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Comparison of EKF and UKF for spacecraft

localization via angle measurements
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Abstract

In this paper, the performance of two nonlinear estimators is compared for the localization of a

spacecraft. It is assumed that range measurements are not available (like in deep space missions) and

the localization problem is tackled on the basis of angles-only measurements. A dynamic model of the

spacecraft accounting for several perturbing effects, such as Earth and Moon gravitational field asymmetry

and errors associated with the Moon ephemerides, is employed. The measurement process is based on

elevation and azimuth of Moon and Earth with respect to the spacecraft reference system. Position and

velocity of the spacecraft are estimated by using both the Extended Kalman Filter (EKF) and the Unscented

Kalman Filter (UKF). The behavior of the filters is compared on two sample missions: Earth-to-Moon

transfer and geostationary orbit raising.

Index Terms

Spacecraft localization, Nonlinear estimation, Extended Kalman Filter, Unscented Kalman Filter.

I. INTRODUCTION

Nonlinear estimation techniques play a crucial role in any autonomous navigation system (e.g., see [1],

[2], [3]). It is a fact that many of the problems to be faced in order to achieve full autonomy can be
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cast as estimation problems. Among others, the ability of estimating the position of a spacecraft from the

information provided by its onboard sensors (localization problem) is of paramount importance for the

success of any mission.

This is especially true when dealing with spacecraft propelled by electric propulsion systems (EPS).

Small and cheap electrically propelled spacecraft have recently gained a growing interest for lunar and

outer planetary explorations, after the the successful SMART-1 mission of the European Space Agency [4],

[5]. The use of EPS for the final stint of satellite launching (so called Chemical-Electric missions for Orbit

Raising, C-EOR) is more and more adopted by companies, thanks to their good trade-off between on-orbit

delivery time and propellant required [6]. However, the low thrust produced by a EPS leads to a continuous

thrusting strategy which, in turn, requires an accurate knowledge of the spacecraft position and attitude

during the transfer orbit. Therefore, accurate localization capabilities become a fundamental requirement

for this type of missions.

Localization of spacecraft is usually very accurate when GPS range measurements are available [2]. The

problem becomes more challenging when GPS signals are not available, like in high-Earth orbits or in long

range missions, such as Earth-to-Moon transfers. In these cases, spacecraft navigation is often handled by

ground-based tracking stations, thus making it unfeasible for low-cost spacecraft missions. In order to make

spacecraft fully autonomous, it is necessary to devise self-localization and navigation algorithms relying

only on measurements provided by onboard sensors [3], [7].

In this paper, the problem of spacecraft self-localization is addressed using angular measurements. First,

a dynamic model of the spacecraft is formulated, which takes into account several perturbing effects such

as Earth and Moon gravitational field asymmetry and errors associated with the Moon ephemerides (see

e.g. [8], [9]). It is assumed that the navigation system is able to estimate the spacecraft attitude (by using a

star tracker sensor [10]), and the spacecraft is equipped with line of sight sensors providing measurements

of elevation and azimuth of Moon and Earth with respect to the spacecraft reference system (see e.g. [11],

[12]). Range measurements, which are often difficult to obtain or not sufficiently reliable, are not required.

Then, position and velocity of the spacecraft are estimated by employing both the classical Extended

Kalman Filter (EKF) [13] and the recently developed Unscented Kalman Filter (UKF) [14]. Comparisons

between EKF and UKF have been proposed in several contexts, ranging from target tracking [15], [16], to
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positioning systems [17], [18] , virtual reality [19]. The filters have been tested on simulated data concerning

two different missions (Earth-to-Moon transfer and GEO orbit raising). The resulting localization errors,

and the associated confidence intervals, show that the proposed algorithms provide reliable estimates, whose

accuracy is sufficient for autonomous navigation in the considered class of missions. Preliminary results

have been presented in [20].

