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Simultaneous Localization and Map Building
for a Team of Cooperating Robots:

a Set Membership Approach
M. Di Marco, A. Garulli, A. Giannitrapani and A. Vicino

Abstract— The problem of simultaneous localization and map
building for a team of cooperating robots moving in an unknown
environment is addressed. The robots have to estimate the position
of distinguishable static landmarks, and then localize themselves
with respect to other robots and landmarks, exploiting distance
and angle measurements. A novel set theoretic approach to this
problem is presented. The proposed localization algorithm pro-
vides position estimates and guaranteed uncertainty regions for
all robots and landmarks in the environment.

Index Terms—Multi-robot systems, localization, map building,
uncertainty, set membership.

I. INTRODUCTION

SELF localization of autonomous agents has been consid-
ered a fundamental problem in mobile robotics since long

time. The problem has been tackled in several different frame-
works and a number of efficient techniques are now available
(see e.g. the books [1–3] and references therein). More recently,
driven by the interest in planetary exploration, researches have
turned their attention towards localization of vehicles moving
in hostile unknown environments [4, 5]. In these cases, a map
of the environment is not available and hence the more com-
plex Simultaneous Localization And Mapping (SLAM) prob-
lem must be faced. The robot has to collect information about
the environment through its sensors, and at the same time it
must localize itself with respect to the map it is building. Sev-
eral solutions to this problem have been proposed in the liter-
ature (see e.g. [6–9]), using different environment representa-
tions, sensor equipments, etc. However, most of these works
concern the case of a single robot exploring an environment
through detection of static features.

In this paper, the SLAM problem for a team of coopera-
tive robots is addressed. This problem has attracted more and
more attention in recent years, due to the enormous potentials of
multi-robot exploration of unknown environments (see the spe-
cial issues [10, 11]). Fusion of information provided by differ-
ent robots moving in the same area can improve the exploration
performance for several reasons. Each robot plays the role of
a moving landmark for all other robots. If only one robot at a
time is moving, the others can act as a landmark base in regions
where it is difficult to extract reliable features [12]. Moreover,
at each time instant the same feature can be perceived by more
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than one robot. If the robots share mapping information, this
can lead to a more accurate, faster converging global map.

As far as localization of multi-robot systems is concerned,
most available approaches are based on probabilistic assump-
tions, leading to solutions that employ Extended Kalman Fil-
ters [12, 13] or Markov localization techniques [14]. In this pa-
per, a different approach is taken, based on the assumption that
the errors affecting proprioceptive and exteroceptive sensors are
unknown-but-bounded. This naturally leads to a set theoretic
formulation of the SLAM problem, similar to that given in [15]
for the case of a single robot. Exploiting set approximation
techniques developed in the context of set membership estima-
tion theory (see e.g. [16, 17]) and the specific structure of the
SLAM problem, efficient recursive algorithms can be devised
which are suitable for real-time implementation. Here, this
approach is applied to the multi-robot case, showing how set
membership techniques allow to perform efficient information
fusion, map merging and dynamic estimation of a multi-robot
system evolution.
The paper is organized as follows. Section 2 summarizes the
set membership approach to the SLAM problem for a single
robot. Section 3 describes the proposed technique for solving
the dynamic SLAM problem, for a team of cooperating robots.
In Section 4, the fusion of set-valued maps is tackled, as a start-
ing point for the dynamic localization of a team of robots. In
Section 5, simulation experiments are reported, showing the ef-
fectiveness of the proposed approach. Concluding remarks are
given in Section 6.

II. SET MEMBERSHIP SLAM FOR A SINGLE ROBOT

In this section, the basic features of the set membership ap-
proach to the single-robot SLAM problem are reviewed (see
[15] for more details).

Let us assume that a single vehicle is moving in an en-
vironment which can be adequately represented by a two-
dimensional reference system (flat landscape assumption). The
vehicle is equipped with odometers, providing direct measure-
ments of the robot displacement every Ts seconds. Under the
assumption of slow dynamics, the robot motion can be roughly
described by the simplified model

ξ(k + 1) = ξ(k) + u(k) + G(k)w(k) (1)

where ξ(k) = [x(k) y(k) θ(k)]′ is the pose (position p(k) =
[x(k) y(k)]′ and orientation θ(k)) of the robot at time kTs, u(k)
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is the vector of x-, y- and θ-displacement measurements pro-
vided by the odometric sensors, and w(k) are the errors affect-
ing these measurements (possibly shaped by a matrix G(k)).
More complicated motion models can be considered without
affecting the approach presented in the paper (see [18]).

Besides odometers, other common proprioceptive sensors are
rate gyros, accelerometers and sun sensors, that are used for ori-
entation determination [5]: they usually provide a noisy mea-
surement of the robot orientation with respect to a fixed abso-
lute direction, such as

Θ(k) = θ(k) + vθ(k), (2)

where vθ(k) is the noise affecting the absolute orientation mea-
surement.

