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Abstract—The increasing demand for virtual reality applica-
tions in several scientific disciplines feeds new research perspectives
dealing with robotics, automation, and computer science. In this
context, one of the topics is the design of advanced force-feedback
devices allowing not only kinesthetic interaction with virtual ob-
jects but also locomotion and navigation inside virtual worlds. This
has the main advantage to stimulate human vestibular apparatus,
thus increasing the overall realism of simulation. Particularly, this
paper deals with mobile haptic interfaces (MHIs), built by com-
bining standard force-feedback devices with mobile platforms. We
investigated which factors may affect the transparency of this kind
of devices, identifying in mobile robot dynamics a possible cause
of loss of transparency. Hence, in this paper, we present a method
to analyze dynamic performance of an MHI and some basic guide-
lines to design controller in order to meet desired specifications.
Experimental validation of the theoretical results is reported.

Index Terms—Design, haptics, mobile robots, performance
analysis.

I. INTRODUCTION

IN THE LAST decade, Virtual Reality (VR) applications
have seen a great deal of development. In this context, a fun-

damental innovation was the introduction of haptic interfaces,
since this allowed kinesthetic interaction between users and
virtual environments (VEs), thus highly increasing the overall
realism of VR applications. Since the first force-feedback pro-
totype was introduced, haptic interfaces have been considerably
improved. And yet, the performance of haptic interfaces is still
limited (see [1] for an extensive description of performance
metrics for haptic interfaces).

One of the most apparent limitations of most haptic interfaces
to date is their limited workspace, which normally ranges be-
tween a few cubic centimeters typical of most desktop devices
[2], [3] to a few cubic meters typical of most exoskeleton-type
devices [4]. Typically, users are constrained to stand still within
the workspace of the haptic device (HD) and interact in a limited
volume depending on the device kinematics and dimensions.

The problem of extending the workspace of haptic interfaces
has been addressed in the past. Four main approaches have been
proposed: building larger devices, using locomotive interfaces,
extending workspace by allowing users to navigate through VEs
via software, and designing mobile haptic interfaces (MHIs).
Examples of the first approach are, for instance, the scaleable
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Fig. 1. MHI based on the holonomic Nomad mobile robot and a desktop
PHANToM.

spidar, a complex structure made up of a steel frame and a
cabled end-effector that allows the user to haptically interact
within a considerably large workspace (featuring a volume of
about 27 m3) [5]. Examples of the second approach are, for
instance, the hyper-redundant haptic interface proposed in [6],
which features ten degrees of freedom (DoFs), allowing the user
with some form of locomotion, consisting of rotations about the
center of the workspace. Examples of the third approach are,
for instance, the workspace drift control, i.e., a control strategy
that transparently shifts the physical workspace of the device
mapped inside the virtual world thus providing the illusion of
haptic interaction with an unlimited workspace [7]. Examples
of the fourth approach are, for instance, the cobots, i.e., devices
that allow users to track a precomputed path by displaying vir-
tual constraints (walls) in the real environment [8], and MHIs,
i.e., interfaces obtained combining desktop HDs with mobile
platforms (MPs) [9], [10].

In this paper, we will focus our attention on MHI (see
Fig. 1), as they are the only class of interfaces allowing for
true unlimited planar workspace. The main difference between
MHI and grounded HDs is that the spatial workspace strongly
depends on dynamic performance of the overall system and
its unboundedness is guaranteed provided that some dynamic
performance limitations are satisfied. This paper extends
preliminary results presented in [10] and [11]. The goal of
this paper is to analyze dynamic performance of MHIs and
to provide the Haptics and Robotics communities with some
useful guidelines on how to design MHI and their control
algorithms in order to obtain a given performance specification
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and unbounded MHI workspace. The main problem facing an
MHI designer is that typically the MP of MHIs features slower
dynamics than the system composed of the HD and its user, and
thus, it is likely that the MP will not be able to track any type
of motion generated by the user. As a result, there will be user
motions during which the HD end-effector reaches its physical
workspace boundary. This situation corresponds to unwanted
reaction forces on the operator’s hand, which affect the overall
level of realism. As such, MHIs can be seen as interfaces
featuring unlimited spatial workspace but much more limited
dynamic performance than standard desktop devices, and thus,
present their designers with technical challenges usually not
faced when employing more standard HDs.

The main contribution of this paper is the analysis of dynamic
performance of an MHI and the computation of the relation-
ships between system parameters and performance. Theoretical
results are presented and validated experimentally on an MHI
composed by a PHANToM premium haptic interface with a
Nomad XR4000 mobile robot.

The MP model considered is simple to understand and easy
to tune, but does not take into account all possible nonlinear-
ities that are present in reality. Experimental results support
this choice; however, we also report brief analysis addressed to
evaluate how and to which extent nonlinearities we neglect are
relevant with respect to the linear approach.

The paper is structured as follows. Section II introduces the
dynamic model of an MHI. Section III shows the formalization
of the problem of transparency for an MHI. Such a problem is
studied in Section IV in terms of force-rendering performance,
whereas in Section V, we present some basic metrics that al-
low users to characterize the motion performance of an MHI.
Section VI illustrates the application of performance analysis
in order to design an MHI controller. Section VII presents the
extension of performance analysis to a more realistic scenario
in which actuator saturation has been taken into account. In
Section VIII, experiments that have been carried out to validate
theoretical analysis are described. In Section IX, we provide a
further generalization of some results in the frequency domain.
Finally, in Section X, some conclusions are drawn.

II. MODELING MOBILE HAPTIC INTERFACES

MHIs are designed to allow the interaction between user and
objects displaced in large VEs [9]. For this purpose, MHIs are
made up of two main components: an MP and an impedance-
type HD, grounded to the MP (see Fig. 1). The latter provides
kinesthetic interaction, while the former tracks the locomotion
of the user in the virtual world. With this strategy, the MP moves
the HD workspace, mapped inside the VE, toward the area of
interest of the user, according to her/his real motion.

Despite the heterogeneity of the HDs and mobile robots that
can be employed, all MHIs share some common features.

1) A single-contact-point MHI typically is characterized by
kinematic redundancy, i.e., dimensions of the operational
space are less than MHI DoFs. For example, an MHI
realized combining the PHANToM HD (three DoFs) and
the Nomad XR4000 MP (three DoFs) globally features six
DoFs , while operational space has only three dimensions.

Fig. 2. Scheme of a system for haptic interaction between user and VE, using
a desktop force-feedback device.

2) MPs are generally position (or velocity) controlled, while
impedance HDs are force controlled. This leads to a hybrid
position/force (or velocity/force) control scheme for an
MHI.

3) While HDs are designed to feature high backdriveabil-
ity and transparency, MPs are usually characterized by
high mass and inertia. Therefore, an MHI simultaneously
presents slow position- (or velocity-) controlled dynamics,
and fast force-controlled dynamics.

The model adopted in this paper originates from the afore-
mentioned observations, and derives from the one proposed by
Nitzsche et al. in [9]. The basic idea is to make the MP track the
motion of the operator, thus always driving the HD end-effector
toward the center of its workspace. The advantage of this policy
is twofold. First, it allows the HD to render forces in a con-
figuration of maximum structural stiffness. Second, as long as
the HD end-effector lies close to the center of its workspace
during the simulation, it gives the larger margin for the tracking
error due to sudden movements performed by user’s hand. On
the other hand, forces are rendered using standard constrained-
based methods such as the proxy algorithm [12].

This section describes the model of an MHI able to move and
render forces along one direction. Refer to this direction as the
x-axis.