The paper is organized as follows. In Section II the spacecraft dynamic model and the measurement

process are introduced. The localization problem is formulated in Section III, and the adopted nonlinear

estimators are briefly recalled. Section IV reports results from numerical simulations of a Earth-to-Moon

transfer and a geostationary orbit raising. Finally, some conclusions are drawn in Section V.

II. SPACECRAFT MODEL

The following dynamic model for the spacecraft is considered

r̈ = −
µ

ρ3
r + µm

(

rsm

ρ3
sm

−
rm

ρ3
m

)

+
T

m
(1)

ṁ = −
||T||

Isp g
, (2)

where r = [x, y, z]′, rm = [xm, ym, zm]′ are the spacecraft and Moon positions in the Earth Centered

Inertial reference system (ECI [21]), see Figure 1. In equations (1)-(2), µ = 398600.4415 km3/s2 and

µm = 4902.801 km3/s2 are the gravitational parameters; ρ = ‖r‖, ρm = ‖rm‖ are the distances of the

spacecraft and the Moon from the earth, respectively; rsm = rm − r is the moon position with respect to

the spacecraft, and ρsm = ‖rsm‖. The vector T denotes the thrust provided by the propulsion system, m

is the spacecraft mass, and Isp is the specific impulse [21].
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Fig. 1. The ECI reference system
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If we define the state vector

X = [x, y, z, ẋ, ẏ, ż, m]′ (3)

containing the spacecraft position and velocity, as well as its mass, model (1)-(2) can be rewritten in vector

form as

Ẋ = f(X,u1,u2), (4)

where the inputs are the motor thrust and the Moon position,

u1 = T,

u2 = rm.

In order to make a fair and easy-to-implement comparison between EKF and UKF, equation (4) is

discretized with sampling time ∆T (UKF is typically applied to discrete-time systems and its extension to

continuous-time systems is the subject of ongoing research, see [22] for a recent contribution). The Euler

forward discretization of the continuous-time dynamics (4) is given by

X(k+1)∆T
= Xk∆T

+ ∆T f(Xk∆T
,u1,k∆T

,u2,k∆T
). (5)

In the following, for ease of notation, we will get rid of the dependence on the sampling time ∆T , and

will denote by qk the value of the quantity q at time k∆T .

In a real-world scenario, there exist several sources of uncertainty affecting the deterministic model (5).

First, at time k∆T inputs are not exactly known. Specifically, it is assumed that the propulsion system

generates a perturbed thrust

u1,k = (1 + ωu,k)T̄k, (6)

where T̄ denotes the nominal thrust and ωu,k is a discrete-time white stochastic process. Notice that the

thrust perturbation affects also the fuel mass evolution. Moreover, since also the location of the Moon is

not exactly known, the Moon ephemerides algorithm [8] is used to estimate it. Hence, the knowledge of

the Moon position is affected by the error em,k = [ǫmx,k, ǫmy,k, ǫmz,k]′, where each component is a

discrete-time white stochastic process. Therefore, if r̄m is the Moon position provided by the ephemerides,

the actual second input becomes

u2,k = r̄m,k + em,k. (7)
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A second source of uncertainty is due to perturbing effects neglected in the nominal model, such as

Earth and Moon gravitational field asymmetry, air drag and sun attraction [23]. According to Cowell’s

formulation, these contributions can be modeled by an additive process disturbance in the right hand side

of (1) (see Sec. 8.4 in [8]). By including the perturbing effects and the input perturbations (6)-(7) into the

nominal model (5), one obtains the perturbed discrete-time dynamic model

Xk+1 = Xk + ∆T (f(Xk, (1 + ωu,k)T̄k, r̄m,k + em,k) + ck). (8)

where

ck = [0, 0, 0, w̄′
k, 0]′, (9)

and w̄k ∈ R
3. If we stack all the uncertainty sources of the dynamic model in a discrete-time disturbance

vector

wk = [w̄′
k, ωu,k, e′m,k]′, (10)

then the time evolution of the spacecraft dynamics can be written as

Xk+1 = fd(Xk, T̄k, r̄m,k,wk), (11)

where T̄k and r̄m,k are known inputs, and the definition of fd(·, ·, ·) follows from equations (1)-(4),(8)-(10).

