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Abstract

This paper addresses the problem of finding the optimal configuration (number, locations and sizes) of energy

storage systems (ESSs) in a radial low voltage distribution network with the aim of preventing over- and undervoltages.

A heuristic strategy based on voltage sensitivity analysis is proposed to select the most effective locations in the

network where to install a given number of ESSs, while circumventing the combinatorial nature of the problem.

For fixed ESS locations, the multi-period optimal power flow framework is adopted to formulate the sizing problem,

for whose solution convex relaxations based on semidefinite programming are exploited. Uncertainties in the storage

sizing decision problem due to stochastic generation and demand, are accounted for by carrying out the optimal sizing

over different realizations of the demand and generation profiles, and then taking a worst-case approach to select the

ESS sizes. The final choice of the most suitable ESS configuration is done by minimizing a total cost, which takes

into account the number of storage devices, their total installed capacity and average network losses. The proposed

algorithm is extensively tested on 200 randomly generated radial networks, and successfully applied to a real Italian

low voltage network and a modified version of the IEEE 34-bus test feeder.

Index Terms

Energy storage systems, siting and sizing, voltage sensitivity matrix, multi-period optimal power flow.

I. INTRODUCTION

P
ROBLEMS of voltage quality are becoming more and more important in low voltage (LV) distribution

networks. Among these, maintaining voltage between specified limits, as required by typical quality of supply

standards, is one of the main issues faced by distribution system operators (DSO). This is mostly due to the growing

penetration of low carbon technologies, such as distributed generation (DG), electric vehicles and heat pumps,

causing modifications of typical power flows in distribution networks. Since peaks of load demand and DG are
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typically not aligned in time, over- and undervoltage conditions may regularly show up. In order to mitigate these

problems, several actions can be taken. Grid reinforcement is a possible solution, but in a rapidly evolving scenario

as the one distribution networks are now witnessing, deferral of investments in infrastructures could be advisable,

and solutions both cheaper and faster to be implemented, should be looked for. In this respect, real and reactive

power control of DG, and control of on-load tap changers (OLTC) at secondary substations, are valid alternative

solutions proposed in the literature [1]. However, these solutions cannot be always put into practice. On the one

hand, depending on both technical and regulatory issues, the DSO might not have control on distributed generators.

On the other hand, OLTC control is impracticable when secondary substations are not automated, as is the case in

most electricity systems worldwide. In addition, this type of control might have the serious drawback to transmit

large disturbances to the medium voltage (MV) network. Very recently, the use of energy storage systems (ESSs)

has been investigated to tackle over- and undervoltages [2], [3], [4]. The idea is that an energy storage should play

the role of a load in case of overvoltage, and of a generator in case of undervoltage. Pros of the use of ESSs are that

voltage problems are solved locally, thus limiting the impact on the MV network, and no curtailment of renewables

is required. These advantages add to the well-known general benefits that the use of energy storage brings to the

different players (see [5], [6] for general surveys).

Optimal ESS siting and sizing have been addressed in the literature for both transmission and distribution networks,

and from the point of view of different power system stakeholders (see, e.g, [7], [8], [9], [10] and references

therein). A quite general approach is to formulate the problem in an optimal power flow (OPF) framework, where

storage locations and sizes are considered as optimization variables, and a cost function (including, e.g., generation

costs, storage installation costs, network losses, etc.) is optimized, subject to power flow constraints and storage

dynamics. Since integer variables (used to decide ESS locations) and non-convex power flow constraints make the

OPF problems NP-hard, different approaches have been devised to approximate the exact problems and alleviate the

computational burden. Linearization via DC approximation is adopted when dealing with transmission networks,

where the assumptions underlying DC OPF are typically valid [11], [12], [13], [14]. In [7], the computationally

demanding unit commitment (UC) problem over one year to determine optimal storage locations and parameters, is

tackled by solving a UC problem for each day of the year separately. When the full AC OPF is considered,

as is common for distribution networks, appropriate convex relaxations are often exploited. The second-order

cone programming OPF approach of [15] is considered in [16], while convex relaxations based on semidefinite

programming (SDP) are used in [17], [18], [19]. Alternating direction method of multipliers is proposed in [4] to

break down the original problem into a distributed parallel convex optimization. In [16], [19] convex relaxations

are embedded in a mixed integer formulation of the placement problem.

In this paper, we consider the problem of finding the optimal ESS number, locations and sizes with the aim of

preventing over- and undervoltages in a radial LV network. We cope with the combinatorial nature of the siting

problem by devising a heuristic strategy based on voltage sensitivity analysis. The heuristic determines the locations

of a given number of ESSs in the network that are expected to be most effective for voltage support. Then, for fixed

storage locations, ESS sizes are determined by formulating a multi-period OPF problem [18], [20], which is tackled
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by resorting to SDP convex relaxations [21]. The final choice of the best ESS allocation is done by minimizing

a total cost, which takes into account the number of storage devices, their total installed capacity and the average

network losses.

Following the taxonomy in [8], the contribution of this paper can be positioned as a mix of heuristic and

mathematical programming methods. Its unique feature in the framework of the related literature is the siting

procedure, which exploits network topology and line parameters. Advantages of the proposed siting procedure are

twofold. First, it is computationally cheap and avoids resorting to a combinatorial formulation involving integer

variables. Second, it is specifically designed in order to ease the solution of the subsequent sizing problem by

selecting locations with highest sensitivity to solve over- and undervoltages. Similarly to [7], uncertainties in the

storage sizing decision problem, mainly arising from stochastic generation and demand, are taken into account

by carrying out the optimal sizing for different realizations of demand and generation profiles. For each deployed

ESS, the largest size over the considered set of realizations is finally selected. Roughly speaking, this “worst-case”

approach is motivated by the attempt to “robustify” the decision by maximizing the probability of feasible storage

operation under all possible realizations of demand and generation. Overall, the goal of the proposed procedure is

to find a cost-effective ESS installation strategy providing voltage support to the LV network, while keeping the

computational burden affordable.

