.1 and 5.2, respectively,
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while Section 5.3 is devoted to analyzing the performance of the proposed method when inaccurate

forecasts of exogenous variable are available. A discussion of the results is given in Section 6.

The simulated test structure is an 8-floor building divided in 126 zones (Fig. 2) located in

Turin, Italy. The first two floors are devoted to commercial and office activities, respectively,

while the remaining floors are assigned to residential apartments. Plans of the three types of

floors are reported in Fig. 3.

The building is equipped with a PV plant, an electrical storage system and two heat pumps

used for heating and cooling purposes, respectively. The heating system is also equipped with

a TES to enable hot water storage. Heating and cooling circuit schemes are shown in Fig. 4

and 5. The building has been designed using DesignBuilder [33] while simulations have been

performed via EnergyPlus [26] connected to Matlab through the Building Controls Virtual Test

Bed (BCVTB) [34]. Building features are reported in Table 1, while materials are summarized in

Table 2. The energy price time series p(k) has been taken from the Italian electricity market [35].

The EnergyPlus simulation model is assumed as the real building. The sampling time τs is set to

10 minutes, while the horizon length used by the MPC is fixed to 12 hours, corresponding to 72

samples, i.e., λ = 72 in Algorithm 1.

Figure 2: Rendering of the building used in test cases.

Figure 3: Plans of the building floors: commercial (left), office (middle), residential (right).
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Figure 4: Scheme of the heating circuit.

Figure 5: Scheme of the cooling circuit.
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Table 1: Test building characteristics

Building Component Value

Weather and Location Turin (Italy)

Floor Area [m2] 375

Floor [#] 8

Zone [#] 126

Window to Wall Ratio [%] 20

Solar Transmittance [%] 30

Internal Loads

Occupants [#] 120

Lighting [W/m2] 4.00

Equipment [W/m2] 3.25

Heating: Heat Pump

Heating Capacity [kW ] 389

Heating Power Consumption [kW ] 82

TES Volume [m3] 8

Cooling: Heat Pump
Cooling Capacity [kW ] 389

Cooling Power Consumption [kW ] 82

Electric Energy Storage

Capacity [kWh] 28

Max Charging Rate [kW ] 24

Max Discharging Rate [kW ] 24

PV Plant

Panels [#] 5

Plant Surface Area [m2] 100

Plant Peak Power [kW ] 10

Table 2: Test building construction materials (name/thickness [mm])

External Walls Internal Walls

Outside Layer Brickwork/100 Gypsum plaster/13

Layer 2 Extruded polystyrene/80 Brickwork/10

Layer 3 Concrete block/100 Gypsum plaster/13

Layer 4 Gypsum plaster/15

Floor Roof Windows

Outside Layer Extruded polystyrene/30 Plywood/10 Generic LoE/6

Layer 2 Cast concrete/300 Glass wool/100 Air/6

Layer 3 Cast concrete/10 Generic Clear/6

Layer 4 Gypsum board/13
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5.1. Winter season simulation - heating operation

The thermal behavior of the building has been modeled as in Section 3.1 by means of the

autoregressive model (1)-(2). To this purpose, it is appropriate to define the exogenous input

vector e(k) as

e(k) = [TA(k) I(k) I2(k) I(k)TA(k) G′(k)]′

where TA(k) is the outside air temperature, I(k) is the solar irradiance andG(k) denotes the vector

of internal heat gains of the building zones due to human occupancy, lighting and equipments.

For this model, an identification experiment has been performed over a time horizon of 18

days, which have been split in 14 days for estimation and 4 for validation. For each building zone,

a coupled model involving all neighboring zones has been employed. The standard Best FIT index

(FIT) defined in [36, 37] has been used to assess the quality of the estimated model. The average

value of the FIT index for all the identified building zones is 75%, 68% and 66%, for 1, 6 and

12-hour ahead predictions, respectively. For a qualitative evaluation, in Fig. 6, the 6-hour ahead

prediction of the internal temperature of an office zone is compared with the real behavior during

the model validation phase.

