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Abstract

In this paper, the extension of the framework of Learning from Constraints (LfC) to
a distributed setting where multiple parties, connected over the network, contribute to
the learning process is studied. LfC relies on the generic notion of “constraint” to inject
knowledge into the learning problem and, due to its generality, it deals with possibly
nonconvex constraints, enforced either in a hard or soft way. Motivated by recent
progresses in the field of distributed and constrained nonconvex optimization, we apply
the (distributed) Asynchronous Method of Multipliers (ASYMM) to LfC. The study
shows that such a method allows us to support scenarios where selected constraints (i.e.,
knowledge), data, and outcomes of the learning process can be locally stored in each
computational node without being shared with the rest of the network, opening the
road to further investigations into privacy-preserving LfC. Constraints act as a bridge
between what is shared over the net and what is private to each node and no central
authority is required. We demonstrate the applicability of these ideas in two distributed
real-world settings in the context of digit recognition and document classification.

1 Introduction

The generic framework of Learning from Constraints (LfC) [1-3] reframes the learning process
in a context that is described by a collection of constraints. Such constraints are the mean
that is used to inject knowledge into the learning process and they represent different aspects
of the task at hand. The goal of L{C is to learn a vector function f (classifier, regressor,
etc.) by solving a constrained optimization problem where f is required to maximize some
regularity conditions in the space to which it belongs [2]. Different types of knowledge
can be exploited in LfC, including the ones that are represented using First-Order Logic
(FOL) formulas [4]. For example, knowledge on the relationships among classes [5, 6], on
the interactions among different tasks [7], and on labeled regions of the input space [8], can
be easily converted into constraints and embedded in the LfC learning problem (including
point-wise constrains f(z) — y = 0 on supervised pairs (z,y)). The strength of LfC is more
evident when using semi-supervised data, thus enforcing constraints also on unsupervised
samples. Depending on the type of knowledge, constraints can be convex or non-convex,
enforced in a soft or hard way [3].
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To the best of our knowledge, LfC has always been conceived as a centralized framework,
where constraints (i.e., knowledge), data, and the learned predictors are all handled within
the same computational unit. This paper studies the extension of LfC to the distributed
setting, where multiple computational nodes, connected over the network, contribute to the
learning process. This setting is inspired by the nowadays organization of data and knowledge,
where it is extremely common to participate to communities over the net, sharing some
resources (e.g., public photos on social networks), keeping other local (e.g., private pictures
taken with a personal smartphone, saved on the cloud), and having the need of developing
(and eventually sharing) customized or more robust services that might benefit both from
private data and public data taken from the net (e.g., a recognizer of pictures of a custom
type). Our goal consists in formulating a distributed implementation of LfC with a generic
structure that covers the described setting and that could be further extended emphasizing
more specific aspects, such as the ones related to privacy-preserving methods [9-12]. The
generality of LfC prevents the direct application of many distributed optimization approaches
(see [13] and references therein), since we need to support hard, soft, convex and nonconvex
constraints. There has been several recent progresses in the field of distributed constrained
optimization [14-17], and the Asynchronous Method of Multipliers (ASYMM) [18,19] offers
the capability of dealing with convex and nonconvex constraints that are locally defined in
computational nodes. Moreover, ASYMM has been proved to be equivalent to a centralized
instance of the Method of Multipliers [20], thus inheriting the properties of its centralized
counterpart.

It is worth observing that recently there has been an increased interest in distributed
learning scenarios (see, e.g., [21-24]). Specific frameworks have been studied, like the one
of federated learning [25,26], and several algorithms have been proposed [27-29]. However,
distributed learning is usually intended in the sense of learning from distributed datasets, and
central servers are required to perform at least a part of the learning process. Conversely, in
this paper we consider a scenario in which not only data, but also knowledge is distributed
in the network. Moreover, we exploit a fully distributed architecture, in which no central
computational unit is required.

The main contribution of this work is to tailor the ASYMM algorithm to the aforemen-
tioned LfC distributed setting, showing how constraints can be used as a bridge between
shared and private resources. As a proof-of-concept, the model is applied to two real-world
problems: digit image classification and document classification. In both cases, we consider
semi-supervised data, constraints on supervised examples, and constraints devised from FOL
formulas. The results show that, in this distributed setting, FOL-based constraints improve
the quality of the private classifiers, and local and shared constraints are asymptotically
fulfilled.