In our framework, the stakeholder is assumed to be the DSO, which faces regularly over- and/or undervoltages

in a LV distribution network, and looks for solutions to this issue in order to avoid penalties imposed by the

regulatory framework. In this respect, the proposed methodology represents a useful tool to answer the questions

“how many”, “where” and “how much,” thus supporting the decision making at the planning level. Consequently,

ESSs are assumed to be installed and operated by the DSO, i.e. they are not integrated in households or DG plants

out of the control of the DSO. Operation of installed ESSs can be accomplished by adapting any of the control

policies and techniques proposed in the literature to this aim, see, e.g., [2], [18], [22].

Applications presented in the paper (a real Italian LV network, a modified version of the IEEE 34-bus test

feeder, and 200 randomly generated radial networks) provide encouraging results when our ESS allocation strategy

is compared with exhaustive search. Moreover, they bring interesting insights in how the network topology, and

historical load demand and DG profiles, can be exploited to identify the most suitable candidate buses for ESS

siting.

The paper is organized as follows. Section II presents the network model and the problem formulation. The

sizing problem is addressed in Section III, whereas the proposed heuristic for ESS siting is described in Section IV.

Numerical results are reported and discussed in Section V. Finally, conclusions are drawn in Section VI. A

preliminary version of this work was presented in [23].

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider LV distribution networks with radial layout, that are frequent in LV public distribution systems of

many countries worldwide. The network model is described in this section, including equations and constraints
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characterizing loads, distributed generators and storage units connected to the network.

Consider a radial LV network described by a tree (N , E), where N = {1, 2, . . . , n} is the set of nodes (buses)

and E is the set of edges (lines). The admittance-to-ground at bus i is denoted by yii. The line admittance between

nodes i and j is denoted by yij and satisfies yij = yji. If (i, j) /∈ E , i.e. buses i and j are not connected by a line,

yij = 0. The network admittance matrix Y = [Yij ] ∈ C
n×n is a symmetric matrix defined as

Yij =











yii +
∑

h 6=i yih if i = j

−yij otherwise.

(1)

Consider discrete time steps indexed by t = 1, 2, . . . . The complex voltage and current injection at bus k and

time t are denoted by Vk(t) and Ik(t), while Pk(t) and Qk(t) denote the corresponding active and reactive power

injections. The power balance equation at bus k and time t reads as

Pk(t) + Qk(t) = Vk(t)I
∗
k(t) = Vk(t)

n
∑

j=1

V ∗
j (t)Y

∗
kj , (2)

where  is the unit imaginary number, (·)∗ denotes the complex conjugate operator and Ik(t) =
∑n

j=1 YkjVj(t).

Bus 1 is assumed to be the slack bus, representing the interconnection with the MV network. The slack bus is

characterized by fixed voltage magnitude and phase, i.e. V1(t) is known for all t. Conversely, complex voltages

Vk(t) at buses k ∈ NL = {2, . . . , n} are free variables of the power flow problem. For them, voltage quality

requirements impose the magnitude to remain within specified limits, i.e.

v2k ≤ |Vk(t)|
2 ≤ v2k, (3)

where vk ≤ vk are given bounds. Limitations on the transmission line capacities are also imposed by requiring the

real power flow from bus i to bus j to be bounded, i.e.

Pij(t) ≤ P ij , (4)

where Pij(t) = Re
(

Vi(t)
[

Vi(t) − Vj(t)
]∗
y∗ij

)

is the real power transferred from bus i to bus j at time t and

P ij = P ji is a given upper bound depending only on the physical properties of the line [24].

The set of buses equipped with ESS is denoted by S ⊆ NL. For s ∈ S , let es(t) be the storage energy level at

bus s and time t. The dynamics of es(t) is modelled by the following first-order difference equation:

es(t+ 1) = es(t) + rs(t)∆t, (5)

where rs(t) is the average active power exchanged with the storage unit at time t, and ∆t is the time step. Note

that rs(t) can take both positive and negative values (charging and discharging, respectively). The initial condition

for the storage energy level is assumed to be known:

es(1) = e1s. (6)

Moreover, both rs(t) and es(t) are bounded as follows:

−Rs ≤ rs(t) ≤ Rs (7)

0 ≤ es(t) ≤ Es, (8)
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where Rs, Rs > 0 are the ramp rate limits and Es is the storage capacity installed at bus s. Similarly to (7), bounds

Bs < Bs can be imposed on the average reactive power bs(t) exchanged with the ESS:

Bs ≤ bs(t) ≤ Bs. (9)

Let PD
k (t) and QD

k (t) denote the active and reactive power demand at bus k and time t. Similarly, the active and

reactive power generation at bus k and time t are denoted by PG
k (t) and QG

k (t). For a generic bus k ∈ NL having

loads, generators and storage units connected to it, the active and reactive power injections Pk(t) and Qk(t) take

the general expressions:

Pk(t) = PG
k (t)− PD

k (t)− rk(t) (10)

Qk(t) = QG
k (t)−QD

k (t)− bk(t). (11)

The following additional constraints apply to buses not equipped with ESS:

rh(t) = bh(t) = 0, h ∈ NL\S. (12)

The quantities PD
k (t), QD

k (t), PG
k (t) and QG

k (t) are considered as known inputs in (10) and (11). Recall that

generators in LV networks are mostly of PV and micro-wind type. These small generators are typically connected

to the network through grid-tie inverters. High-quality modern grid-tie inverters feature a fixed power factor close

to 1, so that QG
k (t) ≃ 0. This justifies the fact that, except for the slack bus, buses with generation are treated in

this paper as load buses1. In case no load or generator is connected to bus k ∈ NL, the corresponding demand or

generation are assumed to be zero.

