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Abstract

Maintaining the attitude of a spacecraft precisely aligned to a given orientation is crucial for commer-

cial and scientific space missions. The problem becomes challenging when on/off thrusters are employed

instead of momentum exchange devices due to, e.g., wheel failures or power limitations. In this case,

the attitude control system must enforce an oscillating motion about the setpoint, so as to minimize the

switching frequency of the actuators, while guaranteeing a predefined pointing accuracy and rejecting

the external disturbances. This paper develops a three-axis attitude control scheme for this problem,

accounting for the limitations imposed by the thruster technology. The proposed technique is able to track

both the period and the phase of periodic oscillations along the rotational axes, which is instrumental to

minimize the switching frequency in the presence of input coupling. Two simulation case studies of a

geostationary mission and a low Earth orbit mission are reported, showing that the proposed controller

can effectively deal with both constant and time-varying disturbance torques.

Index Terms

Minimum switching control, On/off thrusters, Attitude control, Optimal control.

I. INTRODUCTION

Spacecraft attitude control systems based on reaction thrusters have been widely used in the past

(see e.g. [1], [2]) and are receiving renewed attention with the recent advances of micropropulsion

technologies [3], [4], [5], [6]. The advent of electric micropropulsion [7], [8], providing a much higher fuel

efficiency with respect to traditional cold-gas systems, further motivates the study of attitude regulation
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schemes involving reaction thrusters. In fact, this technological solution enables the development of

all-electric spacecraft which exploit the same propellant type for both orbit control and precise attitude

regulation, thus reducing costs and providing an effective complement to momentum exchange devices [9],

[10]. On the other hand, these engines present some severe restrictions, the most important one concerning

the fact that they are usually operated in on/off mode, which clearly limits the control authority. Moreover,

the thruster switching frequency can have a significant impact on the performance and the lifetime of

this type of actuators.

The use of on/off thrusters for spacecraft precision pointing calls for a switching controller delivering

some kind of pulse modulation, in order to reject the external disturbances and to comply with the

minimum firing time of the engines [11], [12], [13]. To achieve the best efficiency, the minimization of

both the fuel consumption and the switching frequency of the actuators must be pursued. A common

approach is to convert the control input provided by a continuous regulator into discrete pulses, by

using pulse-width or pulse-width-pulse-frequency modulation techniques, see e.g. [14], [15], [16]. These

methods hold significant advantages over conventional bang-bang control strategies, including a reduced

thruster activity and a near-linear duty cycle, but require a time-consuming trial-and-error procedure

to tune the modulator parameters, as outlined in [17], [18]. Another major drawback of these control

techniques is that they do not allow the pointing accuracy requirements to be enforced directly as state

constraints in the control problem.

A more general approach consists in the formulation of an optimal control problem, in which the on/off

characteristics of the thrusters are explicitly taken into account, see e.g. [19], [20], [21]. However, very few

contributions have addressed explicitly the minimization of the switching frequency. Until recently, results

have been confined to the single-axis attitude control problem, with the error dynamics approximated by a

double integrator model [22], [23]. In fact, the multivariable problem becomes very challenging when the

control design cannot be decoupled along the principal axes of inertia of the spacecraft, due to the chosen

thruster configuration. In [10], a model predictive control (MPC) scheme has been proposed for the thee-

axis case. This method involves a high computational burden, which may not fit the processing power

available onboard a spacecraft. In [24], [25], a periodic suboptimal solution to the minimum switching

control problem has been derived for systems of double integrators perturbed by a constant disturbance.

By building on these preliminary results, this paper develops a high precision, three-axis attitude control

scheme for spacecraft with on/off thrusters. As a first step in the design, the minimum fuel/switching

control problem introduced in [24] is reformulated by including constraints on both the attitude error and

its derivative. Two solutions to this problem are derived, providing reference trajectories to the attitude

regulation system. Then, an adaptive feedback control scheme is proposed, which extends the applicability
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of the control law derived in [25] to the case of time varying disturbances, while accounting for restrictions

on the minimum duration of a thruster firing. The performance of this approach is investigated for

geostationary (GEO) and low Earth orbit (LEO) missions. Simulations based on the full nonlinear attitude

dynamic model show that the controller is able to meet the pointing accuracy requirements, in the presence

of constant or slowly time-varying disturbance torques.

The paper is organized as follows. In Section II, the attitude dynamic model is introduced, along with

the attitude control requirements. In Section III, the optimal attitude control problem is formulated and

the reference trajectory to be tracked by the control system is derived. In Section IV, the thruster control

scheme under consideration is presented. The performance of the proposed approach is evaluated through

numerical simulations of a GEO mission and a LEO mission in Section V, while some concluding remarks

are given in Section VI.

II. SPACECRAFT PRECISION POINTING

In this section, the small angle approximation of the attitude error dynamics is presented, and the

attitude control requirements are discussed, for spacecraft precision pointing with on/off thrusters.

A. Notation

The orientation of a reference frame B with respect to a reference frame A is represented by the

quaternion qAB = [ ρAB, ~q
T
AB ]T , where ρAB and ~qAB are the scalar part and the vector part of the

quaternion. The quaternion multiplication qAC = qBC ◦ qAB is defined by

qAC =





ρBCρAB − ~q T
BC~qAB

ρBC~qAB + ρAB~qBC − ~qBC × ~qAB



 , (1)

where × denote the cross product operation and qAC , qBC represent the orientation of frame C with

respect to frames A and B, respectively.

The skew-symmetric matrix constructed from a vector ω is denoted by ω×. The rest of the notation is

standard: uj indicates the j-th entry of vector u, ‖ · ‖p denotes the p-norm of vectors and matrices and

sgn(·) denotes the signum function, where it is assumed that sgn(0) = 1.