Concerning the TES, model (12)-(13) has been identified, and the associated FIT index turns

out to be over 90% even for 12-hour ahead prediction. The PV plant has been identified by

employing model (25).
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Figure 6: Thermal model identification. Comparison between real zone temperature (blue) and 6-hour ahead

prediction (red) over the four-day validation period.

Depending on the type of zone (commercial, office, residential), different comfort constraints

are enforced. For commercial and office zones, temperature bounds are set to 20-24◦C from 8:00

to 18:00, and 15-24◦C elsewhen. Bounds for residential zones are 20-24◦C from 7:00 to 9:00 and

from 19:00 to 01:00, and 15-24◦C otherwise. It is worthwhile to note that such bounds can be

freely adjusted for each zone to adapt to real scenarios.
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Table 3: Winter season - DR program

hj µj Sj [kWh] Rj [e]

R1 107 5 37 3.6

R2 178 6 40 4.4

R3 325 3 6 2.8

A 3-day simulation has been performed to evaluate the proposed control strategy. The price/volume

DR requests in the considered period are assumed to be known one day in advance [15] and are

reported in Table 3. The identified model has been used by the MPC to generate fan input sig-

nals, HP setpoints and EES charging/discharging commands, while real measured data have been

generated by the EnergyPlus simulation of the designed building.

At this stage, perfect knowledge of exogenous inputs is assumed. Such an assumption, although

not realistic, has been enforced to better assess the quality of the proposed technique. Simulations

in presence of uncertain forecasts will be analyzed in detail in Section 5.3.

In Fig. 7, outdoor temperature TA and solar irradiance I for the considered days are reported,

while in Fig. 8, TES temperature T TES, HP setpoint THPH

0 , EES state of charge EEES , energy

drawn from the PV plant WPV , unit energy price p and total energy drawn from the grid W are

shown. In Fig. 9, the temperature profiles Ti(k) of three different sample zones are depicted along

with the required comfort bounds [T i, T i] and fan actuation vi. It can be noted that the zone

temperatures lie within the comfort bounds with small deviations. Indeed, the average bound

violation of the worst performing zone over three days is about 0.13◦C, see Table 4. Notice

that, since exact input forecasts are assumed, such infringements are due to modeling errors. This

demonstrates the ability of the bound relaxation technique in Section 4.3 to manage unpredictable

bound violations by pushing the zone temperatures back within the prescribed bounds in a short

time after the violations occur. It is worthwhile to recall that keeping air temperature within hard

comfort bounds at all times is unfeasible for any conceivable control strategy due to modeling

errors and/or unpredictable disturbances. In Table 4, numerical values of total cost, DR rewards,

and comfort bound violations are reported.
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Figure 7: Heating operation mode simulation. Meteorological inputs. Top: Outdoor temperature. Bottom: Solar

irradiance.
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Figure 8: Heating operation mode simulation. DR requests are depicted in green if fulfilled, in orange otherwise.

Top: energy price (blue) and building energy consumption per time step (red). Middle: EES state of charge (blue)

and energy provided by the PV plant (red). Bottom: TES internal temperature (red) and HP setpoint (blue).

25



0 10 20 30 40 50 60 70

15

20

24

T
em

pe
ra

tu
re

 [°
C

]

0

0.36

0.73

0

0.36

0.73

F
an

 A
ir 

F
lo

w
 [m

3
/s

]

0 10 20 30 40 50 60 70

15

20

24
T

em
pe

ra
tu

re
 [°

C
]

0

0.11

0.23

0

0.11

0.23

F
an

 A
ir 

F
lo

w
 [m

3
/s

]

0 10 20 30 40 50 60 70

Time [h]

15

20

24

T
em

pe
ra

tu
re

 [°
C

]

0

0.02

0.04

0

0.02

0.04

F
an

 A
ir 

F
lo

w
 [m

3
/s

]

Figure 9: Heating operation mode simulation. DR requests are depicted in green if fulfilled, in orange otherwise.