The deployment cost of distributed storage systems in the grid depends both on the number of devices (e.g., costs

incurred for installation and maintenance) and the total amount of energy storage capacity installed. Moreover, the

effectiveness of a given ESS in providing voltage support can vary significantly, depending on the bus to which it

is connected. Hence, the following problem needs to be tackled at the planning stage.

Problem 1: Find the minimum-cost ESS number, locations and sizes for preventing over- and undervoltages in

the considered LV network.

In other words, one has to decide the cardinality and the composition of the set of ESS locations S , as well

as the storage capacities Es for all s ∈ S . Solving Problem 1 is a formidable task, involving a multi-period OPF

with mixed binary and continuous optimization variables. In order to circumvent the combinatorial nature of the

problem and reduce its computational complexity, a two-step, iterative procedure is hereafter proposed. For a given

number of ESSs, a heuristic based on voltage sensitivity analysis, which explicitly takes into account the network

topology, is devised in order to select the most effective ESS locations for voltage support. Then, the size of each

ESS is determined by solving a multi-period OPF problem. These steps are iterated for different numbers of ESSs,

1In the power flow literature, generator buses would be typically characterized by the fact that generated active power and voltage magnitude

are prespecified, while generated reactive power and voltage phase are determined by the network state.

DRAFT



6

in order to minimize the overall deployment cost. Each step of the proposed ESS allocation procedure is illustrated

separately in the following sections.

III. STORAGE SIZING

Assume that the set S is given, i.e. the ESS number and locations in the network have been decided. The

considered storage sizing problem aims at finding the minimum total storage capacity making it possible to satisfy

the voltage constraints (3) over a discrete time horizon T . Typically, T spans one day or one week, in order to

account for the periodicity of demand and generation profiles. Optimization variables in this problem are the storage

size Es and the real and reactive power rs(t) and bs(t) exchanged with each ESS, t ∈ T , in addition to the typical

OPF optimization variables. Conversely, demand and generation profiles are given, e.g., they are extracted from a

historical data set.

In order to take into account line losses, which are of primary interest in LV networks, we define the cost function

J(CS , CL) = CL + γCS , (13)

where CS =
∑

s∈S Es [kWh] is the total installed storage capacity, CL = 1
|T |

∑

t∈T

∑

k∈N Pk(t)∆t [kWh]

represents the average total line losses per sampling time, |T | denotes the cardinality of the set T and γ ≥ 0

is a weighting parameter. Then, the considered multi-period OPF problem for storage sizing reads as

min
Vk(t),rs(t),bs(t),Es

J(CS , CL) (14)

s. t. (2)− (12), k ∈ NL, s ∈ S, (i, j) ∈ E , t ∈ T .

Notice that, according to (2), active power injections Pk(t) needed to evaluate CL in (13) can be replaced with

Re
(

Vk(t)
∑n

j=1 V
∗
j (t)Y

∗
kj

)

, where Re(·) denotes the real part of a complex number. Unfortunately, problem (14)

is non-convex and therefore hard to solve. A common approach to reduce the computational burden is to compute

an approximated solution by resorting to SDP convex relaxations. To this aim, denote by ǫk the kth standard basis

vector of Rn, and define

Mk =





ǫkǫ
T
k 0

0 ǫkǫ
T
k



 (15)

Yk = ǫkǫ
T
k Y (16)

Yk =
1

2





Re
(

Yk + YT
k

)

Im
(

YT
k − Yk

)

Im
(

Yk − Y
T
k

)

Re
(

Yk + YT
k

)



 (17)

Yk =
−1

2





Im
(

Yk + YT
k

)

Re
(

Yk − Y
T
k

)

Re
(

YT
k − Yk

)

Im
(

Yk + YT
k

)



 (18)

Yij = yijǫi(ǫi − ǫj)
T (19)

Yij =
1

2





Re
(

Yij + Y
T
ij

)

Im
(

YT
ij − Yij

)

Im
(

Yij − Y
T
ij

)

Re
(

Yij + Y
T
ij

)



 , (20)
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where (·)T denotes the transpose operator of a matrix and Im(·) is the imaginary part of a complex number.

Moreover, define the rank-1 matrix W (t) = U(t)U(t)T , where U(t) =
[

Re
(

V (t)
)T

Im
(

V (t)
)T ]T

and V (t) =

[ V1(t) . . . Vn(t) ]
T . By taking the real and imaginary parts of (2), the active and reactive power balance equations

at bus k and time t can be rewritten as

tr
(

YkW (t)
)

= Pk(t) (21)

tr
(

YkW (t)
)

= Qk(t), (22)

where tr(X) is the trace of the square matrix X . Similarly, it can be shown that (3) is equivalent to

v2k ≤ tr
(

MkW (t)
)

≤ v2k (23)

and (4) is equivalent to

tr
(

YijW (t)
)

≤ P ij . (24)

The interested reader is referred to [24, Lemma 1] for a detailed derivation of (21)-(24). Adding all together, a

convex relaxation of problem (14) takes the form

J∗ = min
W (t),rs(t),bs(t),Es

J(CS , CL) (25a)

s. t.

tr
(

YkW (t)
)

= PG
k (t)− PD

k (t)− rk(t) (25b)

tr
(

YkW (t)
)

= QG
k (t)−QD

k (t)− bk(t) (25c)

v2k ≤ tr
(

MkW (t)
)

≤ v2k (25d)

tr
(

YijW (t)
)

≤ P ij (25e)

es(t+ 1) = es(t) + rs(t)∆t (25f)

es(1) = e1s (25g)