B. Attitude error dynamics

The attitude of the spacecraft is described as the orientation of a reference frame centered at center

of mass and aligned with the principal axes of inertia of the body, which is termed as the body frame,

with respect to the Earth centered inertial frame. Let the orientation of the body frame with respect to

the inertial frame be denoted by the four-dimensional quaternion qIB , and the angular rate of the body
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frame with respect to inertial frame, expressed in the body frame, be denoted by the three-dimensional

vector ωB . The kinematics of the attitude quaternion are given by

q̇IB =
1

2





0

ωB



 ◦ qIB. (2)

Under the rigid body assumption, the angular rate dynamics are given by

ω̇B = I−1
M

(

τd + τu − ω×
BIM ωB

)

. (3)

where IM is the spacecraft inertia matrix and

τ = τd + τu (4)

denotes the torque acting on the system, including a disturbance torque τd and a control torque τu. For

spacecraft equipped with on/off thrusters, the control torque τu can only take discrete values. Specifically,

when a minimal set of thruster is employed, the control torque can be expressed as

τu =Mµ, (5)

where µ ∈ {0, 1}6 represents the on/off thruster command, and the matrix M expresses the linear mapping

from the thruster command to the control torque. For the common case in which the thruster configuration

is symmetric, so that torques of opposite direction are produced with respect to the rotational axes, one

has M = [−B,B] and (5) can be rewritten as

τu = B µ̃, (6)

where µ̃ ∈ {−1, 0, 1}3.

The desired attitude and rotation rate are specified by the orientation qIR of a target reference frame

with respect to the inertial frame and by the angular velocity ωR of the target frame with respect to the

inertial frame, expressed in the target frame. Let qRI denote the inverse rotation of qIR. Using quaternion

algebra, the attitude error qRB , which indicates the orientation of the body frame relative to the target

frame, can be expressed as qRB = qIB ◦ qRI . If the attitude error is small, it can be approximated by

the three-dimensional rotation vector δθ, which is obtained from the vector part ~qRB of the attitude error

quaternion as

δθ = 2~qRB. (7)

Now, let us define

δω = ωB − ωR. (8)
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For small angles δθ and δω, the kinematics of the attitude error (7) and the dynamics of the angular

velocity error (8) can be approximated by a linearized model. The linearized kinematic model is given

by the Bortz equation [26]

δθ̇ = δω − ω×
Rδθ, (9)

where the term ω×
Rδθ accounts for the fact that ωB and ωR in (8) are expressed in two different coordinate

frames. Concerning the dynamic model, by differentiating (8) with respect to time and exploiting (3),

one gets

δω̇ = I−1
M τ − I−1

M (ωR + δω)×IM (ωR + δω)− ω̇R. (10)

In most practical applications, the target frame is either spinning at a constant angular velocity or inertially

fixed. In the first case, the linearized dynamic model is found by enforcing ω̇R = 0 in (10) and linearizing

the resulting expression about δω = 0, thus yielding

δω̇ = Aδω + I−1
M τ, (11)

where IM = diag(ι1, ι2, ι3),

A =











0 ι2−ι3
ι1

ω3
ι2−ι3
ι1

ω2

ι3−ι1
ι2

ω3 0 ι3−ι1
ι2

ω1

ι1−ι2
ι3

ω2
ι1−ι2
ι3

ω1 0











, (12)

ιj denotes the principal moments of inertia and ωR = [ω1, ω2, ω3]
T . For the case in which the desired

attitude is inertially fixed, one has ωR = 0 in (9) and (11)-(12). Hence, the error dynamics take on the

form of the double integrator system

δθ̈ = I−1
M τ. (13)

As long as precise attitude control of Earth-pointing spacecraft is concerned, gyroscopic inter-axis

coupling is negligible [23] and the dynamics (9),(11) are well approximated by system (13). By applying

the coordinate transformation

x = G−1B−1IM δθ, (14)

u = G−1 µ̃, (15)

k = G−1 ̺, (16)

where ̺ = B−1 τd and G = diag(sgn(̺)), system (13) can be cast into the equivalent form

ẍ = u+ k, (17)

with k ≥ 0. In this paper, model (17) will be used to design the control scheme to be applied to system

(2)-(6) for disturbance rejection and attitude regulation.
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C. Attitude control requirements

Due to the presence of on/off input restrictions and of persistent disturbances affecting the attitude

dynamics (2)-(6), the system cannot be regulated exactly to the origin with a finite input switching

frequency. Therefore, it is required for the attitude errors (7) and rate errors (9) to be controlled within

a predefined accuracy. Formally, this amounts to ensure that

‖Wp δθ(t)‖∞ ≤ 1,

‖Wr δθ̇(t)‖∞ ≤ 1,
(18)

where the weighting matrices Wp and Wr are usually diagonal. For system (17), according to the

transformation (14)-(16), the pointing accuracy requirements (18) become

‖C x(t)‖∞ ≤ 1,

‖D ẋ(t)‖∞ ≤ 1,
(19)

where

C =Wp I
−1
M B,

D =Wr I
−1
M B.

(20)

Notice that G does not appear in the right hand side of (20), as it would not change constraints (19).

Moreover, the dynamics of system (17) are decoupled, but the state constraints (19) are coupled if the

input matrix B is not diagonal. This occurs frequently in applications, e.g., whenever non-orthogonal

thruster configurations are adopted, in order to meet constraints coming from the spacecraft layout or to

maximize the efficiency of the propulsion system.

Besides guaranteeing that (19) holds, the control system is required to minimize both the fuel consump-

tion and the switching frequency of the thrusters. In fact, the former is a limiting factor for the lifetime

and the capabilities of the spacecraft, while the latter is proportional to the number of thruster valve

activations and hence to the electrical power consumption and the wear of the engines. This problem

will be addressed in detail throughout the rest of the paper.

III. REFERENCE TRAJECTORY OPTIMIZATION

In the section, the optimal attitude control problem is formulated and two suboptimal solutions are

derived, providing reference trajectories to be tracked by the thruster controller. We will make the

simplifying assumption that k in (17) is constant, since in the considered application the disturbance

variation is usually much slower than the attitude error dynamics.