2 Learning from constraints

In the framework of LfC we consider the problem of finding the most suitable vector function
f:=1f1,..., fr] € F subject to a set of constraints that models the available knowledge on
the considered problem. F is a space of functions from X C R? (being d the dimensionality
of the input data) to RY" where a regularity measure is defined, and each f; is referred to as
“task function” (for example, a classifier of a certain class). It is pretty common to enforce
point-wise constraints, i.e., constraints applied to f evaluated on a given collection of data
points D, and to consider both the bilateral and/or unilateral cases, that we denote by

®(f|D)=0, ®(f|D)<0, (1)



respectively. Notice that ® and ® compactly indicate vectors of constraints'. We consider D
to be partitioned into a collection of points for which a label y € Y is known and a set of
unlabeled points, respectively collected in D and D,

D=DUD. (2)

A popular category of constraints that is frequently exploited in LfC is given by polynomials
derived from First-Order Logic formulas [4] . In particular, each task function f; is assumed
to implement the activation in [0, 1] of a predicate that describes a property of the considered
environment, and FOL formulas represent relationships among such properties, i.e., among
the tasks in f. FOL formulas are then converted into numerical constraints using Triangular
Norms (T-Norms, [30]), special binary functions that generalize the conjunction operator
fi A fj. For example, we might know that, in the considered environment, fi(z) A fao(z) =
f3(z), Vz € D. This information is converted into a bilateral constraint of Eq. (1), that in
the case of the product T-Norm is fi(z)f2(z)(1 — f35(z)) = 0, and applied to all the data
points of D (see [4] for more examples). In this paper, we assume f to be a generic neural
network. As regularity measure we use the squared norm of the weights, leading to the
popular weight decay term (for simplicity, we avoid reporting this term in the following
equations).

Depending on the nature of the constraints, it could be necessary to enforce some of them
in a hard way, and others in a soft manner [3]. While supervisions on examples are generally
subject to noise (suggesting a penalty-based soft enforcement), there might be structural or
environment-related conditions that must be enforced in a hard way. In the rest of the paper,
we will use the notation ®, ® to refer to those constraints that must be enforced in a hard
way, while ¢ indicates the sum of the penalty functions associated to the soft constraints?.
Moreover, the choices of both the form of the constraints of (1) and of the form of f usually
end up in generating constraints that are nonconvex with respect to the model parameters
that are subject of optimization. This consideration holds even more strongly when we select
f to be a generic neural net.

3 Distributed framework

When moving to the distributed setting, we consider N computational nodes connected over
a network, whose underlying connectivity structure can be represented through an undirected
and connected graph G = (V, &), where V is the set of nodes and £ is the set of node-to-node
connections. Nodes might have some specific requirements in terms of the resources they
want to keep private (local) and the ones they want to share with the other nodes. We
distinguish among three types of resources: data (i.e, the available data points), knowledge
(i.e. constraints), and predictors (the outcome of the learning process, i.e., the task functions
in f). Figure 1 illustrates the distributed framework with privacy conditions, where we can
distinguish the node-private resources and the shared ones, accessible by all the nodes. From
the notation point of view, the subscript ¢ indicates a private resource of the i-th node, while
the superscript s is used to refer to shared resources.

More formally, for each node i we consider some private data D;, private knowledge
P,, éh 1;, and some private predictors modeled with a vector function p;(x,w;), where w; are

IFor simplicity, all the constraints are applied to the same D, but our approach also holds when different
constraints operate on different data. We will sometimes replace the vector f with an explicit list of functions.