−Rs ≤ rs(t) ≤ Rs (25h)

0 ≤ es(t) ≤ Es (25i)

Bs ≤ bs(t) ≤ Bs (25j)

rh(t) = bh(t) = 0, h ∈ NL \ S (25k)

W (t) � 0 (25l)

k ∈ NL, s ∈ S, (i, j) ∈ E , t ∈ T ,

where X � 0 means that the symmetric matrix X is positive semidefinite. In problem (25), constraints (25b) and

(25c) express the power balance equation (2) with Pk(t) and Qk(t) given by (10) and (11), constraints (25d) and

(25e) impose voltage and line capacity limits (3) and (4), respectively, constraints (25f)-(25j) model the storage
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dynamics (5)-(9) and, finally, (25l) is a technical constraint deriving from the transformation of variables from V (t)

to W (t). Notice that problem (25) can be made equivalent to the original problem (14) by adding the additional

non-convex constraint rank
(

W (t)
)

= 1 (see, e.g., [21], [24]).

Remark 1: Although problem (25) is formulated in a deterministic framework, in a real context demand and

generation are affected by uncertainty. This can be modeled by considering the data in each time horizon T as a

sample of the cyclostationary stochastic process involving both renewables and loads. In this respect, the optimal

cost J∗, as well as the optimal ESS sizes E∗
s , are also stochastic quantities, since the cost function (25a) depends on

the particular realization of demand and generation profiles over the considered time horizon. In order to guarantee

feasibility of problem (25), the size of the sth ESS should be selected as the largest E∗
s , taken with respect to all

possible realizations of demand and generation profiles. When historical data are available, a viable approach is

to solve problem (25) separately for each sample in the data set, and then size each ESS according to the largest

capacity found. Formally, let E∗,d
s denote the optimal size of the sth ESS for the demand and generation profiles

of sample d = 1, . . . , D. Then, its final size Ê∗
s is selected as

Ê∗
s = max

d=1,...,D
E∗,d

s . (26)

In this study, the time horizon T of a sample is assumed to cover one day. In order to link coherently consecutive

days, the additional constraint stating that the storage energy level at the beginning of a day equals that at the end

of the day, namely
∑

t∈T

rs(t) = 0, ∀s ∈ S, (27)

is added in (25).

Remark 2: If needed, the ramp rate limits Rs and Rs can be made dependent on the ESS size Es by replacing

(7) and (25h) with

−ρ
s
Es ≤ rs(t) ≤ ρsEs, (28)

for fixed positive constants ρ
s

and ρs. Since (28) is convex, this extension does not change the computational

complexity of the optimization problem (25).

IV. STORAGE SITING

In this section, we propose a procedure for finding a suitable placement of a given number of ESSs in a

radial distribution network, based on Clustering and Sensitivity Analysis (CSA). The underlying idea consists of

partitioning the network into nC disjoint subnetworks, and then selecting the most appropriate bus within each

subnetwork where to deploy an ESS. An outline of the CSA algorithm is presented below.

CSA Algorithm

1) Network clustering. First, the set NL is partitioned into nC disjoint subsets. To this aim, a clustering algorithm

is run on an auxiliary weighted graph, consisting of a complete graph built over NL. The weight associated
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to the edge (h, k) is equal to the (h, k)-entry of the voltage sensitivity matrix Ψ ∈ R
(n−1)×(n−1) (see, e.g.,

[25]):

Ψhk = ∂|Vk|/∂Ph, h, k ∈ NL. (29)

The value Ψhk is a measure of how much the voltage at bus k is sensitive to active power injection at bus

h. The effect of reactive power injection Qh on bus voltages is neglected since ∂|Vk|/∂Qh ≪ ∂|Vk|/∂Ph

in LV networks. Among several methods for graph clustering available in the literature (see, e.g., [26]), the

algorithm adopted in our procedure is based on [27]. It searches for nC subgraphs which form a partition of

the original graph, while minimizing the sum of the weights associated to the removed edges. In our setting,

this amounts to constructing the partition of the auxiliary graph in order to minimize the sum of the voltage

sensitivities associated to the removed connections. This means that a pair of buses with high mutual voltage

sensitivity are likely to end up in the same subset. The outcome of the clustering algorithm is a partition Ni,

i = 1, . . . , nC , of the node set NL, from which subnetworks Υi = (Ni, Ei) are reconstructed by defining

Ei = {(hi, ki) ∈ E : hi ∈ Ni, ki ∈ Ni}.

2) Candidate buses. For each subnetwork Υi, i = 1, . . . , nC , the critical buses are identified as the buses with

generation and the buses that are leaves of the original network. Then, the set Ωi of candidate buses is formed

with all the buses along the paths connecting any pair of critical buses of Υi.

3) Bus selection. The criterion according to which the most suitable bus among all candidate buses is selected,

exploits the voltage sensitivities (29) again. The ESS for subnetwork i is placed at the node

k∗i = argmax
ki∈Ωi

min
hi∈Ni\{ki}

Ψhiki
. (30)

This choice aims at maximizing the controllability of the voltage in the subnetwork.

The rationale behind the CSA algorithm is to exploit the voltage sensitivity matrix in order to determine the best

ESS locations. Indeed, the voltage sensitivity matrix helps identify the most effective connections among buses with

the aim of maximizing the effect of power injection on voltage variation. Clearly, if a subnetwork Υi resulting from

step 1) does not contain any bus affected by voltage problems, Υi can be safely left without ESS, thus skipping

steps 2) and 3) of the procedure for that subnetwork.