The average fuel consumption is defined as

Jf (u) = lim
T→∞

1

T

∫ T

0
‖u(t)‖1 dt. (21)



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 7

Notice that any input sequence for which Jf (u) < ‖k‖1 cannot satisfy both constraints (19) indefinitely.

In addition, it can be shown that any sequence of the form

uj(t) ∈ {−1, 0}, j = 1, 2, 3, (22)

guaranteeing that (19) hold, is such that Jf (u) = ‖k‖1, and therefore it is fuel-optimal [24]. Among

all the fuel-optimal input sequences, we aim at finding the one which minimizes the thruster switching

frequency.

The switching frequency of a single thruster can be expressed as the average number of input transitions

per time unit, commanded by the control system. This is given by

Js(uj) = lim
T→∞

1

T

∫ T

0
|u̇j(t)| dt. (23)

Since we are interested in reducing as much as possible the fuel consumption and the number of

input transitions per actuator, while satisfying the state constraints, the optimal control problem can

be formulated as

min
u

max
j

Js(uj)

s.t. (17), (19), (22).

(24)

Hereafter, the single-axis solution to problem (24) is briefly reviewed and suitably extended to the

multivariable case. We will restrict our attention to the case k > 0, since for k = 0 system (17) can be

steered to the origin in finite time by using well-known results from the literature [27] (notice that this

does not hold when restrictions on the duration of thruster firings are taken into account; this case will

be addressed in Section IV-B).

A. Single-axis solution

Consider a single-axis double integrator (x ∈ R). In this case, the solution to problem (24) is known

since long time [28], and corresponds to the limit cycle oscillation ψU ∪ψL depicted in the phase plane

in Fig. 1, where

ψL = {(x, ẋ) : x− 1

2k
ẋ2 = −a, −a ≤ x < a(1− 2k)}, (25)

ψU = {(x, ẋ) : x− 1

2(k − 1)
ẋ2 = a, a(1− 2k) ≤ x ≤ a}, (26)

u∗ = −1 when (x, ẋ) ∈ ψU , u∗ = 0 when (x, ẋ) ∈ ψL, and a denotes the oscillation amplitude. When

constraints on the attitude error rate are not enforced (i.e. D = 0 in (19)), one has trivially that a = 1/C.

In the presence of both attitude error and attitude error rate constraints, the amplitude is given by

a = min

(

1

C
,

1

64γD2

)

, (27)
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x

ẋ

ψL
ψU

−a a

v

Fig. 1. Limit cycle obtained by solving problem (24): single-axis case.

where γ = k(1− k)/16, the peak velocity along the limit cycle being v = 8
√
γa. Notice that the period

of the oscillation is p =
√

a/γ and the resulting input switching frequency is Js(u
∗) = 2/p. To verify

that the provided minimum switching solution is also a fuel optimal solution, observe that the time spent

along the branch ψU of the limit cycle is equal to kp. Then, it can be easily shown that Jf (u
∗) = k.

B. Multi-axis solution

Except for the trivial case in which C and D are diagonal, the multivariable problem (24) is hard to

solve if all feasible input signals u(t) are considered. Therefore, by building on the optimal solution of

the single-axis problem, we restrict our attention to the class of input sequences which generate periodic

trajectories of the form depicted in Fig. 1, for each axis. This corresponds to parameterizing the trajectory

of the j-th double integrator as

xj(t) = p2j γj fj(λj),

λj = mod(t/pj + φj , 1),
(28)

where γj = kj (1− kj)/16, pj is the period, φj ∈ [0, 1) is the phase, mod(a, b) indicates the remainder

of a/b, and fj(λj) ∈ [−1, 1] is defined as

fj(λj) =











1− 8
kj

(λj − kj

2 )
2 if 0 ≤ λj ≤ kj

−1− 8
kj−1(λj −

kj+1
2 )2 if kj < λj < 1.

(29)
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The inputs uj(t) giving rise to xj(t) of the form (28) are pulse-width modulated signals with period pj

and duty cycle kj , and can be expressed as

uj(t) =











−1 if 0 ≤ λj ≤ kj

0 if kj < λj < 1.

(30)

The input signals uj in (30) are fuel-optimal, because Jf (u) = ‖k‖1. Being these signals double-switch

periodic, one has Js(uj) = 2/pj . Moreover, (19) is equivalent to

max
i

max
t

∣

∣

∑3
j=1Cij xj(t)

∣

∣ ≤ 1,

max
i

max
t

∣

∣

∑3
j=1Dij ẋj(t)

∣

∣ ≤ 1,
(31)

where the coefficients Cij and Dij are the entries of C and D. By enforcing (28) and replacing (19) by

(31), problem (24) becomes

min
p, φ

max
j

2/pj

s.t. (28), (31)

0 ≤ φj < 1

pj > 0, j = 1, 2, 3,

(32)

where p = [p1, p2, p3]
T and φ = [φ1, φ2, φ3]

T .

This way, the dynamic optimization problem (24) has been converted into a static optimization problem,

where the decision variables are p and φ. Note, however, that the problem is still hard to solve, being

non-convex in these decision variables. Consequently, some simplifying assumptions will be made in

order to derive an upper bound to the solution of (32). Let us observe that by (28)

max
i

max
t

∣

∣

∑3
j=1Cij xj(t)

∣

∣ ≤ max
i

∑3
j=1 |Cij | aj ,

max
i

max
t

∣

∣

∑3
j=1Dij ẋj(t)

∣

∣ ≤ max
i

∑3
j=1 |Dij | vj ,

(33)

where

aj = max
t
x(t) = p2jγj ,

vj = max
t
ẋ(t) = 8

√
γjaj .

(34)

Hence, (31) can be guaranteed by imposing

‖C a‖∞ ≤ 1,

‖Dv‖∞ ≤ 1,
(35)
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where a = [a1, a2, a3]
T , v = [v1, v2, v3]

T and C, D are the matrices whose entries are |Cij | and |Dij |.
By replacing (31) with (35) and exploiting (34), problem (32) boils down to

min
a

max
j

2

√

γj
aj

s.t. (35)

aj > 0, j = 1, 2, 3.