Zone internal temperature (blue), comfort bounds (black), fan speed (red dots). Top: commercial zone. Middle:

office zone. Bottom: residential zone.

Table 4: Heating operation mode - Simulation results over 3 days

Cost without DR [e] 136.14

No. of fulfilled DR requests 2

DR reward [e] 8.00

Overall cost with DR [e] 128.14

Worst zone average bound violation [◦C] 0.139

To further assess the performance of the proposed procedure, a standard thermostatic controller

with 0.5◦C hysteresis has been used as a benchmark. Since thermostatic control is clearly unable to

track step variations of the comfort constraints, preheating/precooling is performed with suitable

advance in order to provide a fair comparison. Moreover, when thermostatic control is in place,

the EES is operated in the following fashion: if the power currently produced by the PV panels

exceeds that needed by the HP, the surplus is stored in the battery, otherwise the controller draws

power from the battery in the first place, and then from the grid. Since DR requests cannot be

handled by thermostatic control, simulations in absence of DR programs have been performed for

the sake of fairness.

In Table 5, the total cost is summarized for both strategies along with the average bound

violation of the worst performing zone. In the considered days, the total cost achieved by adopting
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the proposed control technique turns out to be 25.49% less than that obtained by the benchmark.

Table 5: Heating operation mode simulation - Comparison with thermostatic control (without DR)

Proposed MPC Thermostatic Control

Overall cost [e] 136.64 183.39

Worst zone average bound violation [◦C] 0.139 0.142

5.2. Summer season simulation - cooling operation

As described in Section 3.2.2, the problem structure for cooling mode is similar to the heating

case, with the exception that no TES is assumed to be present. The identified models used under

this condition have been obtained in a similar manner. A model for the dynamics of the fluid

temperature at the HP inlet (THPC

in ) is identified according to (17)-(18), and the resulting FIT

index turns out to be over 80% for 12-hour ahead predictions. This step is not explicitly needed

for the heating case since, according to (8), the fluid temperature at HP inlet is the same as the

TES temperature T TES .

For commercial and office zones, comfort bounds are set to 22-24◦C from 8:00 to 18:00, and

22-28◦C elsewhen. Bounds for residential zones are 22-24◦C from 7:00 to 9:00 and from 19:00 to

01:00, and 22-28◦C otherwise.

In Table 6 and Fig. 10-11, the results of a three-day simulation are summarized. In Table 7,

the comparison with the thermostatic controller is shown. As for the winter season, the proposed

MPC reduces the cost by 35.67% with respect to the benchmark, still maintaining similar zone

comfort.

Table 6: Cooling operation mode - Simulation results over 3 days

Cost without DR [e] 79.68

No. of fulfilled DR requests 3

DR reward [e] 6.40

Overall cost with DR [e] 73.28

Worst zone average bound violation [◦C] 0.145
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Figure 10: Cooling operation mode simulation. Zone internal temperature (blue), comfort bounds (black), fan

speed (red dots) and fulfilled DR requests (green). Top: commercial zone. Middle: office zone. Bottom: residential

zone.
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Figure 11: Cooling operation mode simulation. DR requests are depicted in green if fulfilled, in orange otherwise.

Top: energy price (blue) and building energy consumption per time step (red). Middle: EES state of charge (blue)

and energy provided by the PV plant (red). Bottom: HP setpoint (blue) and fluid temperature at HP inlet (red).
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Table 7: Cooling operation mode simulation - Comparison with thermostatic control (without DR)

Proposed MPC Thermostatic Control

Overall cost [e] 76.74 119.29

Worst zone average bound violation [◦C] 0.156 0.169

5.3. Performance analysis under uncertainties

Up to this point, exact forecasts of the exogenous inputs e have been considered. Such an

assumption is not acceptable in a realistic scenario for weather variables and zone internal gains.