2The definitions of v can include weighting terms to give different importance to the different soft
constraints.
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FIGURE 1: An illustrative view of the distributed framework and of the notation used in the paper.
The graph G = (V, ) is defined by the greenish nodes (belonging to V) and the solid connections
between them (belonging to £). The blue cloud only includes shared elements, and it is accessible
by all the nodes of the graph.

the learnable parameters of the neural network. Similarly, for the whole network we define
shared data D®, shared knowledge ®*, ®*,1°, and some shared predictors implemented by
the vector function s(z,w?®), with parameters w®. Then, the merged collection of all the data
(Eq. (2)) and the set of all the model parameters (shared and private) are

D:(ODZ)UDS, wz(&wi>Uws. (3)

i=1 i=1
The centralized optimization problem we have to solve is

N
minimize Zwi (pi,s | DiUD®) +4° (s | D)

w
i=1

subject to  ®; (p;,s | D;UD*) =0, Vi=1,...,N )
o, (pi,s| D;UD*) <0, Vi=1,...,N
®° (s | D) =0,
P (s|D)<0
where constraints involve the just introduced vector functions p; € 7, ¢ =1,...,N, and

s € F. Notice that the private constraints can involve both private and shared predictors,
thus bridging shared and local resources. Due to their shared nature, constraints ®*, $5, *
can be enforced in all the available data.

Let us define w®|; as a local copy of w® made by node i and w|;, = w; Uw?|,. Following
the same intuition behind [18], we rewrite problem (4) in an equivalent form, exploiting the
connectedness of G,

N
minimize (1/% (s, | Dy UDY) 40 (s, | D) + v (s, | DJ)
Wy seenyw| p N
subject to  w®[; = w’|;, V(i,j) €€
®; (pi, 5], | D; UD?) =0, Viey (5)
®; (pi,sl; | DiUD®) <0, Viey
®° (s, | D; UD*) =0, VieV
P (s], | D;UD*) <0 Viey



where s|; = s(x, w®|;). The first constraint ensures consistency of the local copies over G, and
the last two constraints (involving shared resources) are now replicated N times, splitting
the private portion of the data. The objective function has been regrouped in order to be a
summation over the index ¢, paying attention to differently weigh ¢° when applied to shared
or private data. This formulation of the problem can be more easily partitioned among the
nodes and it helps in the application of a distributed optimization algorithms.

4 ASYMM algorithm

The Asynchronous Method of Multipliers (ASYMM) is a distributed optimization algorithm
that has no central authorities, and that solves constrained optimization problems in which
both local cost functions and constraints can be nonconvex. Thus, it is a well suited method
for solving problem (4) in a distributed way, when rewritten in the form (5).

The idea behind ASYMM is rooted around the concept of computational units that wake
up asynchronously at different time instants, perform some operations, and broadcast their
local copies of shared parameters w®|, (and some other variables) to their neighbors ;.
We assume that each node keeps waking up indefinitely and the time interval between two
consecutive awakenings is bounded for all nodes. Moreover, we assume for simplicity that it
cannot happen for two nodes to be awake in the same time instant. When nodes ¢ wakes
up, it performs a gradient descent step on a locally defined augmented Lagrangian until
every neighboring node matches a convergence criterion based on a node-defined tolerance
¢;. By doing so, the nodes collectively approach a stationary point of the entire augmented
Lagrangian of the considered optimization problem. The convergence check on the augmented
Lagrangian is performed by the nodes in a distributed way, using a logic-AND algorithm
(see [18]). When a node gets aware of the convergence condition, it performs one ascent
step on its local multiplier vector and it increases its penalty parameters. After a node has
received the updated multipliers and penalty parameters associated to shared constraints
from all its neighbors on G, it starts over a new Lagrangian minimization. Under suitable
technical assumptions, it can be shown that the computational units collectively converge
to a local minimum of problem (4) which satisfies all the constraints. Moreover private
resources are never passed over the net.