(36)

By (33), the solution of (36) is an upper bound to that of (32). It turns out that problem (36) can be

solved analytically, as stated by the following theorem.

Theorem 1: A global minimum of problem (36) is attained at

a∗ =
1

max{‖Q‖∞, ‖S‖2∞}Γ1, (37)

where Γ = diag(γ1, γ2, γ3), Q = CΓ, S = 8DΓ, and 1 = [1, 1, 1]T .

Proof: The proof is reported in the Appendix.

Since by (37) all the entries of Γ−1a∗ are equal, it follows from the relationship pj =
√

aj/γj that the

trajectories corresponding to the solution of problem (36) have the same period

p1 = p2 = p3 = max{
√

‖Q‖∞, ‖S‖∞}−1
. (38)

Notice that the period (38) depends on the value of k.

A less conservative relaxation of problem (32) can be found by exploiting the relative phases φj in (28).

In order to make the problem computationally tractable, we enforce directly the property p1 = p2 = p3

in (32). This leads to the new relaxed problem

min
p, φ

2/p1

s.t. (28), (31)

φ1 = 0,

0 ≤ φj < 1, j = 2, 3,

p1 = p2 = p3 > 0,

(39)

where φ1 = 0 has been set without loss of generality, since shifting all the phases by the same quantity

does not alter the optimal solution of (39). The following result holds.

Theorem 2: A global minimum of problem (39) is attained at

φ∗ = argmin
φ

max{
√

σ(φ), η(φ)},

p∗1 = p∗2 = p∗3 = max{
√

σ(φ∗), η(φ∗)}−1,

(40)
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where

σ(φ) = max
i

max
0≤t≤1

∣

∣

3
∑

j=1

Cij γjfj(t+ φj)
∣

∣,

η(φ) = max
i

max
0≤t≤1

∣

∣

3
∑

j=1

Dij γj ḟj(t+ φj)
∣

∣.

(41)

Proof: The proof is reported in the Appendix.

Due to (33) and (38), the solution of problem (39) is a lower bound to that of (36), and an upper bound

to that of (32). According to (30), the resulting optimal input signals u∗j are pulse-width modulated with

period p∗j = p∗1 and phases φ∗1 = 0 and φ∗j for j = 2, 3. Being σ(φ) and η(φ) non convex functions, the

global minimizer (40) can be found by numeric search over the free phases φ2 and φ3, as illustrated by

the following example.

Example 1. Let

C =











0 0 −0.053

−0.055 0.055 0

−0.055 0.055 0.055











, (42)

D = 0 and k = [0.2, 0.3, 0.6]T . Theorem 1 gives a∗ = [4.73, 6.21, 7.10]T , which corresponds to the

period p∗1 = p∗2 = p∗3 = 22.22 and the optimal cost Js(u
∗
j ) = 0.090. In order to compute the solution

provided by Theorem 2, one has to search the 2-dimensional parameter space φ2, φ3 for a global minimizer

of σ(φ). This gives φ∗2 = 0.90, φ∗3 = 0.07 and p∗1 = p∗2 = p∗3 = 35.60, corresponding to the optimal cost

Js(u
∗
j ) = 0.056. Notice from Fig. 2 that σ(φ) is a non-convex function of the decision variables φ with

multiple local minima. As expected, Theorem 2 requires a lower switching frequency, while the average

fuel consumption is the same for both solutions, by construction. In particular, the optimal cost of (39) is

lower than the optimal cost of (36) by approximately 39%. The three-dimensional plot of the trajectories

x1(t), x2(t) and x3(t) is reported in Fig. 3, where it can be seen that the control accuracy requirements

(represented by the 3-dimensional parallelotope) are satisfied.

IV. THRUSTER CONTROL

In this section the problem of tracking the reference trajectories corresponding to the periodic solutions

derived in Section III is addressed. First, the control law recently developed in [25], for the case of

constant disturbances, is briefly recalled. Then, an adaptive control scheme is proposed, which accounts

for the minimum firing duration imposed by the thruster technology and the presence of time-varying

disturbances.
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Fig. 2. An example of function σ(φ) in (41).

x2

x1

x
3

Fig. 3. Trajectories resulting from the solution to (36) (dotted) and (39) (solid), together with constraints ‖Cx‖∞ ≤ 1 (outer

parallelotope) and |xi| ≤ a∗

i (inner box).

A. Reference trajectory tracking

Since in system (17) the three double integrators are decoupled, three single-axis feedback control

laws (one per input channel), can be used to track the reference trajectories provided by Theorems 1

and 2. This corresponds to steering system (17) to a trajectory of the form (28) with a prescribed period
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(Theorem 1), or both a prescribed period and phase (Theorem 2), from any initial condition. For ease

of exposition, in the following the subscript j is dropped from the notation (i.e., it is left intended that

x = xj , a = aj , p = pj , φ = φj , k = kj , unless otherwise indicated).

Let us start by showing how to steer system (17) to a trajectory of the form (28) with given period p,

under the assumption of a constant disturbance k. The following control law, termed MSI, can be adopted

MSI(a) : u(t) =



















−1 if s(x, ẋ; k) ≥ a

0 if s(x, ẋ; k) ≤−a
up otherwise,

(43)

where up = −1 if s(x, ẋ; k) ≥ a occurred more recently than s(x, ẋ; k) ≤ −a, up = 0 otherwise.

Moreover,

s(x, ẋ; k) =







x− 1
2(k−1) ẋ

2 if ẋ ≥ 0

x− 1
2k ẋ

2 if ẋ < 0
(44)

is the classical fuel-optimal switching function for the double integrator subject to a constant load k (see

e.g. [29]). Notice that (43)-(44) describe a relay feedback system with hysteresis defined by a.