On the contrary, it is reasonable to assume that energy price is exactly known one day in advance,

as well as the daily DR program [15]. For these reasons, simulations have been performed to

evaluate how the proposed technique is sensitive to forecasting errors in outdoor temperature,

solar irradiance and internal gains.

In a real scenario, predictions of external temperature are provided by national weather forecast

services. Outdoor temperature forecasting errors have been simulated as follows. First, a second-

order autoregressive model has been used to compute the noise signal

d(k) = α1 d(k − 1) + α2 d(k − 2) + ε(k), k = 0, . . . (41)

where α1 and α2 are the model coefficients and ε is a zero-mean Gaussian distributed random

variable. Notice that it is quite common to use autoregressive systems to model temperature

uncertainty, see e.g., [38]. Then, denoting by TA
true the real temperature profile, the temperature

forecast T̂A to be used by the MPC has been obtained as

T̂A(l) = TA
true(l) + d(l)

l − k

λ
, l = k, . . . , k + λ . (42)

Notice that T̂A(k) = TA
true(k), since the outdoor temperature is measured. On the other hand,

the term l−k
λ

takes into account the fact that forecasting accuracy decreases with time. State-of-

the-art models for temperature forecasting are able to generate day-ahead estimates with an error

of about 2◦C [39]. Hence, the coefficients in (41) have been chosen conservatively in order obtain

a maximum error of 3◦C over a 12-hour ahead prediction.

To test the behavior of the proposed control law, a number of uncertain input profiles have

been generated and used in simulations. In Fig. 12, five different 12-hour ahead forecasts are

reported, along with the true temperature profile.

Predictions of solar irradiance have been obtained by multiplying the real irradiance by a signal

generated as in (41). In Fig. 13, different profiles of solar irradiance predictions are reported along

with the actual signal.

To obtain forecasts on zone internal gains, a noise signal as in (41) has been added to the real

internal gain, by saturating the perturbed signal to 0. In Fig. 14, the true internal gain is depicted

for each zone type along with five forecasts.
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Figure 12: Real outdoor temperature (black thick line) and five simulated forecasts (colored thin lines) at a given

time.
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Figure 13: Real solar irradiance (black thick line) and five simulated forecasts (colored thin lines) at a given time.
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Figure 14: Real internal gains (black thick line) and five simulated forecasts (colored thin lines) at a given time.

Top: Commercial zone. Middle: Office zone. Bottom: Residential zone.

Twenty simulations in heating mode have been generated for each uncertain input. In Table 8,

the worst-case value of the total cost and of the average comfort bound violation of the worst

performing zone are reported. Inaccurate forecasts are considered both individually and combined.

The box plots related to the overall cost for the considered scenarios are shown in Fig. 15.

It can be noticed that the presence of inaccurate forecasts may raise the overall cost up to 7.79%

with respect to the nominal case, while the difference on comfort is negligible. The latter fact

shows the ability of the control algorithm to minimize the thermal discomfort when unexpected

situations occur.

Table 8: Simulation results for exact and inaccurate forecasts (worst-case over 20 realizations)

Overall cost [e] Worst zone average
bound violation [◦C]

Exact forecast 136.64 0.139

Uncertain forecast on
external temperature

144.82 0.141

Uncertain forecast on
solar irradiance

144.98 0.144

Uncertain forecast on
zone internal gains

143.90 0.144

Uncertain forecast on
all three inputs

147.28 0.146
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Figure 15: Box plot of the total cost in presence of uncertain forecasts over 20 simulations. The three sources

of uncertainty are considered once at a time and at the same time. The green line refers to the result for exact

forecasts.

6. Discussion

In this section, the results of the simulation experiments are analyzed and discussed.