In order to devise a specialized version of ASYMM for problem (5), we need to introduce
the corresponding augmented Lagrangian. Let v;; and p;; be the multiplier vector and
penalty parameter associated to the equality constraint w®|, = w®|.. We compactly define
vi = [Vijljen;, pi = [pijlien,. Similarly, let A;, A] and o;, ¢f (resp. wi, 1 and (;, ¢7) be the
multiplier and penalty parameter associated to the equality (resp. inequality) constraint of
node ¢, where the superscript s denotes the association with the local copy of the shared
constraints. Moreover, let w = [w];;...;w]|y], and denote by p = [p;, 0i, (;]icy the vector
stacking all the penalty parameters; v = [V;]icv, A = [\, Aflicy and p = [p;, pf];ev be the
vectors stacking the corresponding multipliers, and, consistently, let § = [v; A; p]. Finally, in
order to present the next equations in a simpler way, let us define two parametric functions
with a compact notation: gc(a,b) = & (max{0,a + cb}? — a?) and v.(a,b) = a'b+ £[b|?,
where the max operator is to be intended component-wise. Then, the augmented Lagrangian



associated to (5) is

N

30,0 =3 {5l | DD + LG, 2
=1
+4°(s|; [ Ds) Z Uy, (Vig, w°[; — wP[;)+

JEN;
+in(>‘ia(I)i (pi,S\i ‘ D; UDS))—l—
+ vs (AF, @° (s[; | D; UD?))+
+ 1T gc, (115 ®s (pis s, | D UD?))+

1T g (2, 8 (5], | Ds um)} , (6)

where 1 is a (column) vector of ones.

In order to collectively minimize (6), nodes in ASYMM need to compute a local augmented
Lagrangian. The local augmented Lagrangian for node i groups all the terms in (6) depending
on w|; and it is defined as

1
Loy, (wi, w®|x,, On7) :wi(pi,S\,» [ DiU D)+ 9°(sl; | D)+

+°( va” y”7w| _w|)
JEN;
+ v, (Ni, @5 (pi, s|; | Di UD?))+
+vg; (A7, @° (s]; | D; UD?))+
+ 17 g, (i, @i (ps, s|; | Dy UD®))+
+ 17 gc: (i, 9% (s; | D; UDY))) 7

where ws|,/\/i = [ws|j]j€./\/iu{i}a On: = [Niy A s 13, Vi, [Vji]jENi]a and py;, = [0i, 07, Gis G, pis
[pjiljent]-

Finally, we define a local binary matrix S; € {0,1}4¢*4 for each node, where dg is
the graph diameter and d; = |[N;| + 1. Such a matrix is used to perform the distributed
logic-AND algorithm, which is a building block of ASYMM (see [18]).

Given the above definitions, the ASYMM algorithm applied to problem (5) is reported in
Algorithm 1, being «; > 0 the stepsize selected by node 3.

n [18], it has been shown that the distributed Algorithm 1 is equivalent to a centralized
version of the Method of Multipliers in which the primal update is carried out by means
of a block-coordinate gradient descent on the augmented Lagrangian (e.g., see [31] for a
survey on coordinate descent algorithms). Specifically, there exists a sequence of (centralized)
block-coordinate gradient descent steps that returns the same sequence of estimates w®|;
as those computed by ASYMM. This equivalence property implies that ASYMM inherits
all the convergence properties of the centralized block-coordinate Method of Multipliers.
In particular, under technical assumptions on the local augmented Lagrangian, similar to
those adopted in the centralized case (see [20]), the estimates w®|, generated by ASYMM
converge to a local minimum. A key point to establish this result is to bound the norm of the
gradient of the augmented Lagrangian (5) by a function of the local tolerances ¢; employed
in Algorithm 1. The interested reader is referred to [18] for a thorough theoretical analysis
of ASYMM.



Algorithm 1 ASYMM

Initialization: w|;, 0;, N;, pi, Si = 04 xd;» Maone = 0.
AWAKE
if [T7, Si[de,b] # 1 and not M,y then
w|, — w|, — aivwshﬁm (wi, w*| ., On;)
if Vo) Loy, (wi,w?] . On,) <€ then Si[1,d;] + 1
Sillydi] « TI0, Sill — 1,0] for 1 = 2, ..., dg
BROADCAST w?|;, Si[:,d;] to all j € N;
if Hi;l Sildg,b] = 1 and not My,,. then
Vij = Vij + pij(w®]; — w?];) for j € N;
Xi = Xi +0i®; (pi, s|; | Di UD?)
AL = AT+ 0797 (s, | D7)
i < max{0, u; + G, (pi, s|; | DiUD?)}
pi = max{0, g5 + ¢ @* (s]; | D*)}
update p;, ¢; and p;