The switching curves s(x, ẋ; k) = a and s(x, ẋ; k) =−a are reported in the phase plane in Fig. 4,

together with an example of a controlled trajectory (dotted). It is apparent that, by applying the control

law MSI to each axis of the perturbed double integrator (17), a trajectory of the form (28) with period

p =
√

a/γ is reached in finite time, using only one switching per input channel, from any initial

condition. Therefore, the reference trajectory specified by Theorem 1 can be tracked by using the control

law MSI(a
∗), with a∗ given by (37).

In order to achieve the solution provided by Theorem 2, a prescribed phase must be tracked in addition

to the period. In [25], a control law has been introduced to this purpose, which exploits a time-varying

hysteresis defined by two parameters aU and aL. More specifically, the control law (43) is modified as

MSII(p, φ) : u(t) =



















−1 if s(x, ẋ; k) ≥ aU (t; p, φ)

0 if s(x, ẋ; k) ≤−aL(t; p, φ)
up otherwise,

(45)

where up = −1 if s(x, ẋ; k) ≥ aU occurred more recently than s(x, ẋ; k) ≤−aL, and up = 0 otherwise,

with aL + aU > 0. The idea is to update the offset of a switching curve whenever the opposite curve is

reached, so as to steer the system to a periodic solution with given period p and phase φ. By assuming

without loss of generality that the curve which is hit first is s(x, ẋ; k) = aU at time z1, this results in

piece-wise constant parameters

aL(t; p, φ) = h2m−1 for t ∈ [z2m−1, z2m+1),

aU (t; p, φ) = h2m for t ∈ [z2m, z2m+2),
(46)
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a−a

Fig. 4. Switching curves (solid) and example of a trajectory (dotted) from the application of the MSI control law.
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z4

Fig. 5. Switching curves (solid) and example of a trajectory (dotted) from the application of the MSII control law.

where the sequence {zl} denotes the time instants at which the state trajectory reaches a switching curve

(an example is shown in Fig. 5). The sequence {hl} defining these parameters is given by

h0 = p2γ, (47)

hl = p2γ
(

1 + 4∆φl + 2∆φ2l
)

, (48)
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where

∆φl = mod

(

z̄l+2 − ẑl+2

p
+

1

2
, 1

)

− 1

2
, (49)

ẑl+2 = zl +
|ẋ(zl)|
q(zl)

+
q(zl)

2
p+

√
2

4

√

p2 +
hl−1

γ
, (50)

q(zl) = |u(zl) + d|, and {z̄l} is defined according to

z̄2m−1 = −φ p,
z̄2m = (k − φ) p.

(51)

It is shown in [25] that, by applying to each rotational axis the control law MSII(p
∗, φ∗), with p∗ and φ∗

given by (40), system (17) is steered in finite time to the reference trajectory (28) provided by Theorem 2.

Moreover, only three switchings of the control input are required to reach this trajectory from any initial

condition.

Example 2. Consider the problem of tracking the reference trajectory specified by Theorem 2 in

Example 1 (i.e. the blue, solid trajectory in Fig. 3). For each input channel of system (17), the control

law MSII is implemented through the event-based switching logic depicted in Fig. 6. The initial conditions

for the simulation are set to x(t0) = [10, 25, −10]T and ẋ(t0) = [3, 2, −4]T . The trajectory of the closed-

loop system is reported in Fig. 7. It can be clearly seen that, after a finite transient, the system trajectory

converges to the reference limit cycle (marked). The corresponding control inputs are reported in Fig. 8.

As expected, the desired duty cycle is attained from the fourth input transition onwards, for each input

channel.

u(t)= 0 u(t)=−1

s(x, ẋ; k)≥aU (t; p∗,φ∗)

s(x, ẋ; k)≤−aL(t; p∗,φ∗)

Set aL(t; p∗, φ∗) by (46)-(51)

Set aU (t; p∗, φ∗) by (46)-(51)

Fig. 6. Event-based switching logic.

B. Firing duration restrictions

If one or more elements kj of the the disturbance vector k in (17) are close to zero, the firing time

required by the MSI and MSII schemes may not be compatible with the minimum pulse duration ∆tm
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Fig. 8. Control inputs.

imposed by the thruster technology. This must be taken into account for a reliable implementation of

the control system. In particular, in order to ensure the feasibility of the reference trajectory provided by

Theorem 2, one must have kjp
∗
j ≥ ∆tm ∀j, where kjp

∗
j is the required duration of the j-th thruster firing

according to (28)-(30). Conversely, when kjp
∗
j < ∆tm for some j, there is no input signal uj ∈ {−1, 0}
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Fig. 9. Oscillation resulting from the application of the MS0(bj) scheme, with kj = 0.

which guarantees that (19) holds, i.e. problem (24) does not admit any feasible solution of the considered

form. To circumvent this issue, one possibility is to enforce an oscillating motion in which uj=−1 and

uj=1 are applied for the minimum possible firing interval ∆tm, so as to keep the attitude error within

a bound bj , i.e. |xj | ≤ bj . A standard control scheme based on linear switching functions with deadzone

and hysteresis (Schmitt trigger), which is denoted by MS0(bj), can be adopted to this purpose, see e.g.

[30]. The resulting trajectory is reported in the phase plane in Fig. 9, for the case kj = 0. One can

verify that both the fuel consumption and the input switching frequency required by such trajectory are

proportional to 1/bj . Hence, the objective of the minimum switching problem becomes to optimize over

the parameters bj , while guaranteeing that constraints (19) are satisfied. This can be done by applying

the same relaxation leading to problem (36), which amounts to solve the static optimization problem

min
b

max
j

1

bj

s.t. ‖C b‖∞ ≤ 1

bj > 0, j = 1, 2, 3.

(52)

By using the same reasoning as in Theorem 1, the solution to (52) is found as

b∗ =
1

‖C‖∞
1. (53)

The solution (53) is applied when kjp
∗
j < ∆tm ∀j.