First of all, let us consider the classic scheme that was intro-
duced by Colgate in [13] (see Fig. 2). It models haptic interaction
between human operator and a VE through a grounded HD: f is
the total force applied to the end-effector; x represents the posi-
tion of the end-effector; D(s) models the end-effector reflected
inertia felt by the operator; finally, ZE (s) is the transfer func-
tion of the VE impedance. Note that although this simplified
model is usually adopted to represent interaction with virtual
walls, it can be generalized to more complex cases by adding a
collision-detection block.

The dynamic model of an MHI is derived from the model
proposed for grounded HDs. Refer to Fig. 3 and let ΣW be the
base reference frame attached to the world and let ΣM be the
reference frame attached to the MP base. Note that reference
frame ΣM is centered at a position where both the distance
from the HD workspace and some manipulability indexes are
optimized [14], [15]. In Fig. 3, xH represents the position of the
HD end-effector with respect to ΣW , xM is the position of frame
ΣM with respect to ΣW , and e = xH − xM is the position of
the HD end-effector with respect to ΣM . The functional scheme
of the MHI is reported in Fig. 4. The MP dynamics is modeled
through the transfer function H(s) having as input the reference
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Fig. 3. Reference frames and position vectors of the MHI.

Fig. 4. Scheme of a system for haptic interaction between user and VE, using
an MHI.

position xr commanded to the MP and as output its position
xM in the world frame. The transfer function of the MP control
system is C(s) whose input e is also referred to as tracking error.
Note that being e the position of the HD end-effector in frame
ΣM , it is directly available through HD sensor readings.

The MP controller C(s) is chosen in order to track the end-
effector position with respect to the world frame, i.e., to bring the
tracking error e to zero. In this paper, a proportional-derivative
(PD) controller is considered

C(s) = Kp + Kds. (1)

The impedance model of a virtual object is chosen as a spring-
damper system, yielding

ZE (s) = kE + sbE

where kE and bE are virtual object stiffness and damping, re-
spectively. A simple linear model is adopted for the MP. Trading
off accuracy for simplicity, we decided to represent the MP as
a damped mass subject to elastic forces; hence, the MP transfer
function H(s) takes on the form:

H(s) =
kM

s(mM s + bM )
(2)

where the mass mM , the spring constant kM , and the damping
factor bM are the parameters characterizing the MP. The advan-
tages of choosing such a simple model are that it is character-
ized by a small set of parameters that can be easily identified,
its physical interpretation is straightforward, and, above all, it
allows to compute analytic relationships between its parame-
ters and the achievable motion performance of the MHI. On the

other hand, such a model cannot account for nonlinear dynamics
that are present in reality, e.g., actuator saturation and bounded
accelerations.

III. MHI TRANSPARENCY ANALYSIS

Impedance-type HDs, such as the PHANToM and the Omega,
should render impedances ranging from Zmin , corresponding to
movements in free space, to a maximum value Zmax that de-
pends on a multitude of factors [13]. The interval [Zmin , Zmax]
is referred to as Z-width. HDs are designed in order to have
low reflected inertia and friction, i.e., Zmin ≈ 0, thus preserv-
ing good haptic transparency while moving in free space.

In this section, we study features such as inertia, maximum
forces, and Z-width for MHIs. The first remark is that mo-
bile robots typically feature slower dynamics than the HD end-
effector handled by the operator. Because of this, it is unlikely
for the MP to be able to track any type of reference trajectory
generated by the user. As a result of fast user motions, it is pos-
sible for the HD end-effector to reach its workspace boundary.
This situation corresponds to a kinematic singularity of the HD
manipulator that inhibits motion along some direction. This, in
turn, corresponds to unwanted reaction forces on the operator’s
hand. This occurrence represents a remarkable loss of realism,
since the user would experience forces not associated to virtual
contact but due to hardware limitation.

The dynamic equilibrium between the operator and the MHI
is represented by the following equation:

fHO(s) = ZE (s)xH (s) + fD (s) + fWS(s) (3)

where fHO is exerted by the human operator; ZE xH is the
reaction force, computed using standard haptic rendering tech-
niques [12] and resulting in a force proportional to the penetra-
tion of the HD end-effector inside a virtual object (see [13]);
fD is the force due to MHI dynamics (inertia and friction), and
finally, fWS represents possible spurious forces due to the HD
end-effector workspace boundary.

The impedance Z∗(s) really felt by the user is defined as

Z∗(s) =
fHO(s)
xH (s)

.

The transparency requirement means that Z∗(s) ≈ ZE (s), thus
it stems from (3) that transparency is achieved if:

a) fD ≈ 0 (Low reflected inertia)

b) fWS = 0. (Within workspace boundaries) (4)

The rest of the work focuses on identifying the conditions for
which these two requirements are satisfied.

Requirement (4a) is typically satisfied for grounded HDs,
whose mechanical design generally guarantees high backdrive-
ability of the end-effector. Nevertheless, it must be studied
whether inertia, maximum forces, and Z-width of an MHI are
simply inherited from the employed HD or dynamics of MP
significantly influences them.

As regard to specification (4b), the effects produced by a
spurious force fWS �= 0 cannot be neglected, but it is possible to
derive sufficient conditions ensuring fWS = 0. To that end, the
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Fig. 5. Dynamical model consisting of a 2-DoF MHI featuring one-
dimensional operational space.

HD end-effector should never reach its workspace boundary,
i.e., |e(t)| must be bounded. Such a bound reflects on input
signal xH ; hence, the target of the second part of our study
consists of determining what conditions should satisfy the input
xH in order for fWS = 0 to hold.

IV. FORCE RENDERING PERFORMANCE

In order to verify whether condition (4a) is satisfied for an
MHI, inertial properties, Z-width, and maximum forces for an
MHI have been examined. In the following analysis, we will
consider the scenario in which the end-effector moves inside
its workspace, i.e., throughout this section, we will assume that
condition (4b) holds. The latter assumption will be removed in
Section V, where sufficient conditions for (4b) to be true will
be presented.

A. Inertial Properties

As pointed out in the previous section, the global reflected
inertia perceived by the user at the end-effector should be ideally
zero, but actually friction and inertia of mechanical systems af-
fects end-effector dynamics. Before analyzing inertial properties
for an MHI, we briefly recall that it is a kinematically redun-
dant system, hence, as shown in [16], it can be decomposed into
two subsystems referred to as mini and macro structures: the
mini structure is defined as the smallest distal set of DoFs that
can completely span the operational space; the macro structure
connects the mini one to the ground. In [16], the author proved
that the inertial properties of the overall redundant system are
bounded above by the inertial properties of the mini structure
alone.

Such a result applies also to an MHI. Let us consider a 2-DoF
MHI featuring one-dimensional operational space (see Fig. 5),
where xH represents the end-effector position with respect to
the global reference frame ΣW , while xm and e represent the
joint space coordinates; mM and mH are MP and HD masses,
respectively; bM and bH are the two subsystems damping co-
efficients; τM and τH are the forces exerted by MP and HD,

respectively; fHO is the force exerted by the human operator.
The mini/macro decomposition can be performed as shown in
Fig. 5. The mini structure is represented by the HD, which fea-
tures one DoF, and thus, can completely span the operational
space, while the macro system is the MP. According to results
introduced in [16], the effective mass (inertia) characterizing
the MHI is smaller than or equal to the one associated with the
HD considered alone. In other terms, the global reflected inertia
perceived by the user while using an MHI is, at worst, the same
as the HD was grounded.