Maone <1
BROADCAST v;j, p;j to j € N;

IDLE
If S;[:, d;] received from j € N; and not already received some new v;; then S;[l, j;| < S;[l,
d;l forl=1,..,dg
if vj; and pj; received from j € N set S; [de,:] + 1
if w®[;™" received from j € N, update w®|; « w®[;™"
if Mone and vj; received from all j € N; then
Maone < 0, S; < 04, x4;, update €;




TABLE 1: Polynomial constraints from logic statements (prod. T-Norm)

predicate polynomial form
a=b a(l —b) =
- (a ADb) ab=10
(aAb)=c ab(l—c) =0
aY¥Yb a+b—1=0,ab=0

5 Experiments

We evaluate the numerical application of our approach to two different distributed environ-
ments, focussing on digit recognition and document classification, respectively.

5.1 Digit Recognition

We consider a network composed by 10 nodes, indexed from 0 to 9. In the context of digit
recognition, each node aims at learning to recognize a precise digit given its image x, where
we assume that node i learns to recognize digit i. Notice that each node could also learn
to recognize more than one digit. We consider only one digit per node for the sake of
presentation. The i-th recognizer is a private function p;(z,w;) € [0,1], and the i-th node
has the use of private data D; = D, UD; composed of positive examples of such digit and
negative examples of other digits (labeled with y = 1 and y = 0, respectively, and collected
in D; i), and unsuperv1sed examples (belonging to D; ;). No shared data are considered, so
that D = Ui:O D;. All the nodes of the network have access to a shared function with two
scalar outputs s(z,w*) = [so(x, w*), s1(z,w*)] € [0,1]?, that predicts whether z is even (first
output) or odd (second output)3.
Fitting the labeled examples in node i is a private soft-constraint, and it depends on p;
and D; only,
Yilp | D)= Y (pilw,wi) —y)* . (8)
(x,y)€D;

Due to the private nature of D;, each node has no information that it can directly use
to learn s in discriminative way. However, each node has private knowledge about the fact
that its associated digit is either even or odd, and all the nodes have access to the shared
knowledge that sy and s, are mutually exclusive. Using FOL, we get the following universally
quantified formulas (for the sake of simplicity, we skip the arguments of p; and s),

pi=So fori=0,2,4,6,8
p;=s fori=1,3,5,7,9

80281.

Using the product T-Norm (see Table 1), we convert the formulas into polynomial

3We used two outputs to emphasize the role of the mutual-exclusivity constraints that we will introduce
shortly.



constraints that, following the notation of problem (5), become
(I)z(plv 5|7,|D1) = pl('r7 wl)(l - SO(‘x?wS‘i)) = 07 Vx € Di7 1= 07 274767 8
q)z(pu S|Z|Dl) = pl(x; wz)(l - sl(‘r?ws‘i)) = 07 Vo € Di, 1= 1) 37 57 73 9

so(@, w®];) + s1(z, w®[;) — 1

% (s],|D;) = =0, Vo € D;.

so(z, w’|;)s1 (, w"];)

We selected the popular MNIST dataset to test our algorithm in the proposed scenario.
MNIST consists of black and white images of handwritten digits of size 28 x 28 pixels. Each
image is represented through a normalized-flattened vector € [0,1]7®*, in which each entry
is a pixel intensity. The dataset comes divided in a training set and a test set, which consist
of 60000 and 10000 labeled samples respectively.

In order to generate the private data D; = D; UD; we proceeded as follows. We randomly
selected 6000 training examples, evenly distributed among classes, and we built each D; from
them. In particular, we selected all the 600 images of digit ¢ as positive examples, and 600
images of digits # ¢ as negative examples (evenly distributed among digits # ¢, and such that
there is no overlap among the negative examples of the different ﬁi’s). The unsupervised
sets Dy, i =0,...,9 were implemented by selecting the 54000 training examples not involved
in the previous operations, and evenly assigning them to each D, with no overlap (keeping
the original class distribution). We remark that this setting is different from the one that is
commonly assumed in semi-supervised classification on the MNIST data, in which the same
data (supervised and unsupervised) is shared by all the classifiers and in which only one
class is predicted for each test example [32-34].