If kjp
∗
j < ∆tm only for some j, in order to derive a less conservative solution, one may adopt a mixed

strategy, that consists in applying Theorem 1 for the axes for which this is feasible. This corresponds to
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choosing the reference trajectory (28)-(30) with amplitude

â∗j = min(a∗j , b
∗
j ), (54)

where a∗j is provided by Theorem 1, for all axes j for which

kj p̂
∗
j = kj

√

â∗j/γj ≥ ∆tm. (55)

For the remaining axes, an oscillating motion of the form shown in Fig. 9, with amplitude b∗j , is selected.

Summarizing, in order to track the reference trajectory outlined in the previous discussion and satisfy

the minimum firing time restrictions, the following control logic MS can be used. Let ξ = mini kip
∗
i .

Then

MS(p∗, φ∗, a∗, b∗) :



























MSII(p
∗
j , φ

∗
j ) if ξ ≥ ∆tm

MSI (â
∗
j ) if ξ < ∆tm ∧ kj p̂

∗
j ≥ ∆tm

MS0 (b
∗
j ) if ξ < ∆tm ∧ kj p̂

∗
j < ∆tm,

(56)

where â∗j and p̂∗j are given by (54) and (55), respectively. In other words, the MSII scheme is applied to

track the trajectory provided by Theorem 2 only when the resulting firing time is feasible for all actuators

(i.e. ξ ≥ ∆tm), otherwise the mixed strategy MS0/MSI is resorted to.

C. Adaptive control scheme for time-varying disturbances

In the following, the case in which the disturbance acting on system (17) is a time-varying signal k(t)

is considered. This is of practical interest, whenever the disturbance torque is generated by environmental

perturbations. Since the time constants of such perturbations are in the order of the orbital period, they turn

out to be usually much larger than the period of the attitude error oscillations. Therefore, one can assume

that the variation of k(t) is small during one period of the error oscillations. Under this assumption, it

is shown hereafter how the control schemes introduced in Section IV-A can be adapted to cope with

time-varying disturbances.

The control law MSI in (43) can be readily modified as

MSI(a
∗(t)) : u(t) =



















−1 if s(x, ẋ; k(t)) ≥ a∗(t)

0 if s(x, ẋ; k(t)) ≤−a∗(t)
up otherwise,

(57)

where a∗(t) is computed according to (37). Notice that now also Γ in (37) is time-varying, as it depends

on k(t).
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The adaptation of the control scheme MSII in (45) requires a more careful treatment. First, one has to

evaluate (40)-(41) online. In order to make the procedure computationally feasible, this is done only at

time instants tr, such that

tr+1 = tr +∆ta, (58)

where t0 = 0, and ∆ta is a fixed adaptation step. Then, the control law MSII(p
∗(t), φ∗(t)) is applied,

with the piecewise constant time-varying parameters

p∗(t) = p∗(tr),

φ∗(t) = φ∗(tr),
for tr ≤ t < tr+1 (59)

where p∗(tr) and φ∗(tr) are computed according to Theorem 2, with k = k(tr). This amounts to

approximate k(t) with a piecewise constant signal for the computation of the reference period and phase.

Clearly, ∆ta is a tuning parameter that allows to trade off the computational burden and the performance

of the control scheme. The numerical search algorithm required to evaluate (40)-(41) has to be tweaked

to avoid that small variations of k(t) result in abrupt changes in φ∗(t), due to the presence of multiple

local minima in max{
√

σ(φ), η(φ)}. This is done by performing at each time tr a local search in a

neighborhood of the previous solution φ∗(tr−1). Another minor amendment has to be adopted in the

computation of the parameters aL(t; p∗(t), φ∗(t)), aU (t; p∗(t), φ∗(t)), according to (46)-(51). In fact, in

(49) one has to compute both z̄l+2 and ẑl+2 modulo p∗(t), which is now itself a time-varying signal. In

order to reset the modulo operator every time interval of length p∗(t), the timing signal ζ(t) is introduced,

such that






ζ̇ = 1 for mod(ζ, p∗(t)) 6= 0

ζ = 0 for mod(ζ, p∗(t)) = 0
(60)

and ζ(0) = 0. Then, (50) is replaced by

ẑl+2 = ζ(zl) +
|ẋ(zl)|
q(zl)

+
q(zl)

2
p∗(zl) +

√
2

4

√

p∗2(zl) +
hl−1

γ(zl)
, (61)

where ζ(zl) denotes the value of ζ(t) defined by (60) at the time instant zl, at which a switching curve

of the control law MSII is reached.

Finally, the presence of both time varying disturbances and firing time limitations can be tackled by

applying the control scheme MS in (56), with the time varying parameters p∗(t), φ∗(t) and a∗(t).

V. PRECISION POINTING APPLICATIONS

To assess the performance of the proposed approach, a GEO mission and a LEO mission are numerically

simulated. In both cases, the objective is to maintain an Earth-pointing attitude qIR rotating at a constant
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angular velocity ωR, using a set of on-off thrusters. The truth model for the simulation is given by (2)-(4).

The disturbance torque τd in (4) accounts for the most significant environmental perturbations (gravity

gradient, atmospheric drag, magnetic moment, solar radiation pressure) as well as the torques arising

from the operation of the orbit control system. White noise is added to the commanded thrust (6) in

order to model uncertainty in the actuation system. The standard deviation of the thruster noise is set to

5% of the nominal thrust. An extended Kalman filter processing gyro and star-tracker measurements takes

care of estimating the spacecraft attitude, angular rate and the disturbance torque, which are used in the

computation of the control law. More details on the considered simulation environment and navigation

system can be found in [10].