In order to localize itself, the robot has to build a reliable de-
scription of the environment, because no a priori map is avail-
able. To do this, the robot selects distinguishable landmarks
Li = [xLi

yLi
], i = 1, . . . , n in the environment and performs

measurements with respect to these landmarks. Exteroceptive
measurements are used, together with the robot dynamic model,
to simultaneously estimate both robot and landmarks positions
at each time k: this is the aim of the SLAM problem. The
problem can be formulated as the state estimation of a dynamic
system, whose state vector is given by

X(k) = [ξ′(k) L′1 . . . L′n]′ ∈ R
3+2n. (3)

As the selected landmarks are static ones, the state update equa-
tion is

X(k + 1) = X(k) + E3u(k) + E3G(k)w(k) (4)

where E3 = [I3 0]′ ∈ R
(3+2n)×3 and I3 is the 3 × 3 identity

matrix.
Several types of measurements can be performed by a vehi-

cle with respect to selected landmarks, depending on the sen-
sors the robot is equipped with. In order to fix the main ideas
behind the proposed approach, it is assumed that two sets of
measurements are taken by the robot: (i) distance from a land-
mark; (ii) angle between robot orientation and the direction of a
landmark. These measurements can be obtained by several kind
of sensors: millimeter-wave radars [8], laser rangefinders [12],
stereovision systems [19, 20]. Measurement equations take on
the form

∆i(k) = di(X(k)) + vdi
(k)

Ai(k) = αi(X(k)) + vαi
(k)

(5)

where ∆i(k) and Ai(k) are the actual readings provided by the
sensors at time k; vdi

(k) and vαi
(k) are measurement noises

affecting the distance and the heading measurements, respec-
tively. Hence:

di(X(k))=d(p(k), Li)
4
=

√
δxi(k)2 + δyi(k)2

αi(X(k))=α(ξ(k), Li)
4
= atan2{δyi(k), δxi(k)} − θ(k)

(6)

with δxi(k) = xLi
−x(k), δyi(k) = yLi

−y(k) and atan2{b, a}
denoting the four quadrant inverse tangent (see Figure 1). No-
tice that functions di(·) depend on the robot position only, while
functions αi(·) are related to both position and heading.
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Fig. 1. Distance and heading measurements.

According to (4)-(6), dynamic estimation of the state vector
X(k) can be tackled via Extended Kalman Filter techniques
[8, 9], provided that statistical properties of disturbances w(k),
vθ(k), vdi

(k) and vαi
(k) are a priori known or can be reliably

estimated. Here, a different approach is taken, which relies on
the only hypothesis that the above disturbances are unknown-
but-bounded, i.e.

‖w(k)‖∞ ≤ εw(k) (7)

|vθ(k)| ≤ εvθ (k) (8)

|vdi
(k)| ≤ εvd(k) (9)

|vαi
(k)| ≤ εvα(k) (10)

where εw(k), εvθ (k), εvd(k) and εvα(k) are known posi-
tive scalars and ‖ · ‖∞ denotes the `∞ norm (defined as
‖v‖∞ = max

i
vi). We observe that the above bounds need not

be the same for different measurements di and αi and for differ-
ent components of vector w(k) (which is equivalent to consider
a weighted `∞ norm). For simplicity of notation, this feature
will not be considered in the treatment of the paper, the exten-
sion being straightforward.

Assumptions (7)-(10) naturally lead to the notion of feasi-
ble state vectors. Given sensor readings ∆i(k), Ai(k), i =
1, . . . , n, the feasible states are those compatible with the given
measurements, i.e. the states belonging to the measurement set

M(k) = Mo(k) ∩

[
n⋂

i=1

Mi(k)

]
, (11)

where

Mo(k) = {X : |Θ(k)− θ| ≤ εvθ (k)} , (12)

Mi(k) = {X : |∆i(k)− di(X)| ≤ εvd(k) and

|Ai(k)− αi(X)| ≤ εvα(k)} . (13)

A direct consequence is that the dynamic SLAM problem can
be formulated in the following set-theoretic form.

Set Membership Simultaneous Localization and Mapping
Problem (SM-SLAM): Let Ξ(0) ⊂ R

3+2n be a set containing
the initial vehicle pose and landmarks position X(0). Given
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the dynamic model (4) and the measurement equations (5)-(6),
find at each time k = 1, 2, . . ., the feasible state set Ξ(k|k),
which is the set of state vectors X(k) compatible with robot
dynamics, assumptions (7)-(10) and measurements collected
up to time k.

The solution of the SM-SLAM problem is given by the set-
valued recursion

Ξ(0|0) = Ξ(0), (14)

Ξ(k|k − 1) = Ξ(k − 1|k − 1) + E3u(k − 1)+

E3G(k − 1)εw(k − 1)B∞, (15)

Ξ(k|k) = Ξ(k|k − 1)
⋂
M(k), (16)

where B∞ is the unit ball in the `∞ norm. Algebraic operators
in (14)-(16) are to be intended as set operators. Equation (15)
exploits the information provided by the robot model and odo-
metric sensors, while in equation (16) all the other measure-
ments are used.

Since distance measurements (i.e. ∆i(k) in (5)) are relative
measurements, the origin of the reference system can be cho-
sen arbitrarily: without loss of generality, the origin is picked
as the robot initial position. Concerning the reference axis
for robot orientation, it can be chosen according to the values
initially provided by the proprioceptive sensors measuring the
robot heading.

The main property of recursion (14)-(16) is to provide, at
each time step, all the state values that are compatible with all
the available information: the true state is guaranteed to belong
to the set Ξ(k|k), and the size of this set gives a measure of the
quality of the estimates. Unfortunately, exact computation of
the sets Ξ in (15)-(16) is generally a prohibitive task, because
the measurement set M(k) is the intersection of nonlinear and
nonconvex sets. Therefore, set approximations must be pur-
sued. In [15,18], efficient techniques for computing guaranteed
outer approximations of the feasible sets have been proposed.
The basic idea is as follows: choose a class of simple approx-
imating regions R (e.g. axis-aligned boxes, parallelotopes, el-
lipsoids, etc.) and select at each time k an element R(k|k) in
the class, such that Ξ(k|k) ⊂ R(k|k). The selection of R(k|k)
involves a crucial trade-off. On one hand, the “size” of the ap-
proximating region (typically, the area of feasible position sets
for robot and landmarks) must be minimized in order to reduce
conservativeness. On the other side, the computational com-
plexity must be kept small, in order to obtain approximation
algorithms suitable for on-line implementation.