We modeled each function p;, i =0,...,9, sg and s; using a simple neural architecture,
that is a Multi-Layer Perceptron (MLP) with a hidden layer of 300 units (tanh activation
function) and an output unit with sigmoidal activation function. Then, we ran ASYMM
by repeating 10 times the aforementioned data generation. Each run consists of 50000
total iterations (which means 5000 awakenings per node on average). After solving the
optimization problem, the learned predictors were tested using the original MNIST test
set. The mean and standard deviation of the obtained F1 scores* are reported in Table 2
(left column) for each predictor. While the results on each p; confirm that each node is
reaching its goal of learning a recognizer for digit 7, we can also see how the system is learning
to correctly (= 0.93) predict even and odd digits without having access to any example
labeled as even or odd, but only using the hard constraints that are enforced on private
data in a distributed setting. In order to experimentally verify the theoretical properties
of ASYMM, we solved in a centralized way the same optimization problem considered in
the presented scenario, by using the (centralized) Method of Multipliers. The results are
reported in Table 2 (Centralized Semi-Supervised column) and are very close to those of the
distributed implementation, the small discrepancies being due to the different orders in which
block-coordinate descent steps are performed. In the distributed scenario, in order to give
an idea of the role played by unsupervised data, the simulation has been repeated without
using the unsupervised data, and the results are reported in the Table 2 (right column).
We can see that the F'1 scores of all the classifiers are lower than in the semi-supervised
scenario, confirming that the distributed implementation positively exploits the unsupervised
data. Finally, in order to see how the (hard) logic constraints are asymptotically satisfied, in
Figure 2 (left), the average constraint violation (considering all the problem constraints) is
reported over the evolution of one run of ASYMM, in logarithmic scale.

4The F1 score is a classification performance metrics which is typically defined in terms of precision (P)
and recall (R) as F1 =2

PR
P+R’



TABLE 2: Digit classification problem, F1 score. Distributed and centralized optimization are
compared. As a reference, the last column includes the results in the case in which only the
supervised portion of the training data is used.

Distributed Centralized Distributed
Semi-Supervised | Semi-Supervised Supervised
predictor | mean std mean std mean std
Do 0.923 0.012 0.921 0.012 0.886 | 0.016
D1 0.963 0.007 0.970 0.010 0.936 | 0.012
D2 0.883 0.016 0.872 0.012 0.861 | 0.031
D3 0.859 0.016 0.859 0.016 0.812 | 0.023
D4 0.860 0.010 0.863 0.009 0.839 | 0.014
D5 0.822 0.020 0.827 0.019 0.813 | 0.020
D6 0.881 0.011 0.885 0.017 0.850 | 0.022
p7 0.895 0.006 0.888 0.014 0.858 | 0.013
D8 0.802 0.015 0.802 0.010 0.755 | 0.013
D9 0.789 0.022 0.787 0.021 0.772 | 0.025
50 0.932 0.008 0.934 0.010 0.916 | 0.016
s1 0.932 0.009 0.934 0.010 0.915 | 0.019
107"
5107 =
E Fre
= g
1073 107%
o 1 2 3 1 5 0 05 1 15 2 25 3
iterations -10* iterations -10*

FIGURE 2: Average constraints violation over the evolution of the algorithm in (left) digit recognition
and (right) text classification (in log scale).
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TABLE 3: List of all the known constraints in the text classification problems. The column on the
right indicates the nodes which are aware of each constraint.

local knowledge aware nodes

— (politics A wrestling) 2, 6
— (politics A clothing) 2,1
— (politics A sport) 2,5
— (politics A running) 2,3
2,4

6, 5

— (politics A shoes)

wrestling = sport s
(running A shoes) = clothing 3,4, 2
running = sport 3,5

5.2 Document Classification

In the second application, we consider the problem of document classification. We focus
on a network of N nodes, each of them associated with a category of documents (N
classes). Differently from the previous experiment, each node is assumed to have access
to a shared predictor s(xz,w®) = [s1(z,w?®),...,sn(z,w?)] with N outputs, that models the
class-membership scores of an input document =, and that must be learned in a distributed
setting. What makes this task more challenging is that each node 7 is associated to a unique
document class, and it is equipped with a private dataset D; = D; UD; of (supervised)
positive-only examples from the category associated to it (i.e. all the samples in D; have
label y = 1), and a set of unlabeled documents (752) Moreover, each node has some limited
and incomplete private knowledge on how its document category is related to the other ones.
The goal of the experiment is to make available to each node the N-class classifier s, without
sharing private data, and learning from positive examples and constraints in a distributed
setting.