The spacecraft is equipped with sensors that provide angular measurements of azimuth and elevation of

Moon and Earth, with respect to a local reference system centered at the spacecraft and aligned to ECI, see

Figure 2 (recall that it is assumed that the attitude of the spacecraft is known). Noise-free measurements

at sampling instant k are related to the spacecraft and Moon position by the following equations

θe,k = atan2 (−yk,−xk) , (12)

φe,k = atan

(

−zk
√

x2
k + y2

k

)

, (13)

θm,k = atan2 (ym,k − yk, xm,k − xk) , (14)

φm,k = atan

(

zm,k − zk
√

(xm,k − xk)2 + (ym,k − yk)2

)

, (15)

where atan2(y, x) ∈ (−π, π] is the four-quadrant inverse tangent. Recalling that the Moon position rm,k

corresponds to the input u2,k, the equations above can be summarized as

Ȳk = h̄(Xk,u2,k), (16)
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Fig. 2. Angle measurements in the spacecraft reference system

where Ȳ = [θe φe θm φm]′ and h̄(·, ·) is defined according to equations (12)-(15) and the definitions of

X in (3). Now, by plugging equation (7) into (16), and taking into account the noise nk affecting nominal

measurements Ȳk, the actual measurement equations become

Yk = h̄(Xk, r̄m,k + em,k) + nk, (17)

where

nk = [vθe,k, vφe,k, vθm,k, vφm,k]′ (18)

is a discrete-time white noise modeling measurement errors. If we group all the error source entering in

equation (17) in the noise vector

vk = [n′
k, e′m,k]′, (19)

the measurement equation can be rewritten as

Yk = h(Xk, r̄m,k,vk), (20)

where r̄m,k is a known signal (the Moon ephemerides), and the definition of h(·, ·, ·) follows from

equations (12)-(19). Notice that the error on the Moon position estimates, coming from the ephemerides

algorithm, enters both the discrete-time process disturbance wk and the discrete-time measurement noise

vk, see equations (10) and (19).



7

III. STATE ESTIMATION

The estimation of the spacecraft position and velocity boils down to the state estimation problem for

system (11), based on the observations (20). In this section, we will briefly recall the equations of the

estimators that will be adopted in this work. To this purpose, we will refer to the discrete-time model

Xk+1 = fd(Xk, T̄k, r̄m,k,wk),

Yk = h(Xk, r̄m,k,vk).

(21)

where T̄k, and r̄m,k are known signals. In the following, the discrete-time process disturbance wk and

measurement noise vk are assumed to have zero mean.

A. Extended Kalman Filter

Let us denote the covariance matrix of the process disturbance by

Qk = E{wkw
′
k} (22)

and that of the measurement noise by

Rk = E{vkv
′
k}. (23)

Since that the error em affects both the dynamic model and the measurement equation, also the cross-

covariance between wk and vk, Sk = E{wkv
′
k}, must be considered.

Let X̂+
k be the state estimate at time k and let P+

k be the estimation error covariance matrix at the same

time. Then, the EKF prediction and correction equations are as follows [13].

Prediction

X̂−
k+1 = fd(X̂

+
k , T̄k, r̄m,k,0)

P−
k+1 = FkP+

k F ′
k + GkQkG′

k

Correction

X̂+
k+1 = X̂−

k+1 + Kk+1[Yk+1 − h(X̂−
k+1, r̄m,k+1,0)]

P+
k+1 = [I − Kk+1Hk+1]P

−
k+1 − Kk+1Vk+1S

′
kG′

k

Kk+1 = [P−
k+1H

′
k+1 + GkSkV ′

k+1][Hk+1P
−
k+1H

′
k+1 + Vk+1RkV ′

k+1

+ Hk+1GkSkV ′
k+1 + Vk+1S

′
kG′

kH ′
k+1]

−1
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where the superscript “-” denotes the prediction of the corresponding quantity before the measurement at

time k + 1 is processed, and

Fk
△
=

∂fd

∂X









X̂
+

k ,T̄k,r̄m,k,0

, Gk
△
=

∂fd

∂w









X̂
+

k ,T̄k,r̄m,k,0

,

Hk
△
=

∂h

∂X









X̂
−

k ,r̄m,k,0

, Vk
△
=

∂h

∂v









X̂
−

k ,r̄m,k,0

.