III. MULTI-ROBOT SLAM

In the previous section, the SM-SLAM problem has been ad-
dressed for a single robot, but it seems clear that the set mem-
bership approach has a great potential for dealing also with
multi-robot systems. In the following, the above formulation
will be extended to the case of m robots, whose poses at time k

will be denoted by ξ1(k), . . . , ξm(k), moving in an environment
containing n static landmarks L1, . . . , Ln. The state vector to
be estimated becomes

X(k) = [ξ′1(k) . . . ξ′m(k) L′1 . . . L′n]′ ∈ R
3m+2n. (17)

Assuming robot dynamics ξi(k + 1) = ξi(k) + ui(k) +
Gi(k)wi(k) for each agent, the state update equation turns out
to be

X(k + 1) = X(k) + Emu(k) + EmG(k)w(k) (18)

where Em = [I3m 0]′ ∈ R
(3m+2n)×3m; G(k) is the block-

diagonal matrix of blocks Gi(k), i = 1, . . . , m; u(k) =
[u′1(k) . . . u′m(k)]′ and w(k) = [w′1(k) . . . w′m(k)]′. Absolute
proprioceptive sensors will provide the orientation measure-
ments

Θi(k) = θi(k) + vθi
(k), i = 1, . . . , m. (19)

Since each agent performs measurements with respect to all
visible features in the environment (the other robots and the
static landmarks), the maximum amount of information pro-
vided by exteroceptive sensors is

∆j
i (k) = d

j
i (X(k)) + v

d
j
i
(k)

A
j
i (k) = α

j
i (X(k)) + v

α
j
i
(k)

(20)

for j = 1, . . . , m, i = 1, . . . , m + n, i 6= j, where
∆j

i (k), Aj
i (k) are the actual readings of the j-th robot sensors

towards the i-th feature in the environment (with the notation
d

j
i (X) = d(pj , pi), i = 1, . . . , m and d

j
i+m(X) = d(pj , Li),

i = 1, . . . , n, and similarly for α
j
i ). In the following we will

denote by Ωj
i (k) the pair of measurements ∆j

i (k), Aj
i (k).

Similarly to what has been done in the single-robot case, un-
modeled dynamics errors and measurement noises are assumed
to be unknown-but-bounded, as in (7)-(10). Then, the measure-
ment sets Mj(k), Mj

o(k) andMj
i (k) associated to Ωj

i (k), can
be defined as in equations (11)-(13) for the single robot case,
i.e.

Mj(k) = Mj
o(k)

⋂
[

n⋂

i=1

Mj
i (k)

]
(21)

Mj
o(k) = {X : |Θj(k)− θj | < εvθ} (22)

Mj
i (k) = {X : |∆j

i (k)− d
j
i (X)| < εvd(k) and

|Aj
i (k)− α

j
i (X)| < εvα(k)}. (23)

The exact feasible state set is obtained (at least in principle)
through a recursive procedure similar to (14)-(16). Clearly,
the exact computation of sets Ξ cannot be tackled in practice.
Therefore, an efficient set approximation strategy exploiting the
specific structure of the multi-robot SM-SLAM is needed. The
main idea is to decompose the approximation of the feasible
set Ξ into m + n approximations of 2D feasible subsets for the
position of each feature in the environment, plus m interval ap-
proximations for the feasible orientation of each robot.

LetRpj
andRLh

denote outer approximations of the feasible
position sets of robot pj and landmark Lh respectively, chosen
in the set class R. Moreover, let Roj

denote outer approxima-
tion of the feasible orientation interval of the j-th robot. The
sets defined below will be useful in the following treatment:

- Mpi
(Ωi

j ,Rpj
,Roi

): set of positions of robot pi,
compatible with uncertainty sets Rpj

, Roi
and mea-

surements Ωi
j ;
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- Mpi
(Ωi

h+m,RLh
,Roi

): set of positions of robot pi,
compatible with uncertainty sets RLh

, Roi
and mea-

surements Ωi
h+m;

- Mpi
(Ωj

i ,Rpj
,Roj

): set of positions of robot pi,
compatible with uncertainty sets Rpj

, Roj
and mea-

surements Ωj
i ;

- MLh
(Ωj

h+m,Rpj
,Roj

): set of positions of landmark
Lh, compatible with uncertainty sets Rpj

, Roj
and

measurements Ωj
h+m;

- Moi
(Ωi

j ,Rpj
,Rpi

): set of orientations of robot pi,
compatible with uncertainty sets Rpj

, Rpi
and mea-

surements Ωi
j ;

- Moi
(Ωi

h+m,RLh
,Rpi

) set of orientations of robot
pi, compatible with uncertainty sets RLh

, Rpi
and

measurements Ωi
h+m.