We implemented a network of N = 6 nodes, and picked the following 6 document
categories: clothing (1), politics (2), running (3), shoes (4), sport (5) and wrestling (6), where
the number indicates the node index associated to each of them. The private knowledge
of each node is reported in Table 3, from which, using the polynomial forms in Table 1,
the local constraints can be easily retrieved. As an example, following the described setup,
node 4 has the use of positive examples of category 4 (shoes) and some other unlabeled data.
It also knows how shoes is related with some other categories. In particular it knows that
the following two relations hold: — (politics A shoes) and (running A shoes) = clothing.
Following the rules of Table 1, the local constraint ®, consists of:

s2(@, w|y)sa(z, w?|)

Pl TP =1 w0l sal w0 )1 - sz, )

=0, Vr € Dy

The local objective function, instead, has the same form for all the nodes and is defined

as
YilsiDi) = > (silw,wl]) — y)?
(z,y)€Ds
The considered problem is in the form of (5) and, hence, can be solved by the ASYMM
algorithm.

A collection of 5180 documents belonging to the selected categories has been obtained by
crawling Wikipedia. We downloaded up to 1,000 pages for each category, where roughly 50%
of the pages were taken by exploring sub-categories (limiting the depth of the exploration,
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and randomly deciding whether we should have considered a subcategory or not). Documents
were represented by TF-IDF, on a dictionary of 10000 words. In this experiment, classes
are not mutually exclusive. We marked 70% of the documents of each class as supervised
samples, while the remaining 30% are marked as unsupervised. All the unsupervised data
have been merged, randomized, and evenly assigned to the nodes (without overlap). We
explored a transductive learning scenario, so the unlabeled data is also used to evaluate the
quality of the learned classifiers.

We tested two types of architectures for the classifiers sy, ..., sg: neural networks without
hidden layers (referred to as “single layer”) and neural networks with one hidden layer
(composed by 100 units with tanh activation). Both architectures share some common
properties. Namely, in their output units they have sigmoidal activation functions and a
fixed negative bias (—1), and we enforced a strong regularization (weight decay) to better
cope with the selected setting (learning from positive examples). ASYMM has been run
for 30000 total iterations (5000 awakenings per node on average) and the final results are
reported in Table 4. The system is learning to classify the 6 classes, with some low-precision
results due to the lack of large discriminative information (many false positives). One of the
classifiers with the highest scores is about the politics class, since it is the only class which,
by means of constraints, is known to be completely disjoint from the others. The classifiers
that are more involved into constraints, such as sport and running, yield better results than
the other ones. As a matter of fact, the other classifiers suffer from the small amount of
knowledge which is injected in the system through the constraints. For example, the clothing
classifier has no information to discriminate samples from the class sport. Introducing a
hidden layer allows the system to develop strongly non-linear decision boundaries around
the given positive examples, increasing the overall performance. As in the previous example,
in order to corroborate the theoretical properties of ASYMM, we also provide the results
obtained by solving the considered optimization problem in a centralized way (Table 4, last
column - single layer case), once again almost equivalent to those provided by ASYMM.