Let us first consider the simulation reported in Section 5.1, corresponding to winter season

and perfect knowledge of exogenous inputs. The identified models are able to predict the system

dynamics accurately. As expected, the performance indexes decrease as the prediction horizon

grows, yet they remain on acceptable values. Moreover, it is worth remembering that in a receding

horizon approach, predictions are updated at each time step, thus making it possible for the control

algorithm to adapt against inaccuracies on long-term forecasts.

Concerning the control system simulation in Fig. 8, it can be observed that the EES and

the TES are charged and discharged twice a day in order to take advantage of electricity price

fluctuations. Moreover, it is apparent that both the EES and the TES play an important role in

order to satisfy DR requests. From Fig. 8 and 9, it is apparent that the last DR request is not

fulfilled, meaning that consumption reduction during the DR interval is not deemed profitable by

the controller. In Fig. 9, one can see that the comfort bounds are mostly satisfied. In this case,

since exact forecasts are assumed, bound violations are only due to discrepancies between the

real system and the identified model. However, the magnitude of such bound violations is almost

negligible. In fact, as reported in Table 4, the average bound violation for the worst zone is less

than 0.14◦C. The proposed control technique leads to a total cost which is 25.49% less than that

obtained by standard thermostatic rules, as reported in Table 5. Since the benchmark cannot

exploit the knowledge of DR requests, no DR program has been assumed in this case to ensure a
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fair comparison. Of course, the gap between the two strategies in the presence of DR programs is

larger.

Since the assumption of exact forecasts is unrealistic, the cost associated to the benchmark

controller is also compared with that obtained by the MPC under inaccurate input predictions.

To this purpose, Table 8 and Fig. 15 show that the MPC cost under uncertain forecasts does

not change significantly w.r.t. the nominal one. In fact, the maximum cost under inaccurate

forecasts is less than 8% greater than that obtained for exact forecasts. This is a consequence of

the receding horizon strategy, which implies that only the prediction errors occurring in the near

future significantly affect the performance. This makes the proposed approach intrinsically robust

to uncertainty, since short-term forecasts are usually quite accurate.

In addition to affecting the total cost, uncertainty also plays a role in the preservation of

zone temperature comfort bounds. However, this effect is mitigated by the MPC implementation

described in Section 4.3, as it is clear from Table 8, which shows that only a slight increment of

discomfort occurs in the presence of unreliable forecasts.

Similar considerations can be made for the results obtained in cooling operation, i.e., in summer

season.

A final remark concerns the computational burden associated with the controller implementa-

tion. For the considered 126-zone building, the time required for computations at each step (i.e.,

every 10 minutes) is about 20 seconds on a standard PC1, showing that the proposed algorithm

can be efficiently adopted in large-scale applications.

7. Conclusion and future research

In this paper, the problem of optimizing the operation cost (i.e., the electrical energy bill)

of a building integrating a centralized HVAC, thermal and electrical storage facilities, and PV

generation has been addressed. Participation in a DR program has also been considered. The

proposed approach exploits a receding horizon control MPC strategy involving at each step the

solution of an LP and of a MILP with a number of integer variables equal to the number of DR

requests in the prediction horizon. The procedure can be fruitfully applied to large size buildings.

Experimental validation using a realistic simulation framework has been carried out.

Further studies will address more complex setups in which the building is considered as a

microgrid in its own right, including electric vehicles, appliances and other kinds of loads. Special

attention to active/reactive power flow should be paid in this case in order to guarantee the

satisfaction of electrical constraints. More general DR scenarios will also be addressed, such as the

1Computations have been performed using CPLEX [40] to solve the LPs, on an Intel Core i7-3770 at 3.40 GHz

with 8 GB of RAM.
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presence of incentives for keeping energy consumption above a minimum, which can be efficiently

achieved using storage facilities. Finally, different methods for handling uncertainty, like chance

constraints or scenario-based approaches, will be investigated and compared with the method

proposed in this paper. To this purpose, suitable problem formulations and related relaxations

will be studied to enable such techniques to manage large-scale buildings.
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