The parameter nC , which is an upper bound to the final number of ESSs to be deployed, is an input to the

CSA algorithm and must be selected by trading-off fixed and variable costs of storage deployment. A small number

of ESSs results in smaller installation and maintenance costs, but typically requires a larger total capacity to be

installed in order to face all possible network operating conditions with fewer ESSs. In this respect, a possible

selection strategy for the number of subnetworks is to repeat the CSA algorithm for increasing values of nC , find

the optimal size of each ESS by solving problem (25), and then evaluate the corresponding total deployment cost

as

CT (nC) = cf nS + cv E[J∗], (31)

where nS ≤ nC is the number of ESSs resulting from running the CSA algorithm with nC clusters, J∗ is the
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Algorithm 1 Summary of the ESS allocation procedure

for i = 1 to n− 1 do

S(i) ← run the CSA algorithm with nC = i

for d = 1 to D do

(E∗,d
s , J∗,d) ← solve problem (25) with S = S(i)

end for

Ê∗
s (i) ← evaluate (26), s ∈ S(i)

CT (i) ← evaluate (31)

end for

i∗ = argmin
i

CT (i)

place ESSs at S(i∗) with sizes Ê∗
s (i

∗)

optimal cost of problem (25), cf accounts for the fixed costs related to a single ESS and cv is the unitary cost

associated with J∗. Expectation E[·] is taken with respect to demand and generation probability distributions. In

fact, J∗ is a random variable as explained in Remark 1. In practice, the expected value E[J∗] is replaced with the

sample mean J̄∗ computed over the available data set. Formally, let J∗,d be the optimal cost of problem (25) for

the demand and generation profiles of sample d = 1, . . . , D, then

J̄∗ =
1

D

D
∑

d=1

J∗,d. (32)

Remark 3: Since the voltage sensitivity matrix Ψ cannot be computed analytically, it is estimated numerically.

This is done by evaluating the voltage variation at bus k after a unit power injection at bus h, which amounts

to solving a load flow problem. While it is true that the entries of (29) do depend on the particular demand and

generation profiles, it turns out that their variation is negligible even when very different profiles are considered. This

confirms that Ψ is determined mostly by the network topology and admittances of the lines, as already observed in

previous works [2], [25]. By virtue of this observation, matrix Ψ is computed only once, by considering the average

demand and generation profiles. The same matrix is then used for solving points 1) and 3) of the CSA algorithm,

irrespective of the number of clusters selected.

The overall ESS allocation procedure is summarized in Algorithm 1. The CSA algorithm for ESS siting is quite

inexpensive. In fact, the hardest task of the CSA algorithm is the network clustering (step CSA.1), which is however

carried out in few seconds for networks including up to a hundred buses (on a 2.4 GHz single-core CPU). The

overall computational burden of the procedure is dictated by the solution of the sizing problem. Due to the time

correlation introduced by the presence of ESSs, it is necessary to solve a multi-period OPF. Moreover, the full AC

OPF needs to be solved since LV networks are considered. In this respect, the adopted SDP approximation yields

a significant complexity reduction. Nevertheless, since the solution of the multi-period OPF is repeated for all the

days in the historical data set, this task is by far the most time consuming one. Parallel implementation of this step
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Fig. 1. Topology of the IT-LV network and output of the CSA algorithm for nC = 6. Two clusters (highlighted in green and yellow) contain

a nonempty set of candidate buses (red bars). The remaining four clusters are singletons, none of which is a candidate bus.

could be effective in reducing the overall computation time.

V. NUMERICAL RESULTS

The strategy for ESS siting and sizing described so far, is demonstrated on several case studies in this section.

The first application considers a real LV network, provided by the main Italian DSO (see Fig. 1), and denoted by

IT-LV in the following. The network consists of 17 buses, hosting 26 loads and 4 PV units. A total of 9 leaf and

generation buses are present. Among them, only 8 critical buses are retained since leaf node 3 does not experience

any voltage problem. For all loads and generators, four months (120 days) of active and reactive power profiles are

available with time step ∆t = 15 min. These profiles are perturbed to originate both over- and undervoltages. This

means that, in the absence of storage units installed in the network, voltage magnitudes violate the voltage quality

constraints (3) at certain buses and time steps.

The second case study refers to a modified version of the IEEE 34-bus test feeder [28]. Two PV units are installed

at buses 7 and 19, resulting in a total of 11 critical buses. Four daily demand and generation profiles, representative

of different operating conditions, are simulated with time step ∆t = 15 min.

In the third case study, the CSA algorithm is tested on 200 randomly generated radial networks. The objective of

the experiment is to evaluate the optimality gap of the solutions provided by the CSA algorithm. For this reason, the

test is carried out for problem sizes making it possible to determine the optimal ESS siting via exhaustive search.
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Fig. 2. Graphical representation of the voltage sensitivity matrix Ψ for the IT-LV network.

A. Simulation Setup

For all buses k ∈ NL, in accordance with the European Norm 50160, a 10% tolerance around the nominal

voltage magnitude is allowed in both directions, i.e. vk = 0.9 pu and vk = 1.1 pu in (3). The bounds P ij in (4) are

all set to 35 kW. The ESS technology adopted for the simulations features the following parameters. Active ramp

limits in (7) are chosen such that Rk = Rk = 25 kW, and the bounds Bk and Bk in (9) are set to keep the angle

shift between -10 and +10 deg. An empty initial storage level (6) is assumed for all ESSs, i.e. e1k = 0 kWh. The

weighting parameter in (13) is set to γ = 2.5 · 10−3 (a discussion of this choice for the IT-LV network is presented

in Section V-C), whereas cf = 10 ke and cv = 575 e/kWh are chosen in the total deployment cost (31). All the

results presented hereafter are obtained by using the CVX modelling toolbox [29] and the SeDuMi solver [30].