Notice that the first two sets show how the uncertainty on
the measured features (robots and landmarks) affects the un-
certainty on the robot performing those measurements. More
specifically, the set Mpi

(Ωi
j ,Rpj

,Roi
) is obtained using the

measurement that the i-th robot performs on the j-th robot, the
latter being considered as a landmark. The shape of this set
is defined by uncertainty sets Roi

(uncertainty on the orienta-
tion of the active robot) and Rpj

(uncertainty on the position
of the passive robot), together with the uncertainty affecting the
measurement. The setMpi

(Ωi
h+m,RLh

,Roi
) enjoys the same

properties, but it depends on the uncertainty of the sensed static
landmark. On the contrary, the third and fourth sets explain
how the uncertainty on the robot performing the measurements
affects that of the measured features. More specifically, the set
Mpi

(Ωj
i ,Rpj

,Roj
) gives a description of the uncertainty set of

the i-th robot, when it is sensed by the j-th robot. Uncertainty
on the active robot position and orientation (sets Rpj

and Roj
,

respectively) together with the measurement uncertainty, define
the shape of such set. Concerning the last two sets, they ac-
count for robot orientation uncertainty, depending on the mea-
surements performed by the same robot with respect to another
agent (the fifth set) or a static landmark (the last set). Notice
that in this paper it is assumed that each robot cannot perform
measurements on other agents orientation; consequently, infor-
mation on each robot orientation can be derived only by the
measurements performed by the robot itself on other robots and
on static landmarks. Nonetheless, it is also possible to include
such measurements in the SLAM process (they can be obtained
for example by using stereo vision systems). This implies that
an additional orientation measurement set would be available,
thus giving more refined estimates.

For the pair of measurements Ωj
i considered in this paper,

the 2D approximate position sets considered above turn out to
be the sum of sectors of circular coronas and the sets Rpj

or
RLh

. In particular, if axis-aligned boxes are used as approx-
imating regions, it is easy to compute the minimum area box
containing one of the above sets (see [15] for details). For ex-
ample, Figure 2 shows how MLh

depends on measurements
Ωj

h+m, robot orientation uncertainty setRoj
and robot position

uncertainty set Rpj
.
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Fig. 2. Dependence of the set MLh
on sets Rpj
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. (a) Set E is the feasible landmark set compatible with measure-
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) (set E is dashed); (c) Set G is the

feasible landmark set compatible with nominal measurements Ωj
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) and robot position uncertainty set Rpj

(dashed);

(d) Construction of set MLh
(Ωj

h+m
,Rpj

,Roj
) = F + G.

A. Multi-robot SM-SLAM algorithm

Let R{S} denote the minimum area set in the class R, con-
taining the set S. Hence, the following recursive approximation
strategy provides a solution to the multi-robot SM-SLAM prob-
lem.
Step 0 (Initialization). Let Rpi

(0|0), RLj
(0|0) be 2D sets

containing the projection of Ξ(0|0) on the subspaces spanned
respectively by pi and Lj , i = 1, . . . , m, j = 1, . . . , n.
Let Roi

(0|0) be the interval obtained projecting Ξ(0|0) on θi,
i = 1, . . . , m.
For k = 1, 2, . . . repeat the following steps:
Step 1. Time update of robot uncertainty sets.
For i = 1, . . . , m :

R+
i (k|k − 1) = R{Rpi

(k − 1|k − 1)⊗Roi
(k − 1|k − 1)+

ui(k − 1) + Gi(k − 1)εwi(k − 1)B∞} (24)

where ⊗ denotes Cartesian product between sets. Let
Rpi

(k|k − 1) be a 2D set in the class R containing the pro-
jection of R+

i (k|k − 1) on the subspace spanned by pi, and
Roi

(k|k − 1) be the interval obtained projecting R+
i (k|k − 1)

on θi.
Step 2. Robot orientation update (based on orientation propri-
oceptive sensors).
For i = 1, . . . , m :

R̂oi
(k|k) = Roi

(k|k − 1) ∩Mi
o(k). (25)
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Step 3. Robot position update (based on measurements per-
formed by the same robot).
For i = 1, . . . , m :
- let

A1,i =

m⋂

j=1
j 6=i

R
{
Mpi

(Ωi
j(k),Rpj

(k|k − 1), R̂oi
(k|k))

}
(26)

A2,i =

n⋂

h=1

R
{
Mpi

(Ωi
h+m(k),RLh

(k − 1|k − 1),

R̂oi
(k|k))

}
(27)

- compute

R̂pi
(k|k) = R

{
Rpi

(k|k − 1)
⋂
A1,i

⋂
A2,i

}
. (28)

The setA1,i contains the feasible set for agent pi based on other
robots uncertainty and measurements performed on them by the
same agent pi. Set A2,i contains the feasible set for robot pi

based on landmarks uncertainty and measurements performed
by the same robot.
Step 4. Robot position update (based on measurements per-
formed by other robots).
For i = 1, . . . , m :
- let

A3,i =

m⋂

j=1
j 6=i

R
{
Mpi

(Ωj
i (k), R̂pj

(k|k), R̂oj
(k|k))

}
(29)

- compute

Rpi
(k|k) = R

{
R̂pi

(k|k)
⋂
A3,i

}
. (30)

Set A3,i contains the feasible position set for robot pi depend-
ing on other agents current uncertainty (updated in step 3) and
their measurements performed on robot pi.
Step 5. Landmark measurement update.
For h = 1, . . . , n :
- let

A4,h =

m⋂

j=1

R
{
MLh

(Ωj
h+m(k),Rpj

(k|k), R̂oj
(k|k))

}

(31)
- compute

RLh
(k|k) = R

{
RLh

(k − 1|k − 1)
⋂
A4,h

}
. (32)

Set A4,h contains the feasible set for landmark Lh based on
robots current uncertainty (updated in step 4) and measure-
ments performed by all robots on the landmark Lh itself.
Step 6. Robot orientation update (based on measurements per-
formed by the same robot).
For i = 1, . . . , m :
- let

A5,i =
m⋂

j=1
j 6=i

Moi

(
Ωi

j(k),Rpj
(k|k),Rpi

(k|k)
)