In order to further evaluate the proposed distributed setting, we compare the results with
those of a centralized approach in which the knowledge on the relationships between the 6
classifiers is not enforced through constraints, but by means of additional supervised data. In
particular, we merged all the training sets of the 6 classifiers, and we enriched the supervision
with additional labels that are coherent with the logic constraints of Table 3. For example,
the data that are labeled as running or wrestling are also labeled as sport (due to constraints
6 and 8 of Table 3), while examples from the politics class also become negative examples of
the class sport (due to constraint 3 of Table 3). We allowed all the classifiers to have access
to these data (thus violating the privacy assumption we made in the distributed setting),
so that each of them can exploit an augmented collection of supervised training examples
with respect to the distributed case. We remark that now classifiers have also the use of
negative examples. Then, we excluded the logic constraints and the unsupervised data from
the optimization (unsupervised data is not used whenever we drop the logic constraints).
Besides the two architectures considered in the set-up of Table 4, we also include the case in
which the classifiers are modeled as RBF networks, in order to evaluate the effect of locally
supported units in this learning problem. For each classifier we considered 1000 RBF neurons
and another hidden layer consisting of 100 units with tanh activation (the centers of the RBF
network were estimated on an out-of-sample small set of Wikipedia documents, and shared
among the nodes). Results are reported in Table 5. The RBF network performs better on
some classifiers, however the overall performances are lower than those obtained with the
other two architectures.

By comparing the results reported in Table 5 and 4, it can be seen that the semi-supervised
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TABLE 4: Precision (P), Recall (R) and F1 score on document classification, learning from positive
examples, unsupervised data, and logic constraints.

Distributed Distributed Centralized
1 Hidden Layer Single Layer Single Layer
predictor P R F1 P R F1 P R F1

s1, clothing 0.366 | 0.942 | 0.527 | 0.344 | 0.893 | 0.497 | 0.345 | 0.892 | 0.498
s2, politics 0.921 | 0.894 | 0.907 | 0917 | 0.804 | 0.857 | 0.915 | 0.804 | 0.856
S3, running 0.554 | 0.980 | 0.709 | 0.566 | 0.963 | 0.713 | 0.566 | 0.960 | 0.712
s4, shoes 0.351 | 0.792 | 0.486 | 0.304 | 0.778 | 0.437 | 0.301 | 0.777 | 0.434
S5, sport 0.793 | 0.992 | 0.940 | 0.784 | 0.991 | 0.875 | 0.782 | 0.989 | 0.873
s¢, wrestling | 0.477 | 0.981 | 0.641 | 0.457 | 0.970 | 0.621 | 0.455 | 0.972 | 0.620

TABLE 5: Additional reference results in document classification. Predictors are independent,
and they exploit a set of positive and also negative examples, obtained by artificially augmenting
the original supervised portion of the training data with labels that are coherent with the logic
constraints.

Standard Network Standard Network
1 Hidden Layer Single Layer RBF Network
predictor P R F1 P R F1 P R F1

s1, clothing 0.355 | 0.940 | 0.516 | 0.328 | 0.941 | 0.487 | 0.557 | 0.949 | 0.697
s2, politics 0.923 | 0.929 | 0.921 | 0.937 | 0.907 | 0.922 | 0.882 | 0.888 | 0.882
S3, running 0.491 | 0.990 | 0.657 | 0.490 | 0.980 | 0.653 | 0.487 | 0.996 | 0.654
s4, shoes 0.244 | 0.781 | 0.371 | 0.248 | 0.722 | 0.369 | 0.135 | 0.861 | 0.231
S5, sport 0.759 | 0.995 | 0.862 | 0.748 | 0.995 | 0.855 | 0.775 | 0.989 | 0.868
s¢, wrestling | 0.412 | 0.980 | 0.581 | 0.395 | 0.983 | 0.563 | 0.504 | 0.981 | 0.660

scenario (in which we exploit only positive examples, logic constraints and unsupervised
data) leads, in general, to slightly better scores than those obtained in the centralized setting
with artificially generated labelings. This comparison emphasizes the quality of the proposed
distributed setting and validates the idea of sharing knowledge by means of constraints.
Finally, the average constraint violation along the evolution of ASYMM is reported in Figure 2
(right) for the single layer architecture, showing that, as expected, the violation vanishes as
the algorithm proceeds.

6 Conclusions

We proposed a distributed implementation of the framework of Learning from Constraints.
We exploited the Asynchronous Method of Multipliers (ASYMM), and we implemented
and evaluated a distributed setting where local (private) and shared resources (including
constraints) are considered. Experiments were performed on distributed digit and document
classification, confirming the quality of the proposed approach.
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