B. ESS Siting

For the IT-LV network, the voltage sensitivity matrix Ψ defined in (29) is computed numerically as described

in Remark 3. A pseudocolor plot of Ψ is shown in Fig. 2. This kind of representation is useful to visualize the

effect that a power injection at a given bus has on the voltage at the other buses. Cells with warmer colors denote

strongly connected pairs of buses, whereas cells filled with colder colors correspond to weakly coupled buses.

For a given number of clusters nC , the CSA algorithm returns a suitable number nS of ESSs to be installed, as

well as their locations in the network. The results obtained for the case nC = 6 are shown in Fig 1. The procedure

terminates with nS = 2 storage units, allocated at buses 7 and 11.

The CSA algorithm is repeated for all possible values of nC , ranging from 1 to 16. It turns out that, irrespective
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Fig. 3. Number of ESSs nS returned by the CSA algorithm as a function of the number of clusters nC for the IT-LV network.

of the number of clusters, storage units are always placed at critical buses as defined in Section IV. The number

nS of ESSs to be deployed as a function of the number of clusters nC is shown in Fig. 3. It can be observed that

nS is typically strictly less than nC . In the limit case in which each bus forms a different cluster (i.e. nC = 16),

the CSA algorithm returns nS = 8, corresponding to the 8 critical buses present in the network. This confirms that

such buses represent preferred locations in which to deploy ESSs, thus supporting the intuition which is at the basis

of the CSA algorithm.

In order to assess the effectiveness of the siting procedure, the CSA algorithm is tested under four typical operating

conditions of the original LV network (without ESSs):

NV – neither over- nor undervoltages at any bus;

UV – only undervoltages at some buses;

OV – only overvoltages at some buses;

UOV – both over- and undervoltages at some buses.

For each of the four scenarios, a representative day is extracted from the data set and the corresponding demand

and generation profiles are considered. The CSA algorithm is run with nC = 6, 7, 8, resulting in nS = 2, 3, 4 storage

units, respectively (see Fig. 3). Then, problem (25) is solved by assuming ESSs installed at the buses returned by

TABLE I

PERFORMANCE EVALUATION OF THE CSA ALGORITHM FOR THE IT-LV NETWORK (J∗

CSA
/J∗

OPT
).

nS NV UV OV UOV

2 1.008 1.057 1.022 1.000

3 1.001 1.000 1.038 1.000

4 1.006 1.008 1.000 1.000
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Fig. 4. Validation of the CSA algorithm for nS = 2 on the IT-LV network. (a) Ratio J∗

CSA
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OPT
for all the four months in the data set.

(b) Average optimality gap J̄∗

ℓ
− J̄∗

OPT
for all 120 possible placements of two ESSs in the network (sorted in increasing order). The ESS

placement provided by the CSA algorithm ranks #11 (red dot).

the siting procedure. Denote by J∗
CSA the corresponding optimal cost in (25). Such a quantity is compared with

the optimal cost J∗
OPT , computed over all possible placements of nS ESSs in the network (e.g., for nS = 2,

120 different ESS placements have to be considered). The ratio J∗
CSA/J

∗
OPT is a measure of the performance

degradation which is incurred when using the CSA algorithm for ESS siting (see Table I). The increase in the cost

ranges from zero (UOV scenario) to 5.7% (UV scenario and nS = 2). In particular, for the day when both over-

and undervoltages are experienced, the ESS locations returned by the CSA algorithm are optimal. Conversely, for

the day featuring only undervoltages, the placement determined by the CSA algorithm for two ESSs implies a cost

J∗
CSA which is 5.7% higher than the optimal one J∗

OPT . Notice, however, that the optimal ESS placement (i.e.

the one yielding the optimal cost J∗
OPT ), being in general different from day to day, is not physically realizable.

This means that, for fixed nS , there does not exist any placement of nS ESSs yielding the optimal cost J∗
OPT

for all the four days. In this respect, the solution provided by the CSA algorithm turns out to be a good trade-off

among different operating conditions and performs quite well in all scenarios. Moreover, the computation of the

optimal placement requires an exhaustive search among all possible placements of nS storage units. This is a very

time-consuming task which becomes rapidly intractable as nS grows. On a 2.4 GHz single-core CPU, it takes about

16 hours to compute the first row of Table I, while it takes more than 10 days to compute the third one.

A more extensive numerical validation of the CSA algorithm is carried out for the case nS = 2. The same quantity

reported in Table I is computed for all the 120 days available in the data set. The results, shown in Fig. 4(a), confirm

the good performance of the CSA algorithm under every operating condition. Indeed, the few days for which the
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cost increase is above 10%, correspond to days experiencing undervoltages and for which ad hoc ESS placements

result in a quite lower optimal cost J∗
OPT . However, the satisfactory behavior of the CSA algorithm on average can

be appreciated by comparing the sample means J̄∗
OPT and J̄∗

CSA, computed by averaging J∗
OPT and J∗

CSA over the

120 days. Specifically, we obtain J̄∗
OPT = 151 kWh and J̄∗

CSA = 156 kWh, resulting in an average performance

degradation of 3.5%. Figure 4(b) shows the daily optimality gap averaged over the whole data set, namely the

quantity J̄∗
ℓ − J̄∗

OPT , for all possible placements of two ESSs in the network, indexed by ℓ = 1, . . . , 120. It turns

out that the solution provided by the CSA algorithm ranks #11, with an average optimality gap very close to that

of the best ESS placement (namely, buses 10 and 11 for these network and data set).

C. ESS Sizing

Once the CSA algorithm has returned the number and locations of ESSs to be deployed, the size of each storage

unit is determined by solving problem (25) for each day in the data set and then applying (26).