(33)

A6,i =

n⋂

h=1

Moi

(
Ωi

h+m(k),RLh
(k|k),Rpi

(k|k)
)

(34)

- compute

Roi
(k|k) = R̂oi

(k|k) ∩ A5,i ∩ A6,i. (35)

Interval A5,i contains the feasible orientations of the i-th
robot, based on other robot uncertainties and measurements
performed on them by the i-th agent. Interval A6,i contains
the feasible orientations of the i-th robot based on landmarks
uncertainty and measurements performed on the landmarks by
the i-th robot.
It is worth remarking that, no matter which class of approxi-
mating sets R is chosen, the above algorithm is conceived so
that a guaranteed outer approximation of the true feasible state
set Ξ(k|k) is obtained at each k. In fact, it can be easily shown
that

Ξ(k|k) ⊂ Rp1
(k|k)⊗Ro1

(k|k)⊗ · · · ⊗ Rpm
(k|k)⊗

Rom
(k|k)⊗RL1

(k|k)⊗ · · · ⊗ RLn
(k|k). (36)

The only problem remaining is now that of initializing the
above recursive procedure. This is a crucial step, because a
rough initialization would cause the whole procedure to fail.
Indeed, if the initial sets Rpi

(0|0), Roi
(0|0) and RLj

(0|0) are
too large (for example, including the whole area in which the
robots are moving and all possible robot orientations) the pro-
cedure will typically provide no uncertainty reduction. This is a
consequence of the simplification introduced by state decompo-
sition, in a context where only relative measurements are avail-
able.

A natural way to overcome this problem is to exploit the in-
formation that each robot is able to acquire by itself in the ini-
tialization step. In fact, every agent can solve a single-robot
SM-SLAM problem in a preliminary static phase and then pro-
vide the estimated map (in its own reference system) to a central
unit, possibly located on a leader robot. The unit has to merge
all the maps to obtain a unique map in an “absolute” reference
system, and then send it to all the agents that will use it to ini-
tialize the recursive procedure previously outlined.

The problem of merging set-valued maps worked out by dif-
ferent agents will be addressed in Section IV.

B. Computational complexity of the multi-robot SM-SLAM al-
gorithm

A nice property of the proposed algorithm for multi-robot
SLAM is that the required computational burden is fairly low,
and hence suitable for real-time implementation on multi-robot
systems. With respect to the number of features present in the
environment, the algorithm described in Section III-A performs
a fixed number of operations for each measurement pair Ωj

i (k),
i.e. for each feature detected by each measuring agent, at a cer-
tain time k. Hence, the complexity at each time step is at most
O(m2 + mn).

Going into details, it is interesting to analyze the complexity
of the multi-robot SM-SLAM algorithm in terms of low level
operations that must be performed at each time k. The main
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computational burden lies in Steps 2 to 6, where the intersec-
tion of several feasible sets is tackled, and successive approx-
imations via simple regions in the class R are made. Clearly,
an important role is played by the choice of the class R. When
axis-aligned boxes are considered, the minimum box approx-
imations R{·} are very easy to compute and the intersections
defining sets A in (26),(27),(29),(31) are simple 2D box inter-
sections. More sophisticated set approximations can be con-
sidered (e.g., parallelotopes, see [15]) at the price of a slightly
higher computational complexity. Steps 2 and 6 concern 1D
interval intersections and hence no approximation is involved.
Summing up, when using boxes as approximating regions, the
most common elementary operation is the computation of the
minimum area box containing 2D sets like Mpi

or MLh
, and

the subsequent intersection of such box with another box. If we
denote these operations as Elementary Set Updates (ESU), one
has that 2m2 + 2mn + n ESUs must be performed at time k

(namely, m2 + mn in Step 3, m2 in Step 4 and mn + n in Step
5). Moreover, m2 +mn+m interval intersections are required
by Steps 2 and 6.

It is worth remarking that in the proposed multi-robot SLAM
strategy there is a redundant information management due to
the fact that the same measurements are processed several
times, in Steps 3 to 6 of the algorithm. This redundancy
is useful because, at each step, set approximations are in-
volved and hence measurement reprocessing leads to approx-
imation refinement. In this respect, a further uncertainty re-
duction can be obtained by repeating iteratively Steps 3-6. If
such steps are iterated ρ times, the number of ESUs becomes
ρ(2m2 + 2mn + n), while the number of interval intersections
grows to ρ(m2 + mn) + m, at each time k. Heuristic strate-
gies can be easily formulated to properly choose the number ρ

of iterations, on the basis of a trade-off between computational
burden and uncertainty reduction (i.e., SLAM accuracy).

IV. MAP FUSION IN THE SET MEMBERSHIP FRAMEWORK

In the single robot SLAM problem, the initial position of the
exploring agent can be fixed arbitrarily (in the robot centered
reference system) and all the environment features are then es-
timated with respect to that initial position. When operating
with multiple agents, the starting position of each robot is not
known and cannot be arbitrarily fixed.

As long as robot heading is concerned, in the single robot
case the absolute orientation sensor provides a heading mea-
surement, which allows one to rotate the initial 2D uncer-
tain map onto an absolute orientation reference system (this
amounts to consider Ai(0)+Θ(0) as absolute orientation mea-
surements, corrupted by noise bounded by εvα + εvθ ). Clearly,
the same can be done by each agent in the initial step of the
multi-robot case. Hence, by computing (or approximating) the
initial 2D feasible position sets of each feature, based on mea-
surements Ωj

i (0) and Θj(0), the j-th agent is able to produce
a self-centered initial map of the environment, within an ab-
solute orientation reference system. In other words, only rel-
ative translation among the different initial maps produced by
the robots is unknown.