B. Z-Width

One of most important measures of performance for force-
feedback devices is the Z-width, i.e., the dynamic range of
achievable impedances, which satisfy stability properties such
as passivity [13]. In order to study the Z-width for an MHI, we
briefly report some considerations about transparency, which
have been addressed in [9]. The dynamics of the system shown
in Fig. 5 can be represented by the following equations, written
in the Laplace domain:{

mM s2xM = τM − bM sxM + bH s(xH − xM ) − τH

mH s2xH = τH − bH s(xH − xM ) − fHO .
(5)

Relationship (5) shows that the dynamical influence of the MP
on the force rendered to the user is only due to the viscous cou-
pling bH between the two subsystems. However, the coefficient
bH represents the joint damping of the HD. It is worth noticing
that common impedance devices are designed in order to fea-
ture high mechanical backdriveability, which, in turn, reflects
on making bH as small as possible. Henceforth, we will assume
that bH ≈ 0 (the interested reader is referred to [9] for further
details).

Given the impedance ZE of the VE, the force to be rendered
by the HD is computed as

τH = ZE xH .

Combining the previous equation with (5), the impedance Z∗

felt by the user can be approximated as:

Z∗(s) =
fHO(s)
xH (s)

≈ τH − s2mH xH

xH

= ZE (s) − s2mH (6)

which shows that as long as the HD joint damping bH is ne-
glectable, dynamics of MP does not affect the impedance Z∗

felt by the user [9].
In order to evaluate the maximum operator’s force that the

MHI can counteract during a virtual contact, let us suppose that
the end-effector is held at dynamical equilibrium by operator’s
forces and virtual reaction forces, i.e., ẍH = 0. This leads to
cancel also the term s2m2xH from relationship (5); hence, the
maximum force fmax can be easily computed as:

fmax = max{‖fHO‖} = max{‖τH ‖}. (7)
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Equation (7) shows that the maximum force that can be exerted
by the MHI is equal to the maximum force that the HD alone is
capable to render, independently from the dynamics of the MP.

Summarizing, if the damping term bH of the HD mounted
on the MP is neglectable, the Z-width of an MHI is directly
inherited from the HD itself and does not depend on the MP
dynamics.

V. MOTION PERFORMANCE

Results reported so far show that it is generally reasonable to
consider specification (4a) to be true. The same cannot, however,
be said for (4b), which is verified only if the HD end-effector
does not reach its workspace boundary. Hence, denoting the size
of the HD workspace with 2∆WS, spurious forces are avoided if
the tracking error e is kept below ∆WS:

fWS(t) = 0 ⇐⇒ |e(t)| < ∆WS ∀t. (8)

The previous condition naturally reflects on the input signal xH

since it is related to the error signal through the relationship (see
Fig. 4)

e(s) =
1

1 + C(s)H(s)
xH (s) = G(s)xH (s) (9)

where G(s) is the error transfer function. Henceforth, we will
consider an input signal xH as correctly tracked by the MHI
when the corresponding tracking error e(t) satisfies relationship
(8). It is worth remarking that in the following analysis, the
emphasis is naturally put on the maximum tracking error emax .
In particular, the only requirement on the steady-state value
e(∞) is to be smaller than the workspace dimension ∆WS.

In order to come up with analytic conditions on the input
xH (t), we restrict our study to three main classes of signals,
whose combination resembles standard operator movements:
step displacements, ramp displacements, and sinusoidal dis-
placements. Clearly, this approach does not cover all possi-
ble scenarios, since xH (t) is generated by the operator’s hand.
However, it provides useful and easy-to-test guidelines on how
to design MHI controller given knowledge of the specific appli-
cation in which the MHI will be used (and thus of input signals
xH (t) to be expected).

A. Step Displacement

In this section, we draw preliminary observations about the
maximum amplitude Au of an ideal step displacement defined
as

xH (t) = Aut, t ≥ 0

for which the end-effector never reaches its workspace boundary
during tracking. It is well known that in second-order stable sys-
tems, the step response envelope is monotonically decreasing,
so the maximum error occurs at t = 0+ . Hence, the maximum
amplitude of an ideal step position signal applied to an MHI
must be such that:

Au < ∆WS.(Ideal step limitation) (10)

B. Ramp Displacement

In this section, ramp input signals are analyzed. The target is
to evaluate what is the maximum slope of a ramp signal that can
be correctly tracked by the MHI. Let us consider an ideal ramp
xH = VRt. Since H(s) has one pole at zero, the MHI tracks the
input with a finite steady-state error

e(∞) = lim
s→0

se(s) =
VR

Kv
(11)

where the velocity gain Kv is given by

Kv = lim
s→0

sC(s)H(s) =
kM Kp

bM
.

The maximum error emax can be reached during the transient,
and, in this case, it can be computed from the overshoot eo of
the system

eo
�
=

emax − e(∞)
e(∞)

. (12)

Note that eo does not depend on the slope of the ramp, but only
on H(s) and C(s). Clearly, if the tracking error has no overshoot
peak, emax = e(∞), and the previous equation becomes eo = 0.
By combining (11) and (12), it follows

emax = (1 + eo)
VR

Kv

which holds also in case of eo = 0. The maximum error emax
is proportional to the ramp slope VR and can be computed by
experimentally determining the system overshoot eo for a given
MP. Finally, in order for emax < ∆WS to be true, the input signal
must be such that

VR <
∆WS Kv

(1 + eo)
. (Slope limitation) (13)

Note that such limitation holds no matter what is the response
to the system to a ramp input (overshoot or not).

C. Human-Made Step Displacement

When the HD end-effector is driven by a human operator, it
features finite velocities and accelerations (see Fig. 6). A pos-
sible way to analyze this kind of movements is to approximate
human-made steps by a continuous, piece-wise linear signal (see
the right side of Fig. 6). An ideal step of amplitude Au can thus
be replaced by

xH (t) =
{

Vr t, 0 ≤ t ≤ T

VrT, t > T

where the ramp slope Vr and the duration T are such that
VrT = Au . Notice that this approximation is still an abstraction
of real step movements, since it assumes infinite acceleration
capability.

Previous results obtained in case of ramp displacements can
be exploited in order to analyze this kind of reference signal.
Given the workspace limit ∆WS, a human-made step movement
will or will not drive the end-effector to the workspace bound-
ary, depending on the slope Vr and on its duration T , yielding
the human-made step amplitude VrT . As pointed out earlier, the
maximum tracking error grows proportionally with the system
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Fig. 6. Example of user-made step movement (solid line) and its piecewise-
linear approximation (dashed).

overshoot eo . Thus, a reasonable choice is to design the con-
troller such that eo = 0. In the next section, it will be shown that
this behavior can be achieved by a suitable choice of the con-
troller parameters, which leads to real poles for closed-loop error
transfer function. In this case, the maximum tracking error cor-
responds to the steady-state value Vr/Kv . Obviously, if the end-
effector velocity Vr is such that Vr/Kv < ∆WS, then the MP is
able to track steps of any amplitude Au without loosing trans-
parency. Now, let us focus on the more interesting case Vr >
Kv∆WS. The tracking error may exceed ∆WS depending on the
duration T . Intuitively, the system can tolerate rapid movements
provided that they do not last too long. In other words, large dis-
placements must be executed at reduced velocity. To quantify
the earlier observations, let us study the maximum step ampli-
tude Au giving rise to a tracking error smaller than ∆WS, as a
function of Vr . In case of real poles p1 < p2 < 0, in response to
the reference xH (t), the time evolution of the tracking error is

e(t) = A + Bep1 t + Cep2 t , 0 ≤ t ≤ T

while |e(t)| < |e(T )| for t > T . If one neglects the fastest
dynamics, the error can be approximated as

e(t)  A + Cep2 t , 0 ≤ t ≤ T

where

A =
Vr

Kv

C =
(1/τ + p2)Vr

p2(p2 − p1)

and τ = mM /bM . At this point, for a fixed Vr , it is possible
to find the maximum time T such that the error remains below
∆WS:

max
T : e(T )<∆WS

T  1
p2

log
(

∆WS − A

C

)
.