An aspect to be considered is the quality of the solution found by solving (25). Recall that (25) is a convex

relaxation of the original non-convex problem (14), obtained by neglecting the rank-1 constraint. Feasibility and

optimality of the solution of the relaxed problem for the original one are guaranteed if rank
(

W (t)
)

= 1 for all

t ∈ T . For the IT-LV network and the corresponding data set, the rank-1 constraint is never satisfied. Nevertheless,

by solving a load flow problem with the ESS power exchange profiles rs(t) and bs(t) resulting from (25) with

γ = 2.5 · 10−3, the solution of the relaxed problem turns out to be always feasible for (14), i.e. no violations of the

constraints occur. Indeed, the ratio of the second to the first singular value of matrix W , namely σ2(W )/σ1(W ),

is of the order of 10−11 with the choice γ = 2.5 · 10−3, i.e. matrix W is almost rank-1.

The parameter γ in (13) represents the weight assigned to the total storage capacity term CS with respect to

the line loss term CL in the cost function J . In order to tune it properly, several tests have been performed by

considering demand and generation profiles over a challenging day present in the data set, i.e. a day featuring both

over- and undervoltages in the absence of ESSs. The values of the terms CS and CL at the optimum of problem (25)

are shown as a function of γ in Fig. 5. As expected, larger values of γ yield solutions with smaller total installed

ESS capacity, whereas smaller values of γ result in smaller line losses. Moreover, it can be observed that, as the

weight γ increases, CS cannot decrease below a lower bound in order to ensure feasibility of the voltage constraints

in the optimization problem. Consequently, as CS tends to its lower bound, CL approaches a constant value as

well. The choice γ = 2.5 · 10−3 guarantees a total storage capacity CS as small as possible. Notice that γ also

affects the quality of the solution of the relaxed problem. For large values of γ, it turns out that the solution of

(25) is no longer feasible for the original problem (14). The reason for this can be understood by looking at the

ratio σ2(W )/σ1(W ) in Fig. 6, which becomes non-negligible for γ > 9 · 10−3.

The total deployment cost (31) as a function of the number of ESSs is shown in Fig. 7(a). All the 120 days of

the available data set are considered at this stage. For some ESS placements, there may exist days in the data set

for which the original problem (14) does not admit a solution. For instance, this may occur when too few ESSs

are deployed, or when ESSs are placed in nodes of the network providing little voltage support, no matter how big
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Fig. 6. Largest ratio of the second to the first singular value of W (t), t ∈ T , at the optimum of problem (25) as a function of the weighting

parameter γ. The setting is the same as for Fig. 5.

the storage size is. If this is the case, the day for which problem (14) does not have a solution is termed infeasible.

In practice, infeasible days are neglected when the average cost (32) and the final ESS sizes (26) are computed.

However, the number of infeasible days provides useful information to make the final decision on ESS allocation.
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Fig. 7. Results of the proposed ESS allocation procedure for the IT-LV network. (a) Total deployment cost CT in (31), where the expected

value E[J∗] is replaced with the average cost J̄∗ in (32). (b) Percentage of infeasible days. (c) Average cost J̄∗ (blue solid line) and lower

bound provided by the distributed allocation strategy (red dashed line).

The percentage of infeasible days as a function of nS is shown in Fig. 7(b). It is apparent that a suitable choice is

nS = 2, corresponding to the minimum total deployment cost CT = 110 ke, while the number of infeasible days

is only 2 out of 120 (less than 2%). Notice in Fig. 7(a)-(b) that increasing the number of ESSs from one to two

leads to a consistent reduction of both the total deployment cost and the infeasible days. On the other hand, further

increasing nS would zero out the infeasible days, but at the price of a significant cost increase. The average cost

J̄∗, used in place of the expected value E[J∗] in (31), is shown as a function of nS in Fig. 7(c). In particular, for

nS = 2, J̄∗ = 156 kWh (this is the value J̄∗
CSA already reported in Section V-B). Notice that J̄∗ tends to a constant

value as nS increases. Recalling (31), this explains why CT in Fig. 7(a) grows linearly with nS for nS ≥ 4.

D. Comparisons with Alternative Heuristics

In this section, the CSA algorithm is compared with other ESS allocation strategies. The Distributed Strategy

(DS) consists of solving problem (25) for all the days in the data set under the assumption that a storage unit

is available at each bus, i.e. S = NL. Then, (26) is applied to determine the final ESS sizes. Since the optimal

solution provided by DS is typically not sparse, i.e. Ê∗
s > 0 for most s ∈ NL, the number of allocated ESSs is

large, and hence the total deployment cost CT is usually prohibitive (e.g., CT = 243 ke for the IT-LV network

under consideration). Nonetheless considering DS is useful, since it provides a tight lower bound to (32), as can

be observed in Fig. 7(c). The same figure shows that increasing nS from one to two allows one to fill about 85%

of the gap between the value of J̄∗ provided by the CSA algorithm for nS = 1 and the lower bound provided by

DS. Moreover, the choice nS = 2 results in a total ESS size CS = 64 kWh which is slightly smaller than that

provided by DS, namely 65 kWh (see Fig. 8, showing the sizes of the ESSs allocated at each bus by DS and by

the CSA algorithm for nS = 2).

The First Best Strategy (FBS) is based on DS. For a given number nS of ESSs to be deployed, FBS builds the
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set SFBS of buses with ESS by taking the nS buses with the largest sizes Ê∗
s in the solution provided by DS. Then,

the optimal size of each ESS is computed by solving problem (25) with S = SFBS for all the days in the data

set, and finally applying (26). For nS = 2, buses 6 and 15 are selected by FBS to host the ESSs (see Fig. 8). The

total deployment cost of this solution is CT = 111 ke, with an average cost J̄∗ = 157 kWh. As can be observed,

both FBS and the CSA algorithm achieve comparable results in terms of J̄∗ and CT for nS = 2. This occurs

also for different values of the weighting parameter γ in (13). However, FBS results in 11% of infeasible days for

all nS ≤ 6. The reason for this lies in the fact that, as opposed to the CSA algorithm, FBS neglects the network

topology, leaving the right-hand side of the network (see Fig. 1) without ESS for nS ≤ 6. Under the considered

demand and generation data set, the feeder composed of the buses {8, 9, 10} is likely to suffer from undervoltages.

