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An interpolatory algorithm for distributed set
membership estimation in asynchronous networks

Francesco Farina, Member, IEEE, Andrea Garulli, Fellow, IEEE, Antonio Giannitrapani, Member, IEEE

Abstract—This paper addresses distributed estimation prob-
lems over asynchronous networks in a set membership frame-
work. The agents in the network asynchronously collect and
process measurements, communicate over a possibly time-varying
and unbalanced directed graph and may have non negligible
computation times. Measurements are affected by bounded
errors, so that they define feasible sets containing the unknown
parameters to be estimated. The proposed algorithm requires
each agent to compute a weighted average of its estimate and
those of its neighbors and to project it onto a local feasible set. By
assuming convexity of the measurement sets, the local estimates
are shown to converge to a common point belonging to the global
feasible set.

Index Terms—Set membership estimation, Distributed estima-
tion

I. INTRODUCTION

D ISTRIBUTED estimation is receiving increasing atten-
tion in recent years. Motivated by the widespread diffu-

sion of sensor networks and, more generally, of networks of
agents equipped with sensing, computing and communication
capabilities, researchers have proposed a number of techniques
allowing the agents to cooperate within a common estimation
task. A wide variety of solutions is now available for many
different problems and settings (see [1]–[7] and references
therein). These approaches consider different types of under-
lying graph topology, but they typically refer to synchronous
networks. The more realistic setting of asynchronous networks
has also received considerable attention, leading to several
different approaches for tackling distributed optimization [8]–
[13] and consensus [14].

Although most contributions on distributed estimation have
been proposed in a stochastic framework, significant attention
has been devoted to deterministic approaches as well, like set
membership estimation. The set membership (or bounded
error) framework assumes that the measurements provided
by the sensors are affected by bounded noise (see e.g. [15],
[16]). This implies that the quantities to be estimated (the
parameter vector) can be constrained within the so-called
feasible measurement set. The overall knowledge available
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to the network about such quantities is summarized by the
intersection of all the measurement sets, usually referred to
as feasible parameter set, which quantifies the uncertainty
associated with the estimate. This has led to the development
of a number of set membership estimation techniques and
applications in different contexts [17]–[22]. In particular, there
is a vast literature on the application of the set membership
estimation paradigm in the fields of signal processing and
sensor networks (see e.g. [23], [24]). Set membership algo-
rithms based on affine projections are particularly appealing to
perform adaptive filtering with power constrained devices such
as mobile stations [25]. In [26], the set-membership framework
has been proven to reduce both the information exchange and
the computational burden in distributed parameter estimation
performed by wireless sensor networks. In this context, the
error bound usually plays the role of a tuning parameter, to
trade-off estimation performance and convergence speed. In
[27], for example, it is used to guarantee that the computational
load is uniformly distributed among the nodes of network. Dis-
tributed set-valued estimators for networks of sensors affected
by bounded noise have been proposed in [28], [29].

In a distributed estimation setting, each agent can per-
form the intersection only of the local measurement sets,
thus achieving a conservative knowledge of the unknown
parameter. Clearly, uncertainty can be reduced by sharing
such knowledge with other nodes of the network. On the
other hand, sharing the entire information on the local sets
with the neighboring nodes may dramatically increase the
communication and computation load. A feasible compromise
consists in sharing only pointwise local estimates, obtained
by computing a weighted average of the neighbor estimates
and then projecting it onto the local feasible set. Such an
approach has been proposed in [30] for a synchronous static
network, showing that all the node local estimates converge to
a common vector, belonging to the global feasible parameter
set.

In this note, a more challenging setting is considered with
respect to the one in [30]. First, measurements are collected
and processed in a fully asynchronous fashion by the network
nodes. Moreover, the communication graph has a time-varying
topology, accounting for temporary node unavailability or
transmission failures. The main result shows that the node
estimates converge to the same vector and are asymptotically
interpolatory, i.e., their distance to the feasible parameter set
tends to zero. This is achieved under mild assumptions on the
network topology: directed unbalanced graphs are considered
and it is sufficient that the sequence of graphs resulting
form the asynchronous measurement processing are jointly
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strongly connected over finite time intervals. The proposed
approach can be seen as an extension of the well-studied
constrained consensus problem [31]–[33], in which each node
performs projections indefinitely over the same local set. On
the contrary, in the framework considered in this paper, an
infinite sequence of different constraint sets is generated in
real time, corresponding to the measurements collected by the
sensors. A preliminary version of this work has been presented
in [34]. The main novelties of this contribution with respect to
[34] are a rigorous formulation and analysis of asynchronous
implementation of the proposed algorithm for general time-
varying graphs, and the analysis of the effect of computation
times.

The paper is organized as follows. In Section II, the consid-
ered set membership estimation framework and the proposed
asynchronous distributed algorithm are introduced. The main
contribution of the paper is presented in Section III, where
it is shown that the proposed algorithm generates sequences
of estimates converging to a common point of the feasible
parameter set. The case of