Equivalently, this allows to compute the maximum displace-
ment Au , executed at velocity Vr , which does not lead to reach

Fig. 7. Maximum admissible step amplitude: actual (solid line) and approxi-
mated (dashed line) amplitude.

the WS boundary:

Au  Vr

p2
log

(
∆WS − Vr/Kv

[(1/τ + p2)/p2(p2 − p1)]Vr

)
. (14)

In Fig. 7, the approximated maximum amplitude Au (dashed
line) is depicted for different slopes Vr , and it is compared to the
actual value (solid line) obtained from simulations. It turns out
that approximation (14) is quite accurate, at least as long as Vr

does not grow excessively (in that case, the maximum T is very
small and the fastest mode cannot be neglected). Moreover, the
results are in good agreement with the intuition. When Vr slows
down to Kv∆WS (which represents the maximum velocity of
correctly trackable ramp signals), the maximum displacement
Au can be arbitrarily large. Conversely, when Vr increases, the
amplitude of the tolerable displacements decreases, and, in the
limit, it shrinks to ∆WS (which represents the limitation for
the ideal step).

D. Sinusoidal Displacement

In this section, we study the maximum amplitude/frequency
of a sinusoidal input signal xH = As sin(ωt) that can be cor-
rectly tracked by the MHI. Given the linearity of the overall
MHI system, at steady state, we have

e(t) = As‖G(jω)‖ sin(ωt + � (G(jω))).

In order for |e(t)| < ∆WS, the sinusoid amplitude As and fre-
quency ω must satisfy:

As‖G(jω)‖ < ∆WS.

Since H(s) typically has a low-pass filter behavior, G(s), in
turn, is a high-pass system; hence, higher frequency sinusoids
must have lower amplitude, and vice-versa. It is possible to
define a region I of the (ω,As) plane

I = {(ω,As) : As‖G(jω)‖ < ∆WS}
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whose boundary

γ : As‖G(jω)‖ = ∆WS

can be numerically computed. Then, region I represents all the
sinusoidal inputs that can be correctly rendered by an MHI:

(ω,As) ∈ I.(Sinusoidal limitation) (15)

Note that the previous analysis only applies to the steady-state
behavior of the system.

VI. DESIGN OF MHI MOTION CONTROLLER

In this section, we use the indicators previously introduced to
analytically compute the controller parameters Kp and Kd , in
order to guarantee the stability and the boundedness of tracking
error within workspace limits. The analysis is divided into three
steps, corresponding to the three classes of signals previously
introduced.

A. Ideal Step Response Specifications

Since the system stability is preserved for any positive value
of the controller parameters Kp, Kd , the maximum tracking
error is still attained at t = 0+ and does not depend on the
choice of Kp, Kd .

B. Ramp Response Specifications

In order to track a ramp with slope VR given a prescribed
∆WS, the controller parameters can be determined as follows.
First, note that emax ≥ e(∞). Thus, a slope VR can be correctly
tracked only if

VR

Kv
≤ ∆WS.

Recalling the expression of the velocity gain Kv , the latter
inequality yields a lower bound on the proportional gain

Kp ≥ bM

∆WSkM
VR. (16)

Once a suitable value has been set for Kp according to (16), a
proper choice of the derivative gain Kd can prevent the error
signal e(t) from exhibiting overshoot, thus ensuring emax =
e(∞). After some computation (presented in Appendix A), it
turns out that the error transfer function G(s) has complex poles
if and only if

∆ = α0 + α1K
2
d + α2Kd − 4α3Kp < 0 (17)

where αi are positive coefficients that only depend on the pa-
rameters of the mobile robot. The equation ∆ = 0 represents a
parabola in the plane (Kd,Kp), as shown in Fig. 8. Hence, a
necessary condition in order to avoid overshoot is that ∆ ≥ 0.
However, even in case of real poles, the error signal can still
exhibit overshoot for some choice of the controller gains. These
values can be analytically determined (see Appendix A) as those

Fig. 8. Controller design for ramp response: parabola ∆ = 0 (solid line), line
Kd = τKp (dashed line). The shaded region represents the values (Kp , Kd )
ensuring no overshoot.

satisfying the following relations

∆ > 0 (Real poles) (18)

Kp > Kc
p (Possible overshoot) (19)

Kp >
Kd

τ
(Overshoot) (20)

where Kc
p = b2

M /kM mM , and τ = mM /bM denotes the time
constant of the MP. Hence, there exist real poles giving rise
to overshoot if Kp > Kc

p and (Kp,Kd) are between the line
Kp = Kd/τ and the parabola ∆ = 0 (see Fig. 8). Thus, from
(17)–(20), it follows that the error signal does not have overshoot
if and only if the pair (Kp,Kd) is such that ∆ > 0, and either

Kp ≤ Kc
p

or

Kp ≤ Kd

τ
.

The values (Kp,Kd), which ensure that no overshoot shows up
are depicted in Fig. 8 (shaded region), for a Nomad-like MP
model. Note that the boundaries of such a region can be easily
computed and only depend on the parameters (mM , bM , kM )
of the MP. At this point, the design of a controller guarantee-
ing emax < ∆WS for a given ramp VR can be summarized as
follows:

1) choose a value K∗
p such that (16) is satisfied;

2) if K∗
p ≤ Kc

p , choose a value K∗
d such that ∆ > 0; and

3) if K∗
p > Kc

p , choose a value K∗
d such that K∗

d ≥ τK∗
p .

The aforementioned procedure has a simple graphical inter-
pretation. For the chosen K∗

p according to (16):
1) if K∗

p ≤ Kc
p , select a value for K∗

d such that the pair
(K∗

p ,K
∗
d) lies below the parabola ∆ = 0 (solid line in

Fig. 8) and
2) if K∗

p > Kc
p , select a value for K∗

d such that the pair
(K∗

p ,K
∗
d) lies below the line Kd = τKp (dashed line in

Fig. 8).
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Clearly, the controller designed for a given V̄R ensures
emax < ∆WS for all slopes VR ≤ V̄R .

C. Sinusoidal Specifications

In order to design an MHI that is capable of tracking a sinu-
soidal reference (ω,As) without exceeding the workspace, the
controller parameters must be chosen such that

‖G(jω)‖ ≤ ∆WS

As
.

For this purpose, let us study the dependency of ‖G(jω)‖ on
(Kp,Kd). It can be shown that

‖G(jω)‖ =
√

β0√
β0 + β1K2

p + β2K2
d − β3Kp + β4Kd

(21)

where βi are positive functions of ω and of the robot parameters.
Denoting by E(Kp,Kd) the argument of the square root at
the denominator, the required parameters (Kp,Kd) are those
satisfying

E(Kp,Kd) ≥ β0
A2

s

∆2
WS

∆= C. (22)

Note that the curve E(Kp,Kd) = C represents an ellipse in
the (Kp,Kd) plane, whose center and radii can be analytically
computed from the coefficients βi and the desired value C (the
reader is referred to Appendix B for the mathematical details).
From a geometrical viewpoint, inequality (22) states that all
the parameter values ensuring emax < ∆WS are those lying out-
side the ellipse E(Kp,Kd) = C. By tracing all the ellipses Ei

corresponding to a set of sinusoids (wi,Asi
) at different fre-

quencies and amplitudes, it is possible to define the region F in
the (Kp,Kd) plane defined as

F =
⋃
i

Ei .