These cannot be solved with the solution provided by FBS until one chooses nS > 6, thus introducing bus 10 in

the set SFBS .

E. IEEE 34-Bus Case Study

The proposed ESS allocation procedure is validated on the IEEE 34-bus test feeder, by simulating demand and

generation profiles of four days representative of the classes NV, UV, OV and UOV defined in Sec. V-B. As for the

IT-LV network, the performance of the CSA algorithm is compared with the optimal solution for different numbers

of ESSs to be deployed. The results for the four classes are summarized in Table II and confirm the effectiveness of

the algorithm, with a maximum performance degradation smaller than 4%. With regard to computational aspects,

for nS = 3 the proposed procedure solves the siting and sizing problem for one day in approximately 18 minutes,

almost totally required to solve problem (25). As expected, the computation time taken by the CSA algorithm is

of the order of seconds irrespective of the number of buses, thus confirming that the siting procedure scales well

with the network size. By contrast, the exhaustive search needed to compute the optimal ESS placement would

require to solve 5456 problems of the form (25), implying an unacceptable computation time. For this reason, the

exhaustive search needed to compute J∗
OPT is restricted to the set of the critical buses, which are the favourite ones

for the ESS allocation.

By performing the same analysis illustrated for the IT-LV network, the total cost CT is computed for different

values of nC and using the four-day data set. In this case, the optimal number of ESSs to deploy into the IEEE 34-

TABLE II

PERFORMANCE EVALUATION OF THE CSA ALGORITHM FOR THE IEEE 34-BUS TEST FEEDER (J∗

CSA
/J∗

OPT
).

nS NV UV OV UOV

1 1.008 1.012 1.039 1.014

2 1.012 1.000 1.038 1.009

3 1.004 1.011 1.031 1.005
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network.

bus system turns out to be nS = 1, corresponding to a total cost CT = 52.8 ke. According to the CSA algorithm,

the location where to deploy the storage unit is bus 33, with an ESS size CS = 20.9 kWh and an average cost

J̄∗ = 74.1 kWh. For nS = 1 FBS selects bus 19 as ESS location, achieving comparable performance (CT = 52.1 ke,

CS = 21.3 kWh and J̄∗ = 72.9 kWh). However, the computation time of FBS, requiring the solution of (25) under

the assumption that a storage unit is available at each bus, is remarkably larger.

F. Test on Random Networks

To further assess the effectiveness of our ESS allocation procedure, we run the CSA algorithm on 200 randomly

generated radial networks and compare the results with the optimal ones obtained via exhaustive search. All networks

are characterized by the same node set N as the IT-LV network (bus 1 being always the slack bus), but differ in the

edge set E and the admittance matrix Y . The generation mechanism of the tree structure is recursive, starting from

the slack bus as the root. Given a root node r and a set L of descendant nodes, m children ci of r are randomly

drawn from L, where m ranges from 1 to 4 with equal probability. Then, the set of the remaining descendant

nodes is randomly partitioned into m subsets Li. The same procedure is recursively repeated for each set Li with

root ci, until the leaf nodes are reached. The depth of the 200 generated trees ranges from 3 to 7. Given the edge

set E , the admittance matrix Y is defined by generating randomly the distances between the nodes connected by

an edge, and then multiplying the distances by a fixed admittance per unit length. On the other hand, demand

and generation profiles are assumed to be a property of the buses (i.e. they are the same for all networks). The

time step is 15 minutes, and the time horizon is one day, during which all the simulated networks feature over- or

undervoltages at some buses.

For each network, the CSA algorithm is run with increasing values of nC until it results in nS = 2 deployed

ESSs. Then, problem (25) is solved by assuming the corresponding ESS placement. Let J∗
CSA be the optimal cost
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CSA
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OPT
over 200 random networks equipped with (a) nS = 2 and (b) nS = 3 ESSs.

returned by (25) for that placement. Such a quantity is compared with the optimal cost J∗
OPT , computed over

all possible placements of two ESSs in the network. The empirical distribution of the ratio J∗
CSA/J

∗
OPT over the

200 networks is shown in Fig. 9(a). It can be noticed that the solution provided by the CSA algorithm is optimal

in 45% of the cases, while only 9% of the cases reveal a degradation of the solution worse than 5%. Performance

is even better when three ESSs are deployed, see Fig. 9(b): the solution provided by the CSA algorithm is optimal

in 57% of the cases, while a degradation of the solution worse than 5% occurs only in 5% of the cases, with a

maximum degradation of 8%.

The results, obtained by applying the ESS allocation procedure to random topologies, confirm the soundness of

the intuition underlying the CSA algorithm.

VI. CONCLUSION

In this paper, a new method for designing the number, locations and sizes of energy storage systems, with

the purpose of preventing over- and undervoltages in a LV network, has been proposed. In order to reduce the

computational burden required by the solution of the resulting optimization problem, a heuristic procedure is

devised. A voltage sensitivity analysis is proposed to circumvent the combinatorial nature of the siting problem.

A multi-period OPF convex relaxation is adopted to determine the size of each storage unit. The procedure has

been demonstrated on an Italian LV network, an IEEE test feeder and 200 randomly generated radial networks. The

simulations show interesting results in terms of computation time and optimality of the solution found. Ongoing

work is devoted to investigating suitable ESS control algorithms to be applied in real-time network operation.
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