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Abstract

Electricity markets can be designed in different ways. One rule that is sometimes enforced is the uniform purchase

price. Under this pricing method, all the consumers pay the same price regardless of the zone they belong to. By

contrast, each producer receives its zonal price. This asymmetry in the price paid and received makes the clearing

process not easily treatable through standard optimization techniques. Within the framework of marginal pricing, this

paper shows how it is possible to formulate the market clearing problem with uniform purchase price and zonal

selling prices as a computationally tractable mixed integer linear programming problem. The proposed approach is

tested using real data from the Italian day-ahead market, which is actually based on the aforementioned rule.

Index Terms

Uniform purchase price, market clearing, marginal pricing, bilevel programming, binary expansion, power system

economics.

NOMENCLATURE

A. Sets and Indices

Zπ Set of UPP zones.

Zζ Set of non-UPP zones.

Z Set of all zones, Z = Zπ ∪ Zζ .

i Market zone index, i ∈ Z .

Kπ
i Set of UPP consumers in zone i ∈ Zπ , Kπ = ∪iK

π
i .

K
p
i Set of non-UPP consumers in zone i ∈ Zπ , Kp = ∪iK

p
i .

K
ζ
i Set of consumers in zone i ∈ Zζ , Kζ = ∪iK

ζ
i .

Ki Set of all consumers in zone i ∈ Z , K = ∪iKi.

Pi Set of all producers in zone i ∈ Z , P = ∪iPi.

† Corresponding author (e-mail: savelli@diism.unisi.it).
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B. Constants

pd
k

Price submitted by consumer k in e/MWh, which repre-

sents the maximum price he/she is willing to pay in order

to buy the quantity dk .

psp Price submitted by producer p in e/MWh, which represents

the minimum price he/she is willing to receive in order to

sell the quantity sp.

dmax
k

Maximum quantity demanded by consumer k, in MWh.

smax
p Maximum quantity offered by producer p, in MWh.

mk Economic merit order for consumer k, lower values

mean higher priority. If pd
h
> pd

k
then mh < mk , with

k, h ∈ Zπ . If pd
h
= pd

k
the merit order is assigned by the

market operator.

Fmax
ij Maximum flow capacity from zone i to j, in MWh.

B Number of bits used in the binary conversion.

c Number of significant digits in the binary conversion.

C. Variables

dk Allocated/executed demand quantity for consumer k, in MWh.

sp Allocated/executed supply quantity for producer p, in MWh.

π Uniform purchase price, in e/MWh.

ζi Zonal price in zone i, in e/MWh.

u
g
k

Binary variable, if u
g
k
= 1 then pd

k
> π.

ue
k

Binary variable, if ue
k
= 1 then pd

k
= π.

Fij Flow from zone i to j, in MWh.

ϕd
k

Dual variable of constraint dk ≤ dmax
k

.

ϕs
p Dual variable of constraint sp ≤ smax

p .

δmax
ij Dual variable of constraint Fij ≤ Fmax

ij .

ηij Dual variable of constraint Fij + Fji = 0.

D. Auxiliary Variables

y
gπ
k

Auxiliary variable, it replaces the product u
g
k
π.

y
gζ
ki

Auxiliary variable, it replaces the product u
g
k
ζi.

yed
k

Auxiliary variable, it replaces the product ue
k
dk .

yeπ
k

Auxiliary variable, it replaces the product ue
k
π.

y
eϕ
k

Auxiliary variable, it replaces the product ue
k
ϕd
k

.

y∆b
ji Auxiliary variable, it replaces the product (π − ζi)bji.

bji Binary variable, used to convert an integer in binary form.

I. INTRODUCTION

Since electricity is a strategic commodity, policy makers may establish rules that force energy markets to deviate

from economic principles in favour of specific social targets. One of these rules is the uniform purchase price (UPP).
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Assuming a multi-zone market, its main characteristic is that each zone can potentially have its own zonal price at

which producers are rewarded, but the price paid by all the consumers has to be unique. This rule is implemented

for example in the Italian day-ahead market [1].

The UPP π is defined as a weighted average of the zonal prices ζi, with weights given by the quantities allocated

to the consumers within each UPP zone, i.e., the zones where the UPP pricing method is enforced. Formally,

π =

∑

i∈Zπ

∑

k∈Kπ
i
dkζi

∑

k∈Kπ dk
. (1)

Notice that (1) can be generalized in different ways [2], [3]. However, the form (1) is usually adopted because it

ensures that the amount paid by consumers covers exactly the revenues for both the producers and the transmission

system operator [2].

In the present paper, the term producer refers generically to an operator who submits a sell order, also termed

supply or offer order. An offer order is a pair (smax
p ; psp), where smax

p is the maximum quantity that the pth

producer is willing to sell and psp is the minimum price requested. Similarly, the term consumer refers generically

to an operator who submits a buy order, also termed demand or bid order. A bid order is a pair (dmax
k ; pdk), where

dmax
k is the maximum quantity that the kth consumer is willing to buy, paying a price not more than pdk. Specifically,

the consumers k ∈ Kπ that pay the UPP are termed UPP consumers. Notice that we assume piecewise-constant

market curves (Fig. 1).

Under the UPP definition (1), we can state the UPP rule as follows. All bid orders with submitted price pdk

strictly greater than the UPP, i.e., in-the-money orders, have to be fully accepted. The bid orders at the same price

as the UPP, i.e., at-the-money orders, can be partially executed. Those with a submitted price strictly lower than

the UPP, i.e., out-of-the-money orders, have to be fully rejected.