Clearly, all these single-robot maps are a valid, suboptimal
representation of the environment. The quality of the maps

will generally vary from robot to robot. While it is possible
to choose the “most accurate” map as a global map for all the
robots, this choice does not use all the available information.
Exploiting the “feasibility” property (i.e., the fact that each set-
valued map contains the correct environment representation),
it is possible to obtain a global refined map, by finding a de-
scription which satisfies all the constraints of each map. This
problem is addressed below.

A. One-dimensional map fusion

Let us consider axis-aligned boxes as approximating sets R.
Exploiting the fact that the initial maps provided by the robots
share the same orientation, it is possible to decouple the 2D
map fusion into two separate 1D map fusions, which further
simplifies computations. Therefore, let us consider m robots
and n landmarks spread on a line. Each robot produces its own
1D self-centered map, containing m + n intervals. Let us sup-
pose that intervals in each 1D map are correctly related to the
corresponding features. Let us call C i

j the center of the set cor-
responding to the j-th feature in the map, provided by the i-th
agent. Moreover, let us call C i

j− and Ci
j+ the minimum and

maximum value of the interval with center C i
j .

In terms of relative positions between sets, each ordered map i

provides a certain number of constraints, such as

mj −Mk ≥ Ci
j− − Ci

k+ ,

Mj −mk ≤ Ci
j+ − Ci

k− .
(37)

for j > k, k ≥ 1, j ≤ m + n, where mj and Mj are re-
spectively the minimum and maximum admissible value for the
position of the j-th feature of the map. Note that (37) provides
(m + n)(m + n − 1) inequalities in the 2(m + n) unknowns
Mk, mk, k = 1, . . . , m+n for each map i. As a general conse-
quence, for m + n ≥ 3, each map provides an overconstrained
system, which results to be always feasible. If all the inequali-
ties (37) provided by all maps are considered, one has a system
of m(m + n)(m + n− 1) inequalities. Since the SM approach
guarantees that each set contains the true feature position, the
latter will satisfy all the constraints in (37) for each i. To get
the tighter constraints from (37), one can choose as “minimum”
distance between set j and k the maximum of all minimum dis-
tances (and similarly as “maximum” distance, the minimum of
all maximum distances). This leads to

mj −Mk = max
i=1,...,m

(
Ci

j− − Ci
k+

)
,

Mj −mk = min
i=1,...,m

(
Ci

j+ − Ci
k−

)
.

(38)

This time, however, the constraints provided by (38) will not
generally be compatible, thus giving an overconstrained, un-
solvable linear system. In order to get a solution (Mk, mk),
k = 1, . . . , m + n, it is possible to relax system (38) into a
Linear Programming (LP) problem, where each of the equality
constraints is transformed into a suitable inequality, while the
objective function can be chosen so that the global map uncer-
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tainty is minimized. This leads to the following LP problem

min
mk ,Mk

k=1,...,m+n

∑

k=1,...,m+n

Mk −mk

subject to the constraints

mj −Mk ≤ max
i=1,...,m

(Ci
j− − Ci

k+), j > k;

Mj −mk ≥ min
i=1,...,m

(Ci
j+ − Ci

k−), j > k;

mk −Mk ≤ 0, k = 1, . . . , m + n;

m1 = 0.

(39)

The last equality constraint fixes a point of the map as a com-
mon reference for all robots.

By solving problem (39), one obtains the maximum and min-
imum values for the uncertainty interval of each feature, and
thus the map (central estimate plus interval width) merging all
the information. Notice that the solution of problem (39) pro-
vides the minimum uncertainty map (in the sense defined by the
chosen cost function) satisfying all the compatible constraints
of equations (38), the other constraints being relaxed of the min-
imum quantity needed to guarantee solvability of the system.

B. Dynamic SM-SLAM initialization

As stated before, the use of boxes permits to transform the
generic 2D map fusion problem into two 1D problems, by con-
sidering separately the x and y coordinates. Therefore, a 2D
map fusion requires the solution of just two LP problems in the
form (39). The resulting map can be used as the initial condi-
tion for the dynamic multi-robot SM-SLAM algorithm of Sec-
tion III-A. In particular, in the Step 0 of the algorithm, the
approximate feasible position sets Rpi

(0|0), RLj
(0|0) are ob-

tained from the 2D map computed via the two LP optimizations,
while the intervals [Θi(0)−εvθ (0), Θi(0)+εvθ(0)] can be cho-
sen as feasible orientation intervals Roi

(0|0). Then, the time
recursion can start, and Steps 1-6 can be repeated for each time
instant k.

V. SIMULATION RESULTS

The performances of the proposed multi-robot SLAM strat-
egy have been tested via numerical simulations. More specif-
ically, both static and dynamic simulations have been per-
formed, in order to evaluate separately the map fusion algorithm
and the multi-robot SM-SLAM algorithm.

A. Static simulations

First, a static setting has been considered. In order to quan-
tify the improvement provided by map fusion (performed as
in Section IV) over single-robot set-valued maps, several sim-
ulations with increasing number of robots (m ≥ 2) and non-
sensing distinguishable features (n ≥ 0), randomly spread over
a fixed area, have been performed. During these experiments, it
was assumed that every robot was able to correctly identify and
perform measurements on any other feature present in the envi-
ronment (i.e., occlusions were not considered). A more realistic
scenario will be adopted when performing dynamic simulations
(see Section V-B).

TABLE I
PERCENTAGE OF MAP UNCERTAINTY REDUCTION ACHIEVED BY THE MAP

FUSION ALGORITHM: (A) WITH RESPECT TO THE AVERAGE UNCERTAINTY

OF THE SINGLE-ROBOT MAPS; (B) WITH RESPECT TO THE UNCERTAINTY

OF THE BEST SINGLE-ROBOT MAP.

m \ n 0 1 2 3 4 5

2 72.8 63.6 52.8 46 45.4 43.6
3 74.3 71.2 67.4 63.8 64.2 57.7
4 77.3 74.9 72.4 70.4 69.2 67.6
5 79.1 77.8 76.4 74.8 72.8 72.2
6 80.8 80 78.9 77.6 76.9 75.8

(a)

m \ n 0 1 2 3 4 5

2 71.9 44.5 31.6 25 21.5 18.7
3 54.6 48.6 43.8 36.9 35.1 31.7
4 54.3 50.8 47.4 42.4 43.2 39.3
5 57.1 52.7 51.5 48.9 46.8 45
6 57.3 57.1 55.3 53.2 51.4 48.8

(b)

The errors on robot absolute orientation measurements have
been neglected (which amounts to consider εvθ ≈ 0), while er-
rors on distance and orientation measurements have been gener-
ated as i.u.d. (independent uniformly distributed) signals, satis-
fying (9) and (10) with constant bounds εvα = 3◦ for the latter,
while the bounds on the former depend quadratically on the dis-
tance measured, i.e. εvdi (k) = κd d2

i (X(k)), with κd = 0.003.
This is a standard model for robots using stereovision data to
extract landmark information [21].

During the experiments, each agent performs measurements
on all the features present in the environment and builds a self-
referenced set-valued map (thus, uncertainty affecting the sens-
ing robot will always be zero in this map). All the maps are then
merged, as explained in Section IV, to produce the multi-robot
map. The quality of the resulting map is evaluated in terms of
the sum of the uncertainty areas of all the features, hereafter
denoted as “map uncertainty”. Box approximations have been
employed, so that two 1D map fusions are performed, as in Sec-
tion IV-A.

Results are summarized in Tables I-a and I-b, where it is re-
ported the reduction achieved by the multi-robot map uncer-
tainty with respect to the average uncertainty of the single-robot
maps (Table I-a) and to the uncertainty of the “best” single-
robot map, i.e. the single-robot map with minimum map uncer-
tainty (Table I-b). Percentages are evaluated over 100 different
experiments, for each value of m and n.

The result of a typical run of the map fusion algorithm, for
the case m = 4, n = 0 is shown in Figures 3 and 4: in Figure 3
the four self-referenced set-valued maps are presented, while
the set-valued map produced by the proposed fusion algorithm
is reported in Figure 4.

Some remarks can be made by inspection of results in Ta-
bles I-a and I-b. Uncertainty reduction provided by the map
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Fig. 3. Self referenced set-valued maps produced by each robot, in a scenario
with m = 4 and n = 0. All maps have been translated to a common reference
system, to facilitate comparison among maps.

fusion algorithm becomes more significant when the number
m of robots (and consequently of available maps) increases.
This happens because more maps will generally provide over-
all tighter constraints, in the map fusion step. Notice that such
improvement occurs also with respect to the best single-robot
map, and therefore it cannot be attributed to a worse quality of
some of the single-robot maps. In addition, for a fixed number
of robots, improvements get less remarkable as the number n

of non-sensing features increases. As a matter of fact, adding
non-sensing features to the environment increases the map un-
certainty without providing additional means for uncertainty re-
duction. Also this trend is confirmed by both tables.

B. Dynamic simulations

Several simulation experiments have been carried out to test
the performances of the dynamic multi-robot SM-SLAM algo-
rithm described in Section III. The proposed algorithm has been
tested in a setting where four moving agents explore an area
where a certain number of distinguishable landmarks is present.

In order to take into account some practical problems such as
occlusions or the impossibility to perform measurements on far
(out-of-field) features, two different sensor models have been
employed.

1) Stereovision model: in this scenario, it is assumed that
the robots are equipped with an omnidirectional stereo
system. Under this assumptions, the expressions for εvα

and εvd are those of Section V-A, i.e. εvdi = κdd
2
i (X(k))

and εvα is constant. In addition, to take into account the
limited sensing range, all features that are farther than a
fixed distance are considered non detectable, and conse-
quently no measurement is performed on them.
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Fig. 4. Map provided by the set-valued map fusion algorithm for the four maps
of Figure 3.

2) Rangefinder model: in this scenario, it is assumed that
the robots take measurements on the other features using
a rangefinder. Under this assumption, both distance and
relative orientation measurements are affected by errors
that are almost independent from the actual distance or
orientation. This implies that εvα and εvd are constant.
However, rangefinders usually provide correct measure-
ment for a limited range of distances and a limited range
of relative orientations. To take into account these lim-
itations, each agent can perform measurements only on
features that lie within a fixed distance and whose angle
between robot orientation and their direction is smaller
than a fixed value.

Notice that in both scenarios agents are generally not able
to perform measurements on all the features present in the en-
vironment. This implies that only a subset of the state vector
is involved at each time step: nonetheless, the SM-SLAM al-
gorithm presented in Section III operates correctly also under
partial information conditions.