In order for the MHI to correctly track the chosen set of sinu-
soids, the controller parameters (Kp,Kd) must lie outside F .

Note that although design of PD controllers have been sepa-
rately studied for ramps and sinusoids, it is possible to choose
the pair (Kp,Kd) that matches both project criteria, thus si-
multaneously guaranteeing performance specifications with re-
spect to ramps and sinusoids. Actually, one should also consider
that desired performance specifications could lead to values of
parameter resulting in unfeasible control laws, due to system
mechanical limitations.

VII. BOUNDED ACCELERATION

In this section, we consider a more realistic scenario, which
takes into account some physical limitations of the MP. Specifi-
cally, it is assumed that the MP can accelerate up to a maximum
value aMAX (e.g., due to actuator saturation). The following
analysis aims at assessing the MHI performance in the pres-
ence of bounded acceleration. To this purpose, the controller is
supposed to be purely proportional (i.e., Kd = 0 in (1)), and
the considered reference signal is a ramp xH (t) = Vr t. Fig. 9

Fig. 9. Effects of bounded acceleration for a Nomad-like MP, with Vr =
1000 mm/s and aMAX = 1500 mm/s2 . Comparison of tracking error (top) and
acceleration signal (bottom) for saturated model (solid line) and linear model
(dashed line).

shows the typical effect of bounded acceleration on the tracking
error. When the operator’s movements are too fast (i.e., large
Vr ) and/or the controller gain Kp is too large, the driving signal
may subject the MP to unfeasible accelerations. As a result,
the actual maximum tracking error becomes much larger than
that predicted by the nominal linear model. In the remaining
of the section, we will try to evaluate the performance degra-
dation in case of acceleration constraints: given aMAX and Vr ,
we will compare the tracking errors with or without saturation,
as a function of the controller gain. Hereafter, the main results
are presented, while the mathematical details can be found in
Appendix C.

Let us denote by W (s) the closed-loop transfer function from
the reference signal xH to the MP position xM :

W (s) =
C(s)H(s)

1 + C(s)H(s)
=

ω2
n

s2 + 2ζωns + ω2
n

(23)

where ωn =
√

kM Kp/mM is the natural frequency and ζ =
bM /2

√
mM kM Kp is the damping ratio of the poles. Depending

on the choice of the proportional gain Kp , the poles can be
complex, real-coincident, or real-distinct. However, as already
pointed out in Section VI, upper bounds on the steady-state
tracking error reflect on lower bounds on Kp . For this reason,
in the following, we assume

Kp >
b2
M

4mM kM
(24)

so that W (s) has complex poles. Note that constraint (16) im-
plies Kp > b2

M /4mM kM whenever Vr/∆WS > b/4mM .
According to the linear model, straightforward computations

show that when neglecting saturation, the maximum tracking
error is

emax =
(
2ζ + e−(π−φ)/tan (φ)

) Vr

ωn
(25)
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where φ = arccos(ζ) ∈ (0, π/2). Notice that emax could be
made arbitrarily small by choosing a sufficiently large Kp . In
the limit, when Kp → ∞, emax → 0. This observation suggests
that assumption (24) is not so stringent.

Clearly, small emax necessarily requires high accelerations.
Suppose now that the maximum feasible acceleration is aMAX.
First, one may wonder whether acceleration ever saturates.
Given the ramp slope Vr and the acceleration constraint aMAX,
this depends on the value of Kp . It turns out that the quantity
ωnVr/aMAX plays a crucial role in determining the saturation
activation.

1) Conditions on saturation activation
a) If ωnVr/aMAX < 1, then saturation never occurs.
b) Conversely, if ωnVr/aMAX > e, then surely there

exists a time ti when saturation begins.
c) Finally, if 1 < ωnVr/aMAX < e, saturation may oc-

cur or may not, depending on the value of the damp-
ing ratio ζ. Specifically, let φ∗ ∈ (0, π/2) be the
(unique) solution of

φ = log
(

ωnVr

aMAX

)
tan (φ).

Then, saturation occurs if and only if φ > φ∗, or
equivalently, if and only if ζ < ζ∗, where ζ∗ =
cos (φ∗).

Let us suppose that the chosen Kp leads to saturation acti-
vation, the following upper and lower bounds on the maximum
tracking error can be established.

2) Bounds on the maximum tracking error

1
2

V 2
r

aMAX
< emax < f(Kp, Vr , aMAX)

where

f(Kp, Vr , aMAX)

=
2ζ

ωn
Vr +

aMAX

ω2
n

×


1

2




√(
ωnVr

aMAX

)2

− (1 − ζ2) − ζ




2

− 2ζ2 +1


.

(26)

It is interesting to note that the aforementioned bounds are
asymptotically tight, in the sense that

lim
Kp →∞

f(Kp, Vr , aMAX) =
1
2

V 2
r

aMAX

which, in turns, implies

lim
Kp →∞

emax =
1
2

V 2
r

aMAX
.

Previous results are illustrated in Fig. 10, where the maximum
tracking error for a linear (dashed line) and a saturated (solid
line) model are compared, for different values of Kp . For con-
venience, the quantity reported on the abscissa is ωnVr/aMAX.

Fig. 10. Maximum tracking error: saturated model (solid), linear model
(dashed), and bounds (dash-dotted).

Note that, being Vr and aMAX fixed, this choice corresponds
to scale the x-axis. For small Kp , acceleration does not satu-
rate, and the maximum errors coincide. When Kp is such that
the damping ratio falls below the threshold ζ∗, saturation oc-
curs, and the maximum tracking error decreases more slowly
than it does in the linear case. The main difference between
the two error signals relies on the asymptotic behavior. Dif-
ferently from what happens in the linear case, when Kp tends
to infinity, the maximum tracking error does not vanish. The
lower bound V 2

r /2aMAX can be thought of as an intrinsic limita-
tion imposed by the acceleration bound, no matter which value
of Kp is chosen. For instance, with the proportional controller
considered here, there is no chance to avoid the HD workspace
boundary ∆WS if the speed of the reference signal is bigger than√

2aMAX∆WS. Conversely, the upper bound f(Kp, Vr , aMAX)
can be exploited in order to compute the minimum Kp ensur-
ing a tracking error below a given ∆WS . However, high values
of Kp also have drawbacks, the most annoying one being the
generation of very low damped oscillations. Thus, the value of
the proportional gain has to be chosen by trading off maximum
tracking error and settling time. Another possibility is to adopt a
control scheme with more DoFs, as we did in the previous sec-
tions. It turns out that, also in this case, an additional derivative
term can be effective in damping undesired oscillations, without
excessively increasing the error peak.