A. GEO mission

Consider a 2000 kg satellite similar to the Small-GEO platform [31] on a geostationary orbit, with

ωR = [0,−7.3 ·10−2, 0]T mrad/s. The size of the spacecraft bus is 2×2×2.5 m3 and the inertia matrix is

IM = diag(1.9, 1.47, 1.55) · 103 kg·m2. The propulsion system consists of the four orbit control thrusters

O1-O4 and the eight attitude control thrusters A1-A6b depicted in Fig. 10. Thrusters A3a-A3b and A6a-

A6b are fired in pairs, and hence referred to as thrusters A3 and A6. Moreover, A1-A3 produce opposite

torques with respect to A4-A6. Each thruster delivers a thrust equal to 1.5 mN. The resulting thrusting

configuration can be modeled as in (6), with

B =











−2 2 0

2 2 0

0 0 4.2











mN·m. (62)

During station-keeping maneuvers, a disturbance torque is generated due to misalignment of thrusters

O1-O4 with respect to the spacecraft center of mass. Such a torque is usually orders of magnitude

larger than that generated by environmental perturbations. Because a station-keeping maneuver requires

to fire two orbit control thrusters in sequence, to correct for orbital inclination and longitude errors,

the disturbance torque is piecewise constant. In the considered setting, one has τd = [−1.6, 1.4,−2]T

mN·m during the first half of the station-keeping maneuver and τd = [−0.6,−1.5, 0.7]T mN·m during the

second half. The maneuver lasts for 3300 s. In order to maintain the desired Earth-pointing orientation,

τd must be compensated using thrusters A1-A6. The uncertainty affecting the attitude sensors used by

the navigation system is modeled as in [10].

In the following, the proposed control strategy is compared to the MPC scheme developed in [10] for

disturbance rejection. The MPC scheme is based on a finite horizon reformulation of the optimal control
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Fig. 10. Thruster configuration: GEO spacecraft.

problem (24) relying on model (9),(11), and requires the solution of a mixed integer linear program

(MILP). Such an approach has been found to deliver a significant reduction of both the fuel consumption

and the thruster switching frequency with respect to a standard control scheme based on the combination

of a linear quadratic regulator and a pulse-width-pulse-frequency modulator.

The required attitude control accuracy is ‖δθ‖∞ < 0.5 mrad and ‖δθ̇‖∞ < 10 µrad/s, where δθ1, δθ2

and δθ3 are the roll, pitch and yaw errors, respectively. Then, Wp = I/(5 · 10−4) and Wr = I/(10−5) in

(18). According to (62), the control torque on the yaw axis is decoupled from those on the roll and pitch

axes. Hence, the results presented in Section III-A can be used for the yaw axis, while those in Section

III-B can be applied to the two dimensional system including the roll and pitch axes. This amounts to

apply Theorem 2 to system (17) with j = 1, 2, and Theorem 1 for j = 3. Consequently, the control law

MSII is applied for j = 1, 2, while MSI is employed for j = 3. The resulting control scheme is denoted

by MSII + MSI. The period and phase to be tracked are evaluated twice, to account for the impulsive

variation of the disturbance at t = 1650 s (due to the switch between two orbit control thrusters). In

Fig. 11, the tracking errors δθ and δθ̇ obtained with this approach are compared to those resulting from

the application of the MPC scheme. The two controllers succeed in keeping the tracking errors within

the bounds. Notice that the constraints on the angular rate error are more stringent than the attitude error

ones.

The fuel consumption and the switching performance are measured by the sum of the actuator firing
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Fig. 11. Tracking errors resulting from the application of the MSII + MSI (blue, solid) and MPC (red, dashed) schemes, with

constraints (18) (dash-dotted).
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Fig. 12. Time evolution of the number of thruster firings for the MSII + MSI scheme.

times and the maximum number of firings per thruster, respectively. The time evolution of the number of

firings required by the MSII + MSI scheme is depicted in Fig. 12, where each line represents a different

thruster. Notice that, among the six thrusters A1-A6, only three can be active at the same time to comply

with the minimum fuel condition (22). Moreover, those employed during the first part of the maneuver

are different from those employed in the second part (except for thruster A2), due to the dependance
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TABLE I

CONTROL SYSTEM PERFORMANCE: GEO MISSION

Parameter MSII+MSI MPC

Firing time (s) 3610 3614

Thruster firings (#) 56 79

of the mapping (15) on the direction of the disturbance through the term G−1. The performance of the

considered controllers is reported in Table I. The fuel consumption is approximately the same for the

two solutions, but the number of thruster firings commanded by the MPC scheme is 40% higher.

The superior performance of the proposed approach is explained by the fact that the MPC optimization

problem has to be solved over a short prediction horizon, in order to retain the computational feasibility

of the receding horizon strategy. In this respect, it is worth remarking that the MSII +MSI scheme takes

only a fraction of the overall computational time required by the MPC scheme. In fact the time needed

to solve the MILP in the MPC scheme is much greater than that required to evaluate Theorem 2 through

a one-dimensional search on φ2. Moreover, while the former has to be done at each sampling instant,

the latter is performed only twice per station-keeping maneuver.

B. LEO mission

Consider now a 100 kg minisatellite similar to the BIRD platform [32] on a low Earth orbit, such that

ωR = [0,−1.1, 0]T mrad/s. The size of the spacecraft bus is 0.6× 0.6× 0.6 m3 and the inertia matrix is

IM = diag(6, 5.7, 5.7) kg·m2. The propulsion system consists of the six attitude control thruster A1-A6

depicted in Fig. 13. Thrusters A1-A3 produce opposite torques with respect to A4-A6. Each thruster

delivers a thrust equal to 0.5 mN. The resulting thrusting configuration can be modeled as in (6), with

B =











0 0 −0.15

−0.15 0.15 0

0.15 0.15 −0.15











mN·m. (63)

According to the typical hardware and sensing instruments available onboard this type of minisatellite,

the uncertainty of attitude measurements has been set one order of magnitude greater than that in the GEO

case study. The required pointing accuracy is ‖δθ‖∞ < 0.5 mrad, corresponding to Wp = I/(5 · 10−4)

and Wr = 0 in (18). The matrices C and D resulting in (19) are the same reported in Example 1.