Clearly, if the measurements are available with a frequency lower than the chosen sampling frequency

(e.g., every N∆T ), then the intermediate state estimates are updated according only to the prediction step

(i.e., N prediction steps are performed between two consecutive correction steps).

B. Unscented Kalman Filter

The UKF is a recursive state estimator based on the Unscented Transform, which is a method to

approximate the mean and covariance of a random variable undergoing a nonlinear transformation [14],

[24]. The underlying idea is to estimate the statistics of the transformed variable from a set of 2n+1 points

(called sigma points), with n being the dimension of the considered random variable. Sigma points are

generated deterministically, on the basis of the (known) covariance matrix of the initial random variable

and depending on the parameters of the filter. Unlike the EKF, the UKF does not require the evaluation of

the Jacobians of the functions fd(·) and h(·), since the gains to be used during the estimation are computed

directly from the sigma points. Hence, the UKF represents a possible alternative to the EKF whenever a

linearized model is not accurate enough or the Jacobian computation becomes too cumbersome (e.g., see

[25] for an application of the UKF to the attitude estimation of a multibody satellite).

In the following the UKF update equations are reported for the dynamic model (21) [24]. Let us define

the augmented state vector Xa = [X′ w′ v′]′ ∈ R
L. Denote by X̂a

k and P a
k the state estimate and the

corresponding error covariance matrix

X̂a
k = [(X̂+

k )′ 0 0]′ P a
k =

















P+
k 0 0

0 Qk Sk

0 S′
k Rk

















Sigma-point generation
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For i = 0, . . . , 2L:

χ
a
i,k =







































X̂a
k i = 0

X̂a
k +

(√

(L + λ)P a
k

)

i
i = 1, . . . , L

X̂a
k −

(√

(L + λ)P a
k

)

i−L
i = L + 1, . . . , 2L

△
= [(χx

i,k)′ (χw
i,k)′ (χv

i,k)′]′

where (P )i denotes the i-th column of matrix P .

Prediction

χ
x
i,k+1|k = fd(χ

x
i,k, T̄k, r̄m,k,χw

i,k, k) i = 0, . . . , 2L

X̂−
k+1 =

2L
∑

i=0

W
(m)
i χ

x
i,k+1|k

P−
k+1 =

2L
∑

i=0

W
(c)
i [χx

i,k+1|k − X̂−
k+1][χ

x
i,k+1|k − X̂−

k+1]
′

Yi,k+1|k = h(χx
i,k+1|k, r̄m,k+1,χ

v
i,k) i = 0, . . . , 2L

Ŷ−
k+1 =

2L
∑

i=0

W
(m)
i Yi,k+1|k

Correction

PY Y =

2L
∑

i=0

W
(c)
i [Yi,k+1|k − Ŷ−

k+1][Y i,k+1|k − Ŷ−
k+1]

′

PXY =

2L
∑

i=0

W
(c)
i [χx

i,k+1|k − X̂−
k+1][Yi,k+1|k − Ŷ−

k+1]
′

X̂+
k+1 = X̂−

k+1 + PXY P−1
Y Y (Yk+1 − Ŷ−

k+1)

P+
k+1 = P−

k+1 − PXY P−1
Y Y P ′

XY

The weights W
(·)
i are computed as follows

W
(m)
0 = λ

L+λ
, W

(c)
0 = λ

L+λ
(1 − α2 + β),

W
(m)
i = W

(c)
i = 1

2(L+λ) , i = 1, . . . , 2L

where λ = α2(L + κ) − L, and α, β and κ are the tuning parameters of the filter.

C. Filter covariances

In this section, the covariances of process disturbance wk and of the measurement noise vk used in

the filters are reported. By recalling the definition (10), under the assumption that w̄k, ωu,k, em,k are
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uncorrelated stochastic processes, the covariance matrix Qk in (22) is block diagonal

Qk = diag([Qw̄, σ2
u, Sem

])

where Qw̄, σ2
u, Sem

, are the covariances of the stochastic processes w̄, ωu, em, respectively.

Recall that the process disturbance w̄ accounts for neglected forces acting on the spacecraft. In order

to model such effects, the covariance Qw̄ is taken as the sum of three terms (which basically means to

assume that the corresponding error sources are independent)

Qw̄ = Qe + Qm + Qt.

where Qe and Qm are due to the Earth and Moon gravitational field asymmetry, while Qt takes into

account other unmodeled effects, like air drag and sun attraction.

Matrix Qe has been estimated by evaluating the difference between the gravitational force predicted

by the nominal model µ
ρ3 r and the one yielded by the Earth gravitational model JGM-2 [26]. For each

fixed value of ρ, the sample standard deviation has been computed at 900 different spacecraft positions,

uniformly distributed on a sphere of radius ρ centered at the Earth. This results in an estimated covariance

matrix depending on the distance of the spacecraft to the earth

Qe = diag

([

2.82 · 1020

ρ8
,

2.82 · 1020

ρ8
,

7.34 · 1020

ρ8

])

km2

s4
.

The same has been done for the Moon gravitational field asymmetry, by considering the model LP-150

[27]. The standard deviations of the modeled disturbance as a function of ρsm has been estimated, giving

a covariance matrix

Qm =
1018

ρ8
sm

I3×3
km2

s4
,

where I3×3 is the identity matrix of order 3. The value of the covariance Qt has been chosen as Qt =

σ2
t I3×3, where σ2

t plays the role of a tuning knob in the design of the filters. The variance of the input

perturbation ωu is set to σ2
u = 0.012. Finally, the error covariance of the Moon ephemerides algorithm has

been chosen as Sem
= 102I3×3 km2 [28].

Assuming that the measurement errors nk in (18) are uncorrelated and independent of em,k, vk in (19)

can be modeled as a white stochastic process with block diagonal covariance matrix (23) given by

Rk = diag([σ2
vI4×4, Sem

]),
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where σ2
v depends on the sensor accuracy.

Finally, the cross-covariance between wk and vk is given by

Sk =









010×4 010×3

03×4 Sem









.

IV. SIMULATION RESULTS

In this section, the performance of the filters is evaluated by simulating two transfer missions, namely

a Earth-to-Moon transfer and a geostationary orbit raising.

The sampling time used to discretize the dynamic model (4) is ∆T = 15 s and the angular measure-

ments (20) are supposed to be available once per hour. This means that both filters perform a correction step

every 240 prediction steps. The standard deviation σt of the disturbance ωt acts as a tuning parameter of

both filters. The standard deviation of the angular measurement errors is supposed to be σv = 0.01 π
180 rad,

according to the accuracy of several off-the-shelf sensors employed in celestial navigation (see e.g. [3],

[11], [12]).

For each filter both the estimation errors and the corresponding standard deviations are evaluated by

comparing the state estimates to the output of an accurate mission simulator, which explicitly accounts for

a number of perturbing effects. In the simulator, the gravitational field asymmetry of Earth and Moon is

considered through the JGM-2 and LP-150 models, respectively. A point-mass approximation is adopted to

model the Sun attraction on the spacecraft. The “cannonball model” is used to take into account the effect

of the solar radiation pressure. The J71 atmospheric model accounts for air drag. Finally, the resulting

differential equations modeling the spacecraft dynamics, and including all the above orbital perturbations,

are integrated through a fifth-order Runge-Kutta method.

A. Earth-to-Moon transfer mission

In the example of Earth-to-Moon transfer mission considered, the initial orbit has the following param-

eters: eccentricity e = 0.5, inclination i = 10o, altitude perigee a = 3 · 104 km. The forcing input is a

continuous thrust tangential to the trajectory, with

T = T
ṙ

‖ṙ‖
, (24)
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Fig. 3. Earth-to-Moon transfer mission: x, y, z estimation errors (thick line) and 99% confidence intervals (thin line).

and T = 0.05 N . Results are reported for 70 days of mission, with the spacecraft reaching a final apogee

altitude of 2.04 · 105 km.

Both filters have been initialized with the same initial estimate and covariance matrix:

X̂+
0 = X(0)

P+
0 = diag

([

1 km2, 1 km2, 1 km2, 10−4 km2

s2
, 10−4 km2

s2
, 10−4 km2

s2
, 10−6 kg2

])

,

where X(0) denotes the true initial state vector (see equation (3)).

For the EKF, the standard deviation of the process disturbance ωt has been tuned to σt = 10−5 km
s2 .

Smaller values of σt resulted in a significant lack of consistency of the filter (estimation errors remarkably

outside the 99% confidence intervals). Figure 3(a) shows the EKF estimation errors for coordinates x, y,

z, and the corresponding 99% confidence intervals. In the first column of Table I the sample standard

deviation of the estimation errors are reported (results are averaged over 10 simulation runs). The overall

average localization error turns out to be 48.82 km.

For the UKF, the following parameters have been used for the generation of the sigma points: α = 10−3,

κ = 0, β = 2. The standard deviation of the process disturbance ωt has been tuned to σt = 10−7 km
s2 . In

Figure 3(b) the x, y, z estimation errors and the 99%, confidence intervals are shown. The second column

of Table I reports the sample standard deviation of the estimation errors, averaged over 10 simulation runs.

The overall average localization error is now 38.00 km, with a reduction of about 20% with respect to

the EKF. Moreover, Figures 3(a)-3(b) show that UKF features better consistency properties (error almost
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always inside the 99% confidence intervals). Notice that these results have been obtained with a value of

σt smaller than that used by the EKF.

EKF UKF

x (km) 36.80 31.59

y (km) 42.55 31.57

z (km) 10.81 10.94

ẋ (km/s) 1.33 · 10−3 1.07 · 10−3

ẏ (km/s) 1.51 · 10−3 1.18 · 10−3

ż (km/s) 3.43 · 10−4 4.48 · 10−4

TABLE I

EARTH-TO-MOON TRANSFER MISSION: SAMPLE STANDARD DEVIATION OF ESTIMATION ERRORS.

Also the relative position of Earth, Moon and spacecraft influences the magnitude of the localization

error. Intuition suggests that larger errors can be expected in those configurations in which the three

bodies are aligned, due to poor geometry for angle measurement. This is confirmed by Figure 4, where

the estimated root mean square localization error (RMSE) is plotted against the alignment angle (i.e., the

angle between the spacecraft and Moon directions, as seen from the Earth). The figure refers to the UKF ,

but a similar phenomenon occurs for EKF. The error peaks are mostly grouped around angles zero (Moon

and Earth aligned on opposite side respect to the spacecraft) and ±π (Moon and Earth aligned on the same

side respect to the spacecraft). Conversely, the smallest values correspond to angles close to ±π
2 .
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Fig. 4. Root mean square error of position estimation vs. spacecraft-Earth-Moon alignment
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Fig. 5. GEO orbit raising: x, y, z estimation errors (thick line) and 99% confidence intervals (thin line).

B. GEO Transfer

The second mission considered is the final stint of a chemical-electric orbit raising (C-EOR) to geosta-

tionary orbit [6], [29] (GEO). The initial orbit is characterized by low eccentricity and inclination, altitude

perigee a = 3·104 km and initial spacecraft mass of 1.5·103 kg. The control strategy is again a continuous

thrust tangential to the trajectory as in (24), with T = 0.05 N . The autonomous navigation algorithm was

tested for a period of 60 days of mission, sufficient to complete the satellite orbit raising to GEO.

The parameters of the filters have been chosen as in the Earth-to-Moon transfer mission, except for

σt. For the EKF algorithm the standard deviation associated with the parameter ωt has been tuned to

σt = 10−4 km
s2 , whereas in the UKF algorithm the value σt = 10−6 km

s2 was used. Values of σt smaller

than 10−4 led to inconsistent EKF estimates, with estimation errors significantly outside the 99% confidence

intervals.

In Figure 5(a) EKF simulation results are shown. The estimation errors and the corresponding 99%

confidence intervals for satellite position are plotted. The sample standard deviation of the estimation

errors, averaged over 10 simulation runs, is reported in the first column of Table II. The overall average

position errors resulted to be 40.8 km.

Figure 5(b) and the second column of Table II show the position estimation errors and the sample

standard deviation (averaged over 10 runs) for the UKF algorithm. In this case the overall average position

errors are 36.2 km. As far as the localization error is concerned, the UKF provides a 10% improvement.

It is worth remarking that running the EKF with the tuning parameter σt = 10−6 km
s2 (i.e., the same value
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EKF UKF

x (km) 32.02 31.02

y (km) 31.27 30.17

z (km) 5.47 6.16

ẋ (km/s) 3.2 · 10−3 3.7 · 10−3

ẏ (km/s) 3.2 · 10−3 3.7 · 10−3

ż (km/s) 0.9 · 10−3 1.7 · 10−3

TABLE II

GEO ORBIT RAISING: SAMPLE STANDARD DEVIATION OF ESTIMATION ERRORS

used for the UKF) results in a complete lack of filter consistency, and the average estimation error turns

out to increase of one order of magnitude.

From Figure 5 it can be observed that the standard deviation of the x and y estimation errors has two

characteristic frequencies, the faster one being approximately 2 cycles per day. It is worth noticing that

also when the standard deviation is small the estimation error is still within the 3σ bounds, as can be seen

in Figure 6(a), where a magnified view of the localization error during the last 10 days of the GEO orbit

raising mission is shown.

Also in this kind of mission the spacecraft-Earth-Moon alignment greatly influences the estimation error

(see Figure 6(b)). The plot refers to UKF estimate, but a similar behavior is observed also for EKF. The

expected error grows as the satellite, the Earth and the Moon approach a collinear configuration, whereas the

most accurate estimates are expected when the satellite sees Earth and Moon along orthogonal directions.

V. CONCLUSIONS AND FUTURE WORK

The performance of different nonlinear estimation techniques for the autonomous navigation of spacecraft

in low-cost deep space missions has been analyzed. The spacecraft localization problem has been addressed

via both the Extended Kalman Filter and the Unscented Kalman Filter. The localization procedure is based

only on angular measurements of celestial bodies with respect to the spacecraft reference system, and does

not require range measurements which can be difficult to obtain. The behavior of the filters has been tested

on two sample missions, using an accurate mission simulator accounting for several perturbing effects. The

accuracy of both estimators turned out to be satisfactory, featuring average localization errors which are
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Fig. 6. (a) Magnified view of UKF localization error during GEO orbit raising. (b) Effect of spacecraft-Earth-Moon alignment on

localization error.

reasonably small for the type of missions of interest. Although the filters considered in the paper resulted

in localization errors of the same order of magnitude, the UKF has shown better performance in terms of

average localization accuracy and consistency of the estimates.

There are currently two main research lines aiming at analyzing more in depth the suitability of the

considered filters for autonomous navigation. The first one is the enrichment of the dynamic model, in

order to include also the spacecraft attitude among the quantities to be estimated. The second one concerns

the adoption of more accurate sensor models, taking into account the error in estimating the center of

celestial bodies from images, as well as the adoption of a star-tracker camera for attitude estimation.
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