We conclude this section, with a remark on possible bounds
also on the feasible MP velocities. It can be easily shown that
until the tracking error does not attain its maximum value, the
velocity signal resulting from the saturated model is always less
than the reference velocity Vr and reaches Vr when e(t) = emax .
As a consequence, if Vr is smaller than the maximum MP ve-
locity (which is trivially a necessary condition for the tracking
error to remain bounded), the previous analysis still holds, as far
as the maximum error is concerned. Velocity bounds only affect
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Fig. 11. Effects of bounded acceleration and bounded velocity for a Nomad-
like MP, with Vr = 1000 mm/s and aMAX = 1500 mm/s2 . Comparison of
tracking error for saturated model (solid line) and linear model (dashed line).

the convergence rate of the error to its steady-state value. Qual-
itatively, smaller difference between maximum velocity and Vr

leads to the slower convergence. In the limit, if the maximum
velocity equals Vr , the tracking error remains constant to its
maximum value (see Fig. 11).

VIII. EXPERIMENTAL VALIDATION

The theoretical analysis described in Section V builds on the
linear model chosen for the MP, allowing us to come up with ana-
lytical relationships between performance indicators and model
parameters. In order to verify to which extent the model fits
to real system in predicting workspace boundary outreaching,
an experimental campaign has been conducted using an MHI
composed of a PHANToM Premium 1.5 haptic interface and
a Nomad XR4000 MP [10]. The latter is an omni-directional
robot, featuring high levels of inertia. All the experiments have
been performed along a single DoF, and, for each trial, the actual
tracking error has been compared to the one predicted by the
corresponding model. As pointed out in Section II, the track-
ing error e corresponds to the displacement of the end-effector
with respect to the center of its workspace, thus being directly
available from the readings of the haptic interface encoders.

A preliminary identification phase was required before exper-
imental validation. Several sets of input–output data {xr , xM },
corresponding to different classes of input signals (e.g., square
waves, ramps, and sinusoids) have been collected. Then, the
values of the model parameters k and b have been tuned by
comparing the actual and simulated outputs. Note that the total
mass m was known a priori from the technical specifications of
the employed devices. [11].

The values of the controller parameters Kp and Kd have been
selected according to the procedure described in Section VI. In
the design stage, for safety reasons, the HD was supposed to
have a workspace smaller (∆WS = 150 mm) than the actual
one. As a matter of fact, this choice allows one to excite the
system also with inputs leading to tracking errors greater than

Fig. 12. Tracking error of a step input xH (t) = 100: actual (solid line) and
predicted by the model (dashed). Thick solid line represents the HD workspace
limit which is 150 mm.

∆WS , without physically reaching the real workspace boundary
of the HD.

Several sets of experimental trials have been carried out to
validate the performance limitations derived in the previous
sections.

Even if the validation of ideal step limitation (see Section V-
A) is straightforward, for the sake of completeness, we briefly
report an experiment in which the MP was excited with an
ideal step reference of amplitude Au = 100 mm. In Fig. 12, the
actual (solid line) and predicted (dashed line) tracking errors
are shown. Thick solid lines represent the desired maximum
error, due to workspace limits. As predicted by the model, the
real tracking error confirmed that the system was stable, thus
guaranteeing that as long as the amplitude of the position steps
is inside the workspace limit, the end-effector never reaches its
maximum extension.

To evaluate ramp limitations (see Section V-B), the MHI was
excited using several reference signals xH = VRt, featuring dif-
ferent slopes VR . This input has been generated using a Pioneer
2DX mobile robot to move MHI end-effector at constant speed.
While the MHI stood still, the driver robot was accelerated
in order to reach a desired velocity VR , and then, hooked up
to the MHI end-effector (through a velcro connection), thus
exciting the MHI with the desired ramp reference. Again, in
Fig. 13, the predicted and actual tracking errors for the consid-
ered input signals are depicted. It can be noted that the maxi-
mum tracking error is achieved at the steady state, i.e., the con-
trolled MHI does not exhibit overshoot. Moreover, the maximum
tracking error is almost proportional to the input velocity, as pre-
dicted by the theoretical analysis.

As already discussed in Section V-C, the analysis of step
limitation can be extended to human-made step input by ex-
ploiting results about ramp limitation. The finite velocities
characterizing real inputs let the system begin tracking the refer-
ence before the operator has reached the steady-state value, thus
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Fig. 13. Actual (solid line) and predicted (dashed line) tracking errors of ramp
inputs. On the top xH (t) = 300t, on the bottom it is xH (t) = 500t. Thick solid
line represents the HD workspace limit which is 150 mm.

allowing larger displacements than the workspace dimension, as
it was in the case of ideal step. This result has been evaluated by
exciting the MHI with several human-made step displacements
and comparing real tracking error with model predicted one.

In Fig. 15, we report an example of human-made step input
(solid line), which can be approximated with a piecewise linear
signal (dashed line), as the one shown in Fig. 6. The ramp fea-
tures a slope of about 816 mm/s and a duration of 0.25 s, which,
in turn, results in a step amplitude Au = 208 mm. Referring to
Fig. 7, such values of velocity and amplitude correspond to a
safe input, even if it is near to the curve of critical inputs. In
other terms, the tracking error may get close to the workspace
limitation, but should never reach it. To confirm the analytical
prediction, Fig. 15 shows the real tracking error (solid line) and
the model predicted one (dashed line) for the real human-made

Fig. 14. Real hand-generated input (solid line), approximated by an ideal
signal (dashed line). The slope of the ramp is 816 mm/s.

Fig. 15. Tracking error of a real step input: actual (solid line) and predicted
by the model (dashed). The HD workspace limit is fixed at 150 mm.

input trajectory. As predicted by the model, even if the maxi-
mum error is close to the workspace limitation ∆WS = 150 mm,
it never reaches such a bound, i.e., during tracking the input the
MHI end-effector never reached its workspace boundary.

Finally, to evaluate sinusoidal limitations, experimental trials
have been performed using several reference signals xH (t) =
As sin(ωt), featuring different amplitudes As and frequencies
ω. In this case, input signals have been generated by a human
operator, who, aided by periodic acoustic and visual stimuli,
moved the HD’s end-effector sideways, approximately describ-
ing a time dependent sinusoid. In Fig. 16, the tracking errors of
two sinusoidal inputs are shown.

The previous results confirm that the performance indicators
introduced in Section V can be useful for evaluating the per-
formance of a real MHI. It was possible to successfully predict
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Fig. 16. Actual (solid line) and predicted (dashed line) tracking errors
of sinusoidal inputs. On the top xH (t) = 250 sin(2π0.2t), on the bottom
xH (t) = 300 sin(2π0.2t). Thick solid linerepresents the HD workspace limit.

the reaching of the HD workspace limit and a consequent loss
of transparency. They also provide a guideline for the controller
design, on the basis of a set of performance specifications. It
is worth noting that the simple linear model adopted for the
theoretical analysis clearly cannot account for a number of is-
sues, which are present in practice (nonlinear dynamics, actu-
ator saturation, communication and processing delays, sensor
noise, etc.). Nonetheless, the qualitative behavior predicted by
the model is in good agreement with the actual one, and the
proposed methodologies of analysis and synthesis can, indeed,
be adopted in practice.

IX. DISCUSSION ON GENERAL INPUT SIGNALS

So far, the performance analysis has been carried out taking
into account only three main classes of input signals. Although

Fig. 17. Frequency response |G(jω)| computed for the prototype MHI de-
scribed in Section VIII.

this may seem to restrict the generality of results, step, ramp,
and sinusoidal inputs represent a good benchmark to evaluate
the performance of a controlled dynamic system. These results
can be generalized to some extent in the frequency domain.

As pointed out in Section V-D, the MP H(s) has a low-pass
filter behavior; hence, a necessary condition in order to avoid
reaching workspace boundaries is that the frequency content
of human hand movements is almost completely contained in
the bandwidth of the MP. Experimental measurements revealed
that volitional movements involving human hand and elbow
typically range from 0 to 10 Hz. Hence, in order for the MHI
to track any voluntary operator’s movement without rendering
spurious forces, the MP should exhibit a bandwidth greater than
10 Hz. On the other hand, a sufficient condition can be found
by resorting to the following frequency analysis.

Let E(ω) and XH (ω) be the Fourier transform of the track-
ing error e(t) and xH (t), respectively. By applying the inverse
Fourier transform, condition (8) can be rewritten as

|e(t)| =
∣∣∣∣ 1
2π

∫ +∞

−∞
E(ω)ejωtdω

∣∣∣∣ < ∆WS. (27)

Since∣∣∣∣ 1
2π

∫ +∞

−∞
E(ω)ejωtdω

∣∣∣∣ ≤ 1
2π

∫ +∞

−∞
|E(ω)|

∣∣ejωt
∣∣ dω

and being E(ω) = G(jω)XH (ω) from (9), the following
inequality ∫ +∞

0
|G(jω)XH (ω)|dω < π∆WS (28)

is a sufficient condition for (27) to hold. Although this is a con-
servative constraint, it qualitatively characterizes the maximum
admissible generic input xH (t) by setting an upper bound on
its frequency content. In fact, the error transfer function G(s)
is typically a high-pass filter (see Fig. 17), thus the value of the
integral in (28) is finite only if the amplitude of XH (ω) de-
creases with the frequency fast enough.

Fig. 18 shows an input trajectory generated by the op-
erator using the prototype MHI (top), and its power spec-
trum (center). The integral in (28) has been numerically com-
puted yielding the value 464.11 mm, while the upper bound
is π∆WS = 471.23 mm, being ∆WS = 150 mm. Hence, the
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Fig. 18. Top: a generic input trajectory generated by the operator during a VR
simulation. Center: the power spectrum of the input trajectory. Bottom: actual
(solid line) and predicted (dashed line) tracking error. Thick solid lines represent
the workspace limits.

condition (28) holds, and, as shown in the bottom of Fig. 18, the
tracking error is confined within workspace boundaries.

As well as for step, ramp, and sinusoidal performance indi-
cators, also condition (28) strictly depends on the model of the
MHI. Possible differences between analytic results and real sys-
tem behaviors can arise accordingly to several factors as pointed
out at the end of Section VIII.

X. CONCLUSION

Dynamic performance of MHI has been studied along with
their limitations and a set of guidelines have been outlined to
design MHI controllers. The proposed analysis relates param-

eters characterizing an MHI to its performance limitations and
presents a procedure on how to design and tune a controller that
maximizes the MHI performance from a transparency perspec-
tive. In particular, it has been studied what are the controller
parameters that allow not to reach the workspace boundaries
of the grounded haptic interface while the MPs moves, thus
obtaining an unlimited workspace for the whole MHI system.
Theoretical results are in good agreement with the real behavior
of the MHI prototype used for the experiments, although we
used a second-order dynamic model for the MP, which does not
take into account many of the nonlinearities present in reality.
The proposed results could certainly benefit from more accurate
models, but it is our belief that this would also strongly limit the
generality of the proposed results, as dynamic models for MPs
vary largely on the specific device used.

Work is in progress to extend these results to more complex
MHIs as those that involves more than one contact points such
as MHIs able to grasp virtual objects and those whose base is a
nonholonomic mobile robot.

APPENDIX

A. Control Design for Ramp Inputs

Let us consider the transfer function from the end-effector
position xH to the tracking error e:

G(s) =
1

1 + H(s)C(s)
=

s(1 + τs)
τ(s2 + [(1 + Kvτ ′)/τ ]s + Kv/τ)

where

Kv =
kM

bM
Kp, τ ′ =

Kd

Kp
, τ =

mM

bM
.

Let us suppose that the operator moves the end-effector at con-
stant velocity Vr :

xH (t) = Vr t.

Denoting by xH (s) the Laplace transform of the signal xH (t),
the error signal can be computed as

e(s) = G(s)xH (s) =
(1 + τs)Vr

τs(s2 + [(1 + Kvτ ′)/τ ]s + Kv/τ)
.

Depending on the values of the controller parameters, the poles
of G(s) can be real or complex. Let ∆ be the discriminant

∆ =
(

1 + Kvτ ′

τ

)2

− 4
Kv

τ

�
= α0 + α1K

2
d + α2Kd − 4α3Kp

where

α0 =
1
τ 2 , α1 = α2

3 , α2 = 2
α3

τ
, α3 =

kM

mM
.

1) ∆ < 0: The system has a pair of complex poles if and
only if ∆ < 0, i.e., if and only if

Kp >
α3

4
K2

d +
1
2τ

Kd +
1

4α3τ 2 .
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In this case, the error signal e(t) attains its maximum value
during the transient.

2) ∆ = 0: If ∆ = 0, then the system has a pair of coinci-
dent real poles at s = p, p < 0. By antitransforming, the time
evolution of the tracking error is

e(t) = A + Btept + Cept , t ≥ 0

where

A =
Vr

Kv

B =
(1 + τp)Vr

τp

C = − Vr

τp2 .

In order to check whether overshoot shows up, let us consider
the first-order derivative:

ė(t) = 0 ⇐⇒ (1 + τp)(1 + pt) − 1 = 0.

If

t̄
�
= − τ

1 + τp
≥ 0 (29)

then, the maximum error is attained at t̄. Since

p = −1
2

(
1
τ

+ α3Kd

)

in terms of controller parameters, condition (29) becomes Kd >
bM /kM . Hence, if the parameter values are selected so that
∆ = 0, the choice

Kd ≤ bM

kM

guarantees that no overshoot shows up.
3) ∆ > 0: If ∆ > 0, the system has real distinct poles:

p1 , p2 ∈ (−∞, 0). By antitransforming, the time evolution of
the tracking error is

e(t) = A + Bep1 t + Cep2 t , t ≥ 0

where

A =
Vr

Kv

B =
(1 + τp1)Vr

τp1(p1 − p2)

C =
(1 + τp2)Vr

τp2(p2 − p1)
.

Again, let us consider the first-order derivative:

ė(t) = 0 ⇐⇒ (1 + τp1)ep1 t − (1 + τp2)ep2 t = 0.

a) (1 + τp1)(1 + τp2) < 0
If (1 + τp1) and (1 + τp2) have opposite sign, then ė(t) �=
0 for all t, and the maximum error is attained at the steady
state.

b) (1 + τp1) > 0 and (1 + τp2) > 0
Again, if both p1 > −1/τ and p2 > −1/τ , then ė(t) �= 0
for all t. In fact, without loss of genarality (w.l.o.g.), let us
assume

−1
τ

< p1 < p2 < 0.

Then

(1 + τp1)ep1 t < (1 + τp2)ep2 t ∀t ≥ 0.

c) (1 + τp1) < 0 and (1 + τp2) < 0
Finally, if both p1 < −1/τ and p2 < −1/τ , then there
exists a time instant t̄ such that

(1 + τp1)ep1 t̄ = (1 + τp2)ep2 t̄

and consequently, overshoot shows up. In fact, w.l.o.g., let
us assume

p1 < p2 < −1
τ

< 0

then

lim
t→0

[
(1 + τp1)ep1 t − (1 + τp2)ep2 t

]
< 0.

But, since (1 + τp1)ep1 t converges to zero (see later)
faster than (1 + τp2)ep2 t , there exists a time T such that

(1 + τp1)ep1 t − (1 + τp2)ep2 t > 0 ∀t > T.

Hence, by continuity, there exists a time t̄, 0 < t̄ < T such
that ė(t̄) = 0.

The previous considerations are summarized later. In case of
real poles (i.e., when the control parameters (Kp, Kd) are such
that ∆ > 0), the error signal exhibits overshoot if and only if

p1 < −1
τ

and p2 < −1
τ

. (30)

This condition can be cast in terms of the controller parameters
as follows. Since

p1,2 =
1
2

(
−1

τ
− α3Kd ±

√
∆

)

inequalities (30) become

√
∆ < α3Kd − 1

τ
. (31)

Thus, overshoot shows up if and only if inequality (31) holds.
i) First, let us assume

Kd ≤ 1
α3τ

=
bM

kM
.

Then, since ∆ > 0, condition (31) is never satisfied. More-
over, in this case, the assumption ∆ > 0 implies that

Kp <
1

α3τ 2 =
b2
M

kM mM
.

ii) Conversely, let us suppose now that

Kd >
1

α3τ
.



FORMAGLIO et al.: DYNAMIC PERFORMANCE OF MOBILE HAPTIC INTERFACES 573

Then, both sides of inequality (31) are positive, so that the
latter can be rewritten as

∆ <

(
α3Kd − 1

τ

)2

.

Finally, recalling the expression of ∆, the previous condi-
tion becomes

α2
3K

2
d + 2

α3

τ
Kd − 4α3Kp+

1
τ 2 < α2

3K
2
d +

1
τ 2 − 2

α3

τ
Kd

that is

Kp >
Kd

τ
.

Again, note that the previous inequality is never satisfied
for all Kp such that

Kp ≤ b2
M

kM mM
.

Summarizing, the error signal does not exhibit overshoot if
and only if the controller parameters are chosen such that one
of the following conditions hold:

∆ > 0 and Kd ≤ bM

kM

∆ > 0 and Kp ≤ b2
M

kM mM

∆ > 0 and Kp ≤ Kd

τ
.

B. Control Design for Sinusoidal Inputs

Let us study the dependency of ‖G(jω)‖ on the controller
parameters. Recalling the expression of G(s), it follows

G(jω) =
−τω2 + jω

−τω2 + Kv + jω(1 + Kvτ ′)

hence

‖G(jω)‖ =
√

ω2 + τ 2ω4√
(Kv − τω2)2 + ω2(1 + Kvτ ′)2

=
√

β0√
β0 + β1K2

p + β2K2
d − β3Kp + β4Kd

where

β0 = ω2 + τ 2ω4 , β1 =
k2

M

b2
M

, β2 =
k2

M

b2
M

ω2

β3 =
2kM mM

b2
M

ω2 , β4 =
2kM

bM
ω2 .

Let

K0
p

�
=

β3

2β1
=

mM

kM
ω2 , K0

d
�
= − β4

2β2
= − bM

kM
, (32)

then, the argument of the square root at the denominator can be
rewritten as

E(Kp,Kd) = β1β2

(
(Kp − K0

p )2

β2
+

(Kd − K0
d )2

β1

)
.

Now, it is easily seen that the level curves of E(Kp,Kd) are
ellipses in the (Kp, Kd) plane:

E(Kp,Kd) = C ⇐⇒
(Kp − K0

p )2

r2
p

+
(Kd − K0

d )2

r2
v

= 1

where (K0
p , K0

d ) denotes the center and

rp =

√
C

β1
, rd =

√
C

β2
(33)

represent the radii. Hence, if at a given frequency ω we desire

‖G(jω)‖ < v

it is sufficient to choose a pair (Kp, Kd), which lies outside the
ellipse with center given by (32) and radii given by (33), where

C =
β0

v2 .

C. Bounded Acceleration

Let W (s) be the transfer function from the reference input
xH to the MP position xM , as defined in (23). In order to assess
whether MP acceleration saturates or not, let us study the time-
evolution of the acceleration signal ẍM (t), which, for a ramp
input xH () = Vr t, takes on the form:

ẍM (t) =
ωnVr√
1 − ζ2

e−ζωn t sin(ωdt) (34)

where ωd = ωn

√
1 − ζ2 . The maximum value of ẍM (t) is at-

tained at tMAX = arccos(ζ)/ωd , and

ẍM (tMAX) = ωnVre
− ζ√

q −ζ 2
arccos(ζ )

. (35)

The maximum acceleration value ẍM (tMAX) is a decreasing
function of the damping ratio ζ, and when ζ ranges from 0 to
1, ẍM (tMAX) ranges from ωnVr to ωnVr/e. From this analysis,
conditions (a) and (b) of Section VII immediately follow. Now,
let us suppose that 1 < ωnVr/aMAX < e. The value ẍM (tMAX)
exceeds the maximum feasible acceleration aMAX depending on
the ζ value (and consequently, depending on the choice of Kp ).
Denote by φ = arccos(ζ), (35) can be rewritten as

ẍM (tMAX) = ωnVre
− φ

t a n (φ ) . (36)

Clearly, saturation occurs if and only if ẍM (tMAX) ≥ aMAX, i.e.,
if and only if

φ ≤ log
(

ωnVr

aMAX

)
tan (φ). (37)

When 1 < ωnVr/aMAX < e, equality (37) admits a unique so-
lution φ∗ and inequality (37) is satisfied for each φ > φ∗. Re-
calling the definition of φ, the previous condition can be recast
as ζ < ζ∗, where ζ∗ = cos (φ∗).

Finally, let us suppose that saturation occurs at a certain time
ti . This means that ẍM (ti) = aMAX. Unfortunately, there is no
analytical expression for ti . However, it can be bounded as
follows. First, notice that clearly ti ≤ tMAX . Second, from (34),
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it follows

aMAX = ẍM (ti) =
ωnVr√
1 − ζ2

e−ζωn ti sin(ωdti)

≤ ωnVr√
1 − ζ2

sin(ωdti).

Solving with respect to ti , one gets

ti ≥
1
ωd

arcsin
(

aMAX

ωnVr

√
1 − ζ2

)
.

and hence

arcsin
(

aMAX

ωnVr

√
1 − ζ2

)
≤ ωdti ≤ arccos(ζ). (38)

For t ≥ ti , and as long as acceleration saturates, ẍM (t) = aMAX,
hence

xM (t) = xM (ti) + ẋM (ti)(t − ti) +
1
2
aMAX(t − ti)2 .

Consequently, the tracking error e(t) = xH (t) − xM (t) evolves
as

e(t) = e(ti) + ė(ti)(t − ti) −
1
2
aMAX(t − ti)2

and its maximum value is

emax = e(ti) +
1
2

ė2(ti)
aMAX

.

Since e(ti) and ė(ti) represent the position and velocity error of
a linear system, they can be analytically computed as a function
of ti

emax =
2ζ

ωn
Vr +

aMAX

ω2
n


1

2

( √
1 − ζ2

tan (ωdti)
− ζ

)2

− 2ζ2 + 1


 .

Notice that emax is a decreasing function of ωdti ; hence, from
(38), it follows that (26) is an upper bound for emax .

Finally, in order to have a lower bound on the maximum track-
ing error in case of acceleration saturation, one may compute
emax in the ideal case of maximum acceleration from initial
time, ẍM (t) = aMAX, t ≥ 0. In this case

xM (t) =
1
2
aMAXt2

and

emax =
1
2

V 2
r

aMAX
.
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