Because the orbit of the spacecraft is uncontrolled, the disturbance torque τd(t), depicted in Fig. 14, is

due to environmental sources only. As opposed to the GEO mission example, in this case the disturbance
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Fig. 13. Thruster configuration: LEO spacecraft.

signal is indeed continuously time-varying, with period equal to the orbital period (5600 s, corresponding

to 2π/‖ωR‖2). Moreover, it is such that one or more entries of the vector k(t) in (17) are close to zero

at different points along the orbit. These mission characteristics require to account for both disturbance

variations and firing duration restrictions, which is accomplished by using the adaptive control scheme

MS(p∗(t), φ∗(t), a∗(t), b∗) in (56). The minimum duration of a thruster firing is set to ∆tm = 0.5 s,

which is compatible with the specification of mN-class engines. An adaptation step ∆ta = 100 s is

employed in (58).

The MS strategy is compared to the MS0 scheme, which is a common solution for disturbance rejection

and attitude regulation with thrusters (see e.g. [33], [34]). The system is simulated for 5600 s. In Fig. 15,

it can be seen that the two controllers are able to maintain the tracking error within the required accuracy.

Two transitions between the MSI and MSII schemes, due to the variation of kj(t)p
∗
j (t) in (56), are clearly

visible in the roll error profile between t = 1000 s and t = 2000 s. Moreover, notice that the tracking

error resulting from the application of the MS0 scheme is kept closer to zero, because the size of the

feasible set xj ≤ b∗j used by this approach is significantly smaller that that adopted by the MS scheme.

Clearly, this has an impact on the efficiency of the control system. The performance the control schemes

is reported in Table II. The results obtained for the case in which the control law MSII is replaced by

MSI in (56) are also included for completeness, and denoted by MS/MSI. The overall firing time and

the maximum number of firings per thruster required by the MS scheme are much lower than the ones

delivered by the MS0 scheme (by 25% and 60%, respectively), resulting in important fuel and electrical

power savings, as well as an increased lifetime of the actuators. Moreover, it is confirmed that the use

of the MSII control law in the MS scheme provides a significant reduction of the number of switching,
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TABLE II

CONTROL SYSTEM PERFORMANCE: LEO MISSION

Parameter MS MS/MSI MS0

Firing time (s) 1730 1726 2310

Thruster firings (#) 78 98 185

with respect to employing only MSI.

Finally, it should be stressed that this last case study is a very challenging test for the proposed control

technique, because LEO spacecraft feature a high orbital rate, which translates into a high variation rate of

the environmental disturbance torque. Nevertheless, the controller bandwidth has proven to be sufficient
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to reject such perturbation, while satisfying the pointing accuracy requirements. Moreover, the required

computational burden is compatible with the limited processing power of spacecraft hardware. In fact,

Theorem 2 is evaluated only once every 100 s, through a two-dimensional search on φ1 and φ2 that takes

about 20 ms on a 2 Ghz single-core CPU.

VI. CONCLUSIONS

This paper has presented an optimal attitude control scheme for spacecraft precision pointing with on/off

actuators. The problem of minimizing the fuel consumption and the thruster switching frequency has been

addressed by approximating the attitude error dynamics with a systems of three coupled double integrators

subject to a constant disturbance. The online solution to this problem has been exploited in the design of

an adaptive control strategy able to deal with both firing duration restrictions and disturbance variations.

Simulation results on two realistic missions have shown that the controller is able to keep the pointing

error and its derivative within a predefined accuracy, incurring only a minor performance degradation in

the presence of time-varying disturbances. The proposed technique represents an attractive option for a

number of future small satellite missions, in view of the extremely limited computational burden required.

Moreover, this approach can be effective also in different application domains, involving perturbed double

integrator dynamics. Future work includes a robustness analysis with respect to parametric uncertainty

and the extension of this technique to other classes of linear time-invariant systems.

APPENDIX

Proof of Theorem 1

Let r = Γ−1a. Then, problem (36) can be rewritten as

min
β,r

β

s.t. 2/
√
rj ≤ β

‖Qr‖∞ ≤ 1

‖S
√
rI 1‖∞ ≤ 1

rj > 0.

(64)

The statement of the theorem is proven if the feasible solution r∗ = max{‖Q‖∞, ‖S‖2∞}−1
1, β∗ =

2/
√
r∗ is a global minimum for problem (64). Let r̂, β̂ be a feasible solution of (64). Then, we get

r̂j ≥
4

β̂2
,
√
rj ≥

2

β̂
j = 1, 2, 3, (65)
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and, being Qij ≥ 0, Sij ≥ 0 ∀i, j, where Qij and Sij denote the entries of Q and S, one has

1 ≥
∑3

j=1Qij r̂j ≥
4

β̂2

∑3
j=1Qij ,

1 ≥
∑3

j=1 Sij
√

r̂j ≥
2

β̂

∑3
j=1 Sij , i = 1, 2, 3.

(66)

It follows that

β̂ ≥ 2
√

max
i

∑3
j=1Qij = 2

√

‖Q‖∞,

β̂ ≥ 2max
i

∑3
j=1 Sij = 2‖S‖∞

(67)

and therefore

β̂ ≥ 2max{
√

‖Q‖∞, ‖S‖∞} = β∗, (68)

which concludes the proof.

Proof of Theorem 2

By using (28), constraint (31) can be rewritten as

p21 σ
′(φ) ≤ 1,

p1 η
′(φ) ≤ 1,

(69)

where

σ′(φ) = max
i

max
0≤t≤p1

|
∑3

j=1Cij γjf(t/p1 + φj)|,

η′(φ) = max
i

max
0≤t≤p1

|
∑3

j=1Dij γj ḟ(t/p1 + φj)|.
(70)

Notice that σ′(φ) = σ(φ) and η′(φ) = η(φ), with σ(φ) and η(φ) given by (41), because the peak

values of the sums of the p1-periodic functions f(t/p1 + φj), ḟ(t/p1 + φj), evaluated over the period,

are independent from the period itself. Then, problem (39) can be rewritten as

min
τ,φ

τ

s.t.
√

σ(φ) ≤ τ

η(φ) ≤ τ,

0 ≤ φj < 1, j ≥ 2

φ1 = 0, τ > 0,

(71)

where τ = 2/p1. The global minimum of Problem (71) is attained at τ∗ = 2/p∗1, with p∗1 given by (40),

which concludes the proof.
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