In order to generalize even further the UPP pricing scheme, it is possible to consider the presence of particular

non-UPP consumers k ∈ Kp, belonging to an UPP zone, but excluded from the UPP rule. That is, we assume the

existence of consumers that belong to UPP zones, but pay zonal prices instead of the UPP. For example, bid orders

submitted by pumping units belonging to hydroelectric production plants are usually excluded from the UPP rule.

Market orders belonging to UPP zones are ranked according to a parameter termed economic merit order. This

ranking coincides with the price ranking for orders with different prices. For orders at the same price, the economic

merit order is assigned by the market operator according to a set of hierarchical rules. In the following, lower

values imply higher priority. As long as this ranking is compatible with the problem constraints, the priority in the

execution has to be fulfilled.

Market clearing methods for non-UPP markets as in [4], [5], are usually based on the social welfare maximization

[6], [7], [8], which is defined as follows:

max
dk,sp

∑

k∈K

pdkdk −
∑

p∈P

pspsp . (2)

This approach is adopted because, in a competitive market, the equilibrium obtained in (2) is Pareto-optimal [9]

and economically efficient, i.e., it maximizes the aggregate consumer and producer surplus [10]. However, it also
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Fig. 1. Consumer and producer surplus. In red the supply curve. In blue the demand curve. The zonal price is given by the intersection of the

two curves.

implies that both the demand and supply orders, belonging to the same zone, have to pay and receive the same

price, i.e., the zonal price (Fig. 1) [7]. For this reason, the UPP market clearing problem cannot be solved by using

the traditional social welfare maximization (2).

To the best of our knowledge, UPP-like problems have been addressed only in a limited number of references with

different techniques. In [11] a UPP problem is handled within the context of the consumer payment minimization

problem by using a multi-period single-bus model with inter-temporal constraints, assuming an inelastic demand

and no network flows. In that work the market price is defined as the highest accepted supply order.

In [3] the problem of having mixed pricing rules in multi-zone markets is addressed by formulating a com-

plementarity program [12], which is further extended to reserve capacity in [13]. Block and complex orders are

also considered in [14]. The strength of the complementarity programming approach is that it allows to satisfy a

set of conditions involving simultaneously both consumer and producer objectives. However, as acknowledged by

the authors in [3], it is not always possible to revert this group of conditions back to an originating optimization

problem. This means that it might be impossible to recast a complementarity program as an optimization problem

with a well specified objective function [15].

A heuristic method for solving the UPP problem is based on the UPP optimization searching procedure [2]. In

this approach, the UPP is iteratively selected among the prices belonging to the submitted bid orders, starting from

the value of zero. Then, for each selected and fixed UPP price, the demand orders are accepted or rejected according

to the UPP rule. Afterward, a social welfare maximization problem is run to obtain the values of the remaining

variables. This process is iterated until all the submitted demand prices are explored and then the optimum solution

is selected among the feasible candidates which yield the maximum value of the objective function. One problem
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of this approach is that it is based on a heuristic search procedure which forces the algorithm to explore all the bid

orders, making the process computationally intensive.

The European algorithm for market coupling (EUPHEMIA) currently must handle a UPP problem when it clears

the Italian market [8]. This market is characterized by the PUN, i.e., the unique national price paid by all the

consumers in the Italian UPP zones, and EUPHEMIA still relies on a heuristic search procedure to solve this

problem. At the beginning, the algorithm computes an early solution considering all the possible types of European

orders but without enforcing the UPP rule for the Italian market. This step is used to fix all the binary variables.

Then, a specific search procedure is used to compute the PUN. In this case, the bid orders are explored heuristically

until a solution is found that falls within an accepted tolerance range. If the solution is incompatible with the

European constraints, the algorithm starts a new cycle from the beginning. The problem of this method is that it

has to go through many steps in order to accommodate all the possible European orders, which makes the overall

procedure very cumbersome. In particular, the introduction of the Italian PUN in February 2015 led to a significant

increase in the computation time needed to reach an initial feasible candidate solution [16].

Examples of electricity markets with asymmetries between paid and received prices exist also in the US. For

instance, in the Californian market producers receive the nodal prices, whereas consumers pay the zonal prices

[17]. The nodal prices are computed through a security constrained unit commitment involving the minimization

of procurement costs. Then, the zonal prices are obtained with an ex-post process as a load-weighted average of

the nodal prices within each zone. This differs from the UPP framework of this paper, where purchase price and

selling prices have to be computed simultaneously, and considering elastic market curves for both consumers and

producers.

As described above, the existing techniques to deal with the UPP pricing scheme are limited and mainly iterative

and/or heuristic. In this context, the contribution of this paper is to propose a heuristics-free and exact mathematical

formulation for the UPP market clearing problem, with a coherent interpretation in economic terms. More precisely,

the proposed model is developed in three steps. First, a specific non-linear bilevel program is formalized to address

the UPP problem. Second, to gain access to market prices, the bilevel model is translated into an equivalent single

level problem by exploiting the linear form of its lower level part and the strong duality property. Then, all the

non-linearities are removed by using a binary expansion and appropriate auxiliary variables. The final formulation

results in a single, computationally tractable mixed integer linear program (MILP), which can be efficiently solved

using state-of-the-art solvers. We stress that the solution obtained from this final model is exact, at least at the level

of resolution of current market prices and volumes.

The remaining sections of this paper are organized as follows. Section II shows the MILP model and how it

is developed starting from a non-linear mixed integer bilevel program. In Section III, the results obtained with

our model are compared with real data from the Italian day-ahead market, highlighting the most relevant findings.

Finally, Section IV outlines the conclusions and ongoing work.
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II. THE MODEL

The UPP problem cannot be solved by using the standard social welfare maximization. Still, it would be desirable

to find a formalization within a marginal pricing framework, in which the dual variables of the relevant power

balance constraints represent the zonal prices. However, great care has to be adopted when using the marginal

pricing framework with the UPP, because in this case, within the same zone, the bid and offer orders may be

valued at two different prices. The bilevel model proposed hereafter makes it possible to overcome this problem

and provides a formulation consistent with well developed and accepted theory on spot market pricing [6], [7]. This

section provides a detailed step-by-step description of how the final model is obtained.

A. Step 1 - The Bilevel Model

The proposed MILP model for market clearing with UPP is built starting from a non-linear bilevel problem with

both binary and continuous variables. In general, a bilevel model is composed by two nested optimization problems

[18]:

max
x∈X

F (x, y∗) (3)

s.t. y∗ = max
y∈Y

f(x, y) , (4)

where (3) is the upper level problem with objective function F , (4) is the lower level problem with objective function

f , and X , Y represent generic constraint sets. Indeed, a bilevel model can be regarded as if it were a two-step

optimization with two different, but intrinsically related, optimization problems. Historically, bilevel models trace

back to the field of game theory, and in particular, to the class of non-cooperative Stackelberg games [15], [18].

These games are also called leader-follower, because the upper level problem can be regarded as a leader who acts

in its own interest and before the follower, that, in turn, is represented by the lower level problem. The key feature

of the bilevel approach is that the decision variables x of the upper level enter the lower level problem as fixed

parameters. This means that the resulting optimum values y∗ of the lower level are parametrized by the decision

variables of the upper level, i.e., y∗ = y∗(x).

In our model, the upper level handles the UPP rule and all the binary variables, which therefore enter the lower

level as parameters. In turn, the lower level solves a specific optimization problem to clear the market and to

obtain the correct zonal prices, which are used to compute the UPP within the upper level problem. A schematic

representation of the proposed bilevel model is shown in Fig. 2.
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u
g

k , u
e
k

d∗k , ζ
∗

i

Upper Level

• Objective
Max Gross Consumer Surplus

• Variables
u
g

k in-the-money orders
ue
k at-the-money orders

π UPP value

• Purpose
UPP computation
Enforcing the UPP rule
Enforcing merit orders

Lower Level

• Objective
Max Social Welfare (and dispatch of

in-the-money UPP-Consumers)

• Variables
dk consumers’ cleared quantity
sp producers’ cleared quantity
Fi,j inter-zonal flows
ζi zonal prices (dual)

• Purpose
Market Clearing

Fig. 2. Scheme of the bilevel optimization model. The upper level variables u
g
k

and ue
k

enter the lower level as parameters. In turn, the optimum

values d∗
k

and ζ∗i of the lower level variables dk and ζi are inputs to the upper level.

The upper level problem is defined as follows:

max
u
g

k
,ue

k
,π

∑

k∈Kπ

u
g
kp

d
kd

max
k +

∑

k∈Kπ

ue
kp

d
kdk

∗ (5)

s.t. π
(

∑

k∈Kπ

u
g
kd

max
k +

∑

k∈Kπ

ue
kdk

∗
)

=

∑

i∈Zπ

ζ∗i

(

∑

k∈Kπ
i

u
g
kd

max
k +

∑

k∈Kπ
i

ue
kdk

∗
)

(6)

u
g
k

(

pdk − π − ε
)

≥ 0 ∀k ∈ Kπ (7)

ue
k

(

pdk − π
)

= 0 ∀k ∈ Kπ (8)

u
g
h ≥ u

g
k ∀h, k ∈ Kπ : mh < mk (9)

u
g
h ≥ ue

k ∀h, k ∈ Kπ : pdh > pdk (10)

u
g
k ∈ {0, 1} , ue

k ∈ {0, 1} ∀k ∈ Kπ, (11)

where ε is an arbitrarily small positive constant. Notice that in (5) and (6) d∗k and ζ∗i are solutions of the lower

level problem.

The aggregate market demand curve of the UPP consumers, i.e., the collection of all the individual demand

orders (dmax
k ; pdk) with k ∈ Kπ , can be graphically represented by a non-increasing piecewise-constant function

(Fig. 3). The upper level objective function (5) relies strongly on this characteristic. Indeed, it maximizes the gross

consumer surplus [19], which is the “trapezoidal” area beneath the aggregate demand curve made by the sum of

two components: an upper part denoted by “A” in Fig. 3, which is the net consumer surplus (commonly referred to
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Fig. 3. Aggregate demand curve, π = 20 e/MWh. The part A is the (net) consumer surplus. The amount actually paid by consumers is the

rectangular part B. The “trapezoidal” area A+B is the gross consumer surplus.

as consumer surplus), and a lower rectangular part, which is the amount actually paid by consumers. Exploiting the

downward shape of the aggregate demand curve, the maximization of this trapezoidal area implies the maximization

of the upper part “A”, which coincides with the maximization of the consumer surplus. Together with (6)-(11), this

means that all the bid orders are executed as long as they cause an increase in consumer surplus, which is the goal of

each rational consumer and a requirement for a true social welfare maximization. Note that this method maximizes

also the executed quantities of the at-the-money bid orders (pdk = π). Constraint (7) implies that the variable u
g
k

can be equal to one only if the price pdk is strictly greater than the UPP. Constraint (8) implies that the variable ue
k

can be equal to one only if the price pdk is exactly equal to the UPP. Note that u
g
k and ue

k cannot be both equal to

one, and this is a key element. Constraint (9) is used to enforce the consecutiveness of the economic merit order

for the bid orders strictly greater than the UPP. It also imposes, together with (10), the sequential execution of bid

orders, which leads to a significant reduction in the search space of the binary variables, leading to a considerable

reduction in the computation time. Constraint (6) is the UPP definition.

Remark 1: In electricity markets there exist the concepts of paradoxically rejected orders (PROs) and paradoxically

accepted orders (PAOs). PROs are in-the-money orders that are not executed, while PAOs are out-of-the-money

orders that are accepted. In particular, when considering a UPP pricing scheme, PROs are orders with submitted

price pdk > π which are not executed. This happens when the execution of these orders would lead to an increase

in the UPP so large to make them actually out-of-the-money, as a joint effect of the UPP rule and the shape of

the aggregate offer curve, which is a non-decreasing piecewise-constant function (see Fig. 4). Notice that, if PROs

are not allowed, the market clearing problem under the UPP rule might be infeasible. In the proposed bilevel

formulation, a PRO occurs when u
g
k = 0 and pdk > π, which is allowed due to the specific formulation of (7). By
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contrast, the conditions (7)-(8) always exclude the occurrence of PAOs. Indeed, if u
g
k = 1 then pdk > π, i.e., the

executed order is in-the-money, whereas if ue
k = 1 then pdk = π, i.e., the executed order is at-the-money. Notice

that a solution with a PRO is acceptable. On the contrary, a PAO would exhibit a design fallacy because it implies

that a consumer should pay a price greater than the maximum price he/she is willing to pay.

Now, we examine the lower level problem, which is defined as follows :

(

d∗k, s
∗
p, F

∗
ij , [ζ

∗
i ]
)

= arg max
dk,sp,Fij

∑

k∈Kζ

pdkdk +
∑

k∈Kp

pdkdk

+
∑

k∈Kπ

ue
kp

d
kdk −

∑

p∈P

pspsp (12)

s.t.

dk ≤ dmax
k [ϕd

k ≥ 0] ∀k ∈ K (13)

sp ≤ smax
p [ϕs

p ≥ 0] ∀p ∈ P (14)

Fij ≤ Fmax
ij [δmax

ij ≥ 0] ∀i, j ∈ Z (15)

Fij + Fji = 0 [ηij ∈ R] ∀i, j ∈ Z (16)

∑

k∈K
p
i

dk +
∑

k∈Kπ
i

ue
kdk −

∑

p∈Pi

sp +
∑

j∈Z

Fij =

−
∑

k∈Kπ
i

u
g
kd

max
k [ζi ∈ R] ∀i ∈ Zπ (17)

∑

k∈K
ζ
i

dk −
∑

p∈Pi

sp +
∑

j∈Z

Fij = 0 [ζi ∈ R] ∀i ∈ Zζ . (18)

Notice that dual variables are represented in square brackets in (12)-(18). The objective function (12) is a social

welfare maximization for: 1) all the orders in the non-UPP zones; 2) all the orders of the non-UPP consumers

within the UPP zones; 3) all the at the money orders of the UPP consumers within the UPP zones (which can be

partially executed). For all the in the money orders of the UPP consumers within the UPP zones it behaves as a

simple optimal constrained economic dispatch [19]. In fact, the quantities of these orders must be fully executed

(dk = dmax
k ) and dispatched. In this sense, the logic of the lower level problem is similar to [2]. Notice that, if

there are only in-the-money bid orders, then the market price coincides with the marginal cost of the marginal

producer, i.e., the minimum price in the supply curve requested to dispatch all the allocated bid quantities. The

constraints (13)-(14) enforce bounds on the desired quantities for consumers and producers. Constraints (15)-(16)

set the inter-zonal flow capacities, and notice that (16) implies Fi,i = 0. The equation (17) represents the power

balance within each UPP zone i ∈ Zπ . In those zones, with the exception of the non-UPP consumers, the quantities

associated with the bid orders whose price is strictly greater than the UPP, i.e., u
g
k = 1, have to be fully executed

and dispatched. The quantities associated with the bid orders whose price is exactly equal to the UPP, i.e., ue
k = 1,

can be partially executed. Constraint (18) represents the power balance for non-UPP zones. Notice that the lower

level problem is a linear program (LP), because the binary variables u
g
k and ue

k are fixed parameters inside the

lower level. The proposed approach relies deeply on this characteristic.
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The variables d∗k, s
∗
p, F

∗
ij , ζ

∗
i represent the solution of the lower level problem for fixed u

g
k and ue

k. Notice that

ζ∗i are dual variables and it is fundamental to gain access to those variables to compute the UPP in (6). For doing

this, in the next subsection we recast the above bilevel model as a single level problem.

Remark 2: Bilevel models are usually non-cooperative as in the case of Stackelberg games [15], [18], i.e., the

objective function of the upper level differs substantially from the one of the lower level. However, in power system

economics these models are sometimes implemented as cooperative games, i.e., the objective functions of the upper

and lower level coincide (usually being either a social welfare maximization or a cost minimization). In these cases,

the bilevel model is not used to build a game, but only to get access to the dual variables of the power balance

constraints, which represent the market prices in the marginal pricing framework [15], [20], [21]. In this paper,

we adopt a hybrid approach, where the upper level (the leader problem) maximizes the gross consumer surplus,

while enforcing the UPP rule and the merit orders. In turn, the lower level (the follower problem) clears the market

through a social welfare maximization, while enforcing the dispatch of in-the-money UPP orders determined by

the upper level.

B. Step 2 - The Single Level Equivalent Model

In terms of complexity, a bilevel problem belongs to the class of strongly NP-hard problems [18]. For this reason,

in this section we show how the bilevel model is transformed into an equivalent, computationally tractable single

level problem.

The constraints (6)-(11) and the objective function (5) remain unchanged in the single level problem, with the

only difference that, since both the primal and the dual variables of the lower level become decision variables of

the single level, (5) is recast as:

max
u
g

k
,ue

k,π,dk,sp,Fij ,

ζi,ϕ
d
k,ϕ

s
p,δ

max
ij ,ηij .

∑

k∈Kπ

u
g
kp

d
kd

max
k +

∑

k∈Kπ

ue
kp

d
kdk . (19)

Notice that the starred notation used in (5)-(11) has been removed because in the single level model there is no

distinction between upper and lower level variables.

The part that significantly changes is the lower level. We recall that the lower level is an LP problem because

the binary variables u
g
k and ue

k enter the lower level as parameters. Therefore, it can be directly inserted into the

single level by using its first order Karush-Kuhn-Tucker (KKT) conditions, where, equivalently, the complementary

slackness is replaced by the strong duality property [15], [22], [23]. It follows that the lower level is substituted
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with the optimality conditions:

∑

k∈Kζ

pdkdk +
∑

k∈Kp

pdkdk +
∑

k∈Kπ

ue
kp

d
kdk −

∑

p∈P

pspsp =

∑

k∈Kπ

ue
kϕ

d
kd

max
k +

∑

k∈Kp∪Kζ

ϕd
kd

max
k +

∑

p∈P

ϕs
ps

max
p

+
∑

i∈Z

∑

j∈Z

δmax
ij Fmax

ij −
∑

i∈Zπ

∑

k∈Kπ
i

ζiu
g
kd

max
k (20)

ϕd
k + ζi ≥ pdk ∀ k ∈ Ki, ∀i ∈ Z (21a)

ϕs
p − ζi ≥ −psp ∀ p ∈ Pi, ∀i ∈ Z (21b)

δmax
ij + ηij + ηji + ζi = 0 ∀ i, j ∈ Z (21c)

dk ≤ dmax
k ∀ k ∈ K (22a)

sp ≤ smax
p ∀ p ∈ P (22b)

Fij ≤ Fmax
ij ∀ i, j ∈ Z (22c)

Fij + Fji = 0 ∀ i, j ∈ Z (22d)

∑

k∈K
p
i

dk +
∑

k∈Kπ
i

ue
kdk −

∑

p∈Pi

sp +
∑

j∈Z

Fij =

−
∑

k∈Kπ
i

u
g
kd

max
k ∀i ∈ Zπ (22e)

∑

k∈K
ζ
i

dk −
∑

p∈Pi

sp +
∑

j∈Z

Fij = 0 ∀i ∈ Zζ . (22f)

The constraint (20) represents the strong duality property, i.e., at the optimum the value of the objective function

of the primal problem (12) must be equal to the value of the objective function of its dual problem. A fundamental

characteristic is that for an LP this property implies the complementary slackness (see [15, Ch. 6], [22, Sec. III], [23,

Ch. 4.5]), which allows us to avoid the use of the KKT conditions. Relations (22a)-(22f) are the primal feasibility

constraints which are exactly the same as (13)-(18), whereas (21a)-(21c) are the feasibility constraints of the dual

problem. Notice that in (12) the terms dk with k ∈ Kπ are meaningful (i.e., they represent the actually executed

volumes) only if ue
k = 1. For this reason, in the right-hand side (RHS) of (20) the terms ϕd

k are multiplied by ue
k

when k ∈ Kπ . We recall that, when ue
k = 0, the executed quantity is dmax

k if u
g
k = 1, and zero otherwise.

C. Step 3 - The exact MILP Equivalent Model

The single level problem (19) subject to (6)-(11), (20)-(22f) is a non-linear mixed integer model. The purpose

of this section is to show how it can be recast as a MILP without introducing any approximation, at least up to

the level of detail of current market data. There are two kinds of non-linearities in the single level model: 1) the

product of a binary variable with a continuous bounded variable; 2) the product of two continuous variables with

a binary variable, which is present only in the UPP definition (6).
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Fig. 4. In blue the demand, in red the supply. The left figure shows a non-UPP zone. The zonal price, i.e., the intersection point of the curves, is

10 e/MWh and only the bid order with price of 16 e/MWh is in-the-money and is executed. The right figure shows the same curves in a UPP

zone, and suppose π = 4 e/MWh. Then, also the bid order with price 6 e/MWh has to be fully executed. As a consequence 20 MWh have

to be dispatched and the zonal price rises to 18 e/MWh (as if the demand was inelastic, i.e., a vertical line). The increase in the zonal price

determines an increase in the UPP, say it becomes 8 e/MWh. Now, the last accepted bid becomes out-of-the-money and it must be rejected.

This bid order is termed Paradoxically Rejected Order.

To linearize the product of a binary and a continuous bounded variable we use a standard approach [24]. Suppose

that we want to eliminate the product ux, where u is a binary variable and x is a continuous bounded variable.

This can be done by introducing another continuous bounded auxiliary variable y, subject to the following two

additional conditions:

M1u ≤ y ≤ M2u (23)

M1(1− u) ≤ x− y ≤ M2(1− u) , (24)

where M1 and M2 are the lower and upper bounds for x. Then, at each occurrence of the product ux, it is replaced

with the auxiliary variable y, and the two additional constraints (23)-(24) are embedded into the single level problem.

Notice that the auxiliary variables become additional decision variables.

To linearize (6) without introducing any approximation, we recast the UPP definition as follows:

∑

k∈Kπ

πu
g
kd

max
k +

∑

i∈Zπ

(

(π − ζi)
∑

k∈Kπ
i

ue
kdk

)

=

∑

i∈Zπ

∑

k∈Kπ
i

ζiu
g
kd

max
k . (25)

The first term in the left-hand side (LHS) and the one in the RHS in (25) can be linearized as shown in (23)-(24).

The challenging part is to find an exact and efficient linear-integer representation for the second term in the LHS,
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namely:
∑

i∈Zπ

(

(π − ζi)
∑

k∈Kπ
i

ue
kdk

)

. (26)

Firstly, notice that the term
∑

k∈Kπ
i
ue
kdk is very often zero, because ue

k can be equal to one only if pdk = π.

Moreover, regardless of the UPP value, if ue
k = 1 this term sums some demand quantities belonging to the same

zone and having the same price. Then, its upper bound can be computed in advance from the demand curves.

Therefore, to linearize (26) we propose a binary expansion as in [25]. The basic idea is to rewrite a positive

bounded integer number in binary form using binary variables. In normal circumstances this process is inefficient

because it increases significantly the number of binary variables involved. However, we exploit the fact that most

of the times the term to be converted is actually zero. The binary form of a positive integer number x requires B

bits to be represented, where B = ⌊log2(x)⌋ + 1, and ⌊y⌋ is the largest integer smaller than or equal to y. This

number represents the amount of auxiliary binary variables needed in our conversion. If the demand quantities dk

are expressed with c decimal digits, the term to be converted has to be multiplied by 10c in order to obtain an

integer value. This allows us to obtain an exact discretization, which leads to an exact solution.

The binary expansion, for given parameters B and c, is made as follows:

0 ≤ yedk ≤ dmax
k ue

k ∀k ∈ Kπ (27)

0 ≤ dk − yedk ≤ dmax
k (1− ue

k) ∀k ∈ Kπ (28)

10c
∑

k∈Kπ
i

yedk =
B−1
∑

j=0

2jbji ∀i ∈ Zπ (29)

bji ∈ {0, 1} ∀j ∈ H, ∀i ∈ Zπ (30)

M1bji ≤ y∆b
ji ≤ M2bji ∀j ∈ H, ∀i ∈ Zπ (31)

M1(1− bji) ≤ (π − ζi)− y∆b
ji ≤ M2(1− bji)

∀j ∈ H, ∀i ∈ Zπ, (32)

where H = {0, . . . , B − 1} and M1, M2 are appropriate lower and upper bounds. The constraints (27)-(28) define

the auxiliary variables yedk , which are used to replace the non-linear product ue
kdk. In (29), the term in the LHS

uses the auxiliary variables yedk to sum the quantities ue
kdk, with k ∈ Kπ

i , and expresses the result as an integer,

while the RHS enforces the actual conversion into the binary form. Finally, (31)-(32) define the auxiliary variables

y∆b
ji , used to replace the products between (π − ζi) and the binary variables bji.

After substituting the terms u
g
kπ and u

g
kζi with their auxiliary variables y

gπ
k and y

gζ
ki by using (23)-(24), the final

UPP definition equivalent to (6) and (25) is:

∑

k∈Kπ

y
gπ
k dmax

k +
∑

i∈Zπ

B−1
∑

j=0

2jy∆b
ji

10c
=

∑

i∈Zπ

∑

k∈Kπ
i

y
gζ
ki d

max
k , (33)

which is a linear equation in the transformed variables. We stress that, given appropriate values for the parameters
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B and c in (29), the linear equation (33) yields the exact UPP. The complete MILP for the UPP market clearing

problem is reported in Appendix A.

Remark 3: In (29), the term in the LHS is almost always zero, because ue
k can be equal to one only if pdk = π,

and the binary expansion in the RHS exploits deeply this characteristic. Indeed, when the LHS is zero, the only

possible value for all the binary variables bji is zero, with a considerable gain in computational speed. This property

is exploited by assigning to the variables ue
k the highest priority in the Branch-and-Bound used to solve the MILP.

Notice also that another computational improvement is achieved by using the constraints (9)-(10) which reduce

greatly the search space of the binary variables by imposing the consecutive execution of the bid orders.

III. RESULTS

In this section we compare the results of our model with real market data downloaded from the website of the

Italian market operator [1]. We recall that the UPP rule is adopted in the Italian day-ahead market and the Italian

UPP is termed PUN. Hereafter, the two terms are used interchangeably. In this market, there are pumping units

which are used to refill the reservoir of hydroelectric production plants, and their demand orders are excluded

from the PUN rule. In our model, these pumping units are represented by the set Kp. The computations were

performed by using GAMS 24.8.5 [26] and Cplex 12.7.1.0 [27] on the NEOS-7 server [28]. The gap, defined as the

relative difference between the best integer and the best remaining node relaxation, was imposed to be zero, i.e.,

the obtained results are guaranteed to be optimal solutions. The initialization value for PUN was set to 50 e/MWh.

In the Branch-and-Bound process, the highest priority was imposed to the binary variables ue
k, then to u

g
k and bij

with equal priority. The values of the parameters in (7) and (29)-(32) are ε=10−6, c=3, B=24, M1=−3000 and

M2=3000. The only assumption made in our computations is that π < 3000 e/MWh, which is a very plausible

assumption. Actually, having a PUN equal to such a value, would mean that in all the PUN zones, simultaneously,

the zonal prices would be 3000 e/MWh, i.e., the maximum value allowed on the Italian market, which is extremely

unlikely. This assumption is used to fix both ue
k = 0 and u

g
k = 1 if pdk = 3000 e/MWh. The Italian market accepts

also bid orders without a specified price. In these cases, the actual price has to be considered equal to 3000 e/MWh.

If inside a PUN zone there were only bid orders without a specified price and no offer orders at all, one dummy

TABLE I

SUMMARY OF THE RESULTS OF THE MILP MODEL

Avg. Timea Avg. # Binary Avg. # Bid Avg. # Offer

May 1st 1.46 363 472 1107

May 2nd 2.05 365 480 1094

May 3rd 1.69 384 480 1226

May 4th 2.18 382 481 1277

a Average Cplex time, as reported by “resource usage” parameter

in GAMS, in seconds.
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offer was added with quantity equal to 10−9 MWh and price zero in order to avoid degeneracy issues.

We test our model using data from May 1st to May 4th, 2010. In all the 96 instances of the MILP problem (one

for each hour of the four days considered), both the zonal prices and the PUN coincide with the true values. Also

the volumes are perfectly matched, with the exception of a possible different allocation in case of partial execution

for those orders with the same price as the one partially executed. This happens because we did not enforce the

economic merit order in that case. However, this requirement can be checked ex-post and the quantities involved

reallocated accordingly. As a summary of the results, Table I reports the computation time and the number of binary

variables, bid orders and offer orders averaged over the 24 hourly instances of the MILP problem solved for each

day.

In Table II we show the detailed results for May 4th. For each hour the following quantities are reported: presence

of market split, the true Italian PUN, the PUN obtained from our model, the computation time, and the number of

binary variables actually used by the model. Notice that market split is the state when the transmission lines are

congested and the zonal prices can differ from one zone to another.

The 4th hour of May 4th represents a case where ue
k = 1. When this happens, the binary expansion (29) effectively

takes place. The bid order involved belongs to the Sicilian zone. It had pdk = 33.36 e/MWh and dmax
k = 1 MWh,

and was partially executed for 407 kWh, which is the value to be converted in binary form. Notice that in this case

the Cplex time required to obtain the final solution is 1.667 seconds (see Table II, row 4), showing that the binary

expansion method is computationally sustainable.

The 24th hour of May 4th exhibits another interesting result. In this case, a bid order is present with dk = 140

MWh, belonging to the pumping unit of the hydroelectric plant of Edolo. During this hour there is market split,

and the zonal prices and the Italian PUN are different. We recall that the pumping units are excluded from the PUN

rule. That order was submitted without price specification so its effect on the clearing problem can be appreciated

only with respect to its quantity. Indeed, our model correctly processes this order and excludes that quantity from

the computation in (33), yielding the correct value for the PUN which is π = 56.011383 e/MWh. If that quantity

was not excluded, the PUN computation would lead to an incorrect value, i.e., 55.998580 e/MWh, with a difference

of 0.012803 e/MWh. Notice that this effect is revealed by the presence of market split, otherwise it would remain

hidden. Indeed, in practical terms, when there is no market split, the PUN and the zonal prices are coincident and

everything works as if the PUN rule were not present.

IV. CONCLUSION

We showed how the UPP problem can be solved starting from a non-linear bilevel model with both continuous

and binary variables and obtaining a single equivalent MILP which is computationally tractable, exact, and solvable

using standard software. The market prices were obtained within the marginal pricing framework, overcoming the

non trivial problem posed by the duality in the paid and received prices.

In the context of the European market clearing, where the introduction of the Italian PUN determined a significant

computational overhead, our model may help solve efficiently at least the Italian part of the problem. We stress that
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the European electricity market is characterized also by other classes of orders, which pose additional burden on

the European market clearing process, as the block orders [4], [5], or the minimum income condition orders [29],

[30]. A block order is a single order that spans over multiple hours, and it must be either fully cleared or fully

rejected [31]. An order with the minimum income condition is a single order that usually spans over the whole

day, and can be cleared only if the producer collects sufficient revenues able to cover at least its fixed and variable

costs [20]. Notice that, in both cases, the indivisible nature of these orders, that span over multiple hours, can lead

to PROs or PAOs. Ongoing work aims at introducing these orders in our framework in order to mimic closer the

European scenario.

TABLE II

RESULTS OF THE MILP MODEL, MAY 4TH

Hour Splita PUN (True) PUN (Model) Timeb # Binary

1 N 38.520000 38.520000 1.487 361

2 N 32.650000 32.650000 1.905 340

3 N 32.480000 32.480000 0.898 321

4 N 33.360000 33.360000 1.319 324

5 N 38.510000 38.510000 1.829 316

6 N 36.000000 36.000000 1.572 346

7 N 47.500000 47.500000 1.708 358

8 Y 60.463068 60.463068 1.480 395

9 Y 68.498829 68.498829 1.723 379

10 Y 73.130026 73.130026 2.391 415

11 Y 74.534459 74.534459 2.435 414

12 Y 71.013683 71.013683 1.866 420

13 Y 66.716025 66.716025 1.669 373

14 Y 64.584130 64.584130 2.374 372

15 Y 66.355690 66.355690 3.508 396

16 Y 68.543706 68.543706 2.452 404

17 Y 67.958972 67.958972 2.582 389

18 Y 66.299237 66.299237 2.844 375

19 Y 62.250964 62.250964 4.391 385

20 Y 61.753370 61.753370 1.388 387

21 Y 73.973516 73.973516 1.265 452

22 Y 71.045257 71.045257 3.414 450

23 Y 64.348253 64.348253 3.477 411

24 Y 56.011383 56.011383 2.410 380

a N: No market split; Y: market split.

b Cplex time, as reported by “resource usage” parameter in

GAMS, in seconds.
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APPENDIX A

THE FINAL UPP MODEL

max
u
g

k
,ue

k,π,dk,sp,Fij ,

ζi,ϕ
d
k,ϕ

s
p,δ

max
ij ,ηij ,

y
gπ

k
,y

gζ

ki
,yed

k ,yeπ
k ,y

eϕ

k
,y∆b

ji ,bji.

∑

k∈Kπ

u
g
kp

d
kd

max
k +

∑

k∈Kπ

yedk pdk (34)

s.t.

∑

k∈Kπ

y
gπ
k dmax

k +
∑

i∈Zπ

B−1
∑

j=0

2jy∆b
ji

10c
=

∑

i∈Zπ

∑

k∈Kπ
i

y
gζ
ki d

max
k (35)

u
g
k

(

pdk − ε
)

− y
gπ
k ≥ 0 ∀k ∈ Kπ (36)

ue
kp

d
k − yeπk = 0 ∀k ∈ Kπ (37)

u
g
h ≥ u

g
k ∀h, k ∈ Kπ : mh < mk (38)

u
g
h ≥ ue

k ∀h, k ∈ Kπ : pdh > pdk (39)

u
g
k ∈ {0, 1} , ue

k ∈ {0, 1} ∀k ∈ Kπ (40)

∑

k∈Kζ

pdkdk +
∑

k∈Kp

pdkdk +
∑

k∈Kπ

yedk pdk −
∑

p∈P

pspsp =

∑

k∈Kπ

y
eϕ
k dmax

k +
∑

k∈Kp∪Kζ

ϕd
kd

max
k +

∑

p∈P

ϕs
ps

max
p

+
∑

i∈Z

∑

j∈Z

δmax
ij Fmax

ij −
∑

i∈Zπ

∑

k∈Kπ
i

y
gζ
ki d

max
k (41)

ϕd
k + ζi ≥ pdk ∀ k ∈ Ki, ∀i ∈ Z (42)

ϕs
p − ζi ≥ −psp ∀ p ∈ Pi, ∀i ∈ Z (43)

δmax
ij + ηij + ηji + ζi = 0 ∀ i, j ∈ Z (44)

dk ≤ dmax
k ∀ k ∈ K (45)

sp ≤ smax
p ∀ p ∈ P (46)

Fij ≤ Fmax
ij ∀ i, j ∈ Z (47)

Fij + Fji = 0 ∀ i, j ∈ Z (48)

∑

k∈K
p
i

dk +
∑

k∈Kπ
i

yedk −
∑

p∈Pi

sp +
∑

j∈Z

Fij =

−
∑

k∈Kπ
i

u
g
kd

max
k ∀i ∈ Zπ (49)
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∑

k∈K
ζ
i

dk −
∑

p∈Pi

sp +
∑

j∈Z

Fij = 0 ∀i ∈ Zζ (50)

0 ≤ yedk ≤ dmax
k ue

k ∀k ∈ Kπ (51)

0 ≤ dk − yedk ≤ dmax
k (1− ue

k) ∀k ∈ Kπ (52)

10c
∑

k∈Kπ
i

yedk =
B−1
∑

j=0

2jbji ∀i ∈ Zπ (53)

bji ∈ {0, 1} ∀j ∈ H, ∀i ∈ Zπ (54)

M1bji ≤ y∆b
ji ≤ M2bji ∀j ∈ H, ∀i ∈ Zπ (55)

M1(1− bji) ≤ (π − ζi)− y∆b
ji ∀j ∈ H, ∀i ∈ Zπ (56)

(π − ζi)− y∆b
ji ≤ M2(1− bji) ∀j ∈ H, ∀i ∈ Zπ (57)

M1u
g
k ≤ y

gπ
k ≤ M2u

g
k ∀k ∈ Kπ (58)

M1(1− u
g
k) ≤ π − y

gπ
k ≤ M2(1− u

g
k) ∀k ∈ Kπ (59)

M1u
g
k ≤ y

gζ
ki ≤ M2u

g
k ∀k ∈ Kπ

i ∀i ∈ Zπ (60)

M1(1− u
g
k) ≤ ζi − y

gζ
ki ≤ M2(1− u

g
k) ∀k ∈ Kπ

i ∀i ∈ Zπ (61)

M1u
e
k ≤ yeπk ≤ M2u

e
k ∀k ∈ Kπ (62)

M1(1− ue
k) ≤ π − yeπk ≤ M2(1− ue

k) ∀k ∈ Kπ (63)

M1u
e
k ≤ y

eϕ
k ≤ M2u

e
k ∀k ∈ Kπ (64)

M1(1− ue
k) ≤ ϕd

k − y
eϕ
k ≤ M2(1− ue

k) ∀k ∈ Kπ (65)

dk = u
g
kd

max
k + yedk ∀k ∈ Kπ, (66)

where: H = {0, . . . , B − 1}, ε is an arbitrarily small positive constant and M1, M2 appropriate bound values. For

ease of reading, the constraint (66) is added to recap the executed quantities into single variables.
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[29] Polo español S.A., “Daily and intraday electricity market operating rules.” [Online]. Available: www.omie.es/files/reglas 20140127

ingles no oficial v1.pdf

[30] APX Group. [Online]. Available: www.apxgroup.com/trading-clearing/day-ahead-auction/

[31] P. N. Biskas, D. I. Chatzigiannis, and A. G. Bakirtzis, “European electricity market integration with mixed market designs. Part I:

Formulation,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 458–465, 2014.

DRAFT