All the performed tests are carried out in the following setup.
Robots move in the unknown environment, covering rough
squares. For each agent, disturbance wi(k) on the motion
model is generated as a nonstationary i.u.d. signal, with mean
value proportional to the distance covered during the last robot
move (the longer is the path covered, the bigger are the odo-
metric errors). In Figure 5 a typical simulation run is depicted.
For the sake of readability, only two of the four robot trajec-
tories are reported, together with some of the computed robot
uncertainty boxes.

At the beginning of each experiment, one map fusion is
performed after the first exteroceptive measurements at time
k = 0. Only features that are perceived by all the agents are
considered during this stage. Other features appearing in at
least one single-robot map are then added to the common map,
exploiting the uncertainty resulting from the map fusion algo-
rithm. Notice that it is only required that one feature is present
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in all the single-robot maps. Anyway, this is not a restric-
tive assumption, because each robot can perform a single-robot
SLAM, until a common feature is detected by all the robots.
After this initialization step, the algorithm presented in Sec-
tion III-A is run. During the experiments, the odometry error
bound on position is set to 10% of the distance covered, the
odometry error bound on orientation is equal to 3◦ and the ab-
solute orientation error bound εvθ (affecting the compass) to 2◦.

Two different sets of simulations, for each sensor model,
have been carried out. In the first scenario, all the robots
are equipped with omnidirectional stereo systems. The un-
certainty bound on relative angle measurements is εvα = 3◦,
while the constant for the bound on distance measurements is
κd = 0.002. Any feature farther than 50 m can not be detected
by the sensor. Ten static landmarks are spread out in a region
of about 104 m2. In the second scenario, all the robots are
equipped with rangefinders. The uncertainty bound on relative
angle measurements is εvα = 3◦, while the bound on distance
measurements is εvd = 0.05 m. Any feature farther than 30 m,
or with a relative angular distance greater than 90◦ is not de-
tected by the sensor. Eight static landmarks are spread out in a
region of about 1600 m2.

Figures 6, 7 and 8 compare the results provided by the multi-
robot SLAM approach to those of the single-robot algorithm, in
the first scenario. Results are averaged over 300 experiments.
Figure 6 shows the average area of the four robot uncertainty
boxes, computed by each agent via the single-robot SM-SLAM
(dashed lines) and by applying the proposed multi-robot SLAM
algorithm (solid line). In the single-robot case, the average at
time k is made over the number of robots detected up to time
k (see bottom of Figure 6). Since in the single-robot case only
one agent performs measurements on the environment, while in
the multi-robot case all the robots are active, the average un-
certainty is dramatically reduced by the multi-robot approach.
This happens mainly because the uncertainty of the non sensing
robots tends to increase (i.e., such robots “get lost” after some
time). More significantly, Figure 7 reports the uncertainty af-

fecting the active agent in one of the single-robot SLAM runs,
compared with the uncertainty of the same robot in the multi-
robot run. The initial gap between the two plots is due to the
fact that in the single-robot case the reference system of the ac-
tive robot is assumed known, while for the multi-robot case an
initial map fusion is needed. Nevertheless, it can be observed
that the remarkable uncertainty growth due to the fact that the
robot moves far away from its initial position, disappears when
the multi-robot strategy is adopted. This means that the robot
is able to precisely localize itself also at large distances from
its starting point, thanks to the fact that the other agents have
constructed a good map of initially faraway areas, by reducing
the uncertainty affecting landmark positions.

In Figure 8 the average area of uncertainty boxes for the de-
tected landmarks is reported. Once again, it can be seen the
clear improvement provided by the multi-robot SLAM tech-
nique. Analogous results, in the case of robots equipped with
rangefinder-like sensors, are reported in Figures 9, 10 and 11.
With this kind of sensor model (and due to the trajectory fol-
lowed by each agent, see Figure 5), the uncertainty area of
a robot exhibits the typical periodic behavior depicted in Fig-
ure 10, both in the single-robot and in the multi-robot case.
This is due to the limited field of view of the sensor, that al-
lows a robot to detect only a small subset of features, especially
in the parts of the trajectory in which the robot points “outside”
the environment. Notice how the higher precision of the sensor
results in a relatively less significant improvement of the multi-
robot SLAM with respect to the single robot case, especially
in terms of uncertainty of the sensing agent (Figure 10). Nev-
ertheless, the advantage in the construction of the map is still
remarkable (see Figure 11).

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

A set membership approach to the problem of simultaneous
localization and mapping for a team of mobile robots has been
proposed. Simulation results demonstrate that the improvement
of multi-robot SLAM with respect to the single-robot case is
remarkable, both for static map fusion and for dynamic local-
ization and map updating.

The computational burden of the proposed algorithm is fairly
low, because set approximations are based on recursive inter-
sections of simple 2D sets (e.g. boxes).

Future investigations may concern the challenging problem
of multi-robot localization and mapping for a team of indistin-
guishable agents. This requires a preliminary matching stage,
in which the features detected by each robot in its own map are
correctly associated to the corresponding features in the other
maps. Open problems are how to exploit set-valued maps in
order to exclude unfeasible matchings or detect possible ambi-
guities, as well as the formulation of efficient algorithms that
can tackle the matching problem with a reasonable computa-
tional effort.

Another important open issue is that of multi-robot motion
planning in a set membership setting. The main objective in this
case is to use the set-valued uncertainty representation in order
to design trajectories of the robots according to some meaning-
ful performance indices. For example, one may want to mini-
mize the overall map uncertainty, when exploring unknown en-
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line) SM-SLAM: average landmark uncertainty (top); average number of de-
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vironments, or alternatively to reduce the average robot uncer-
tainty during the accomplishment of a prescribed task, such as
a coordinated action or the transfer from an assigned configura-
tion of the multi-robot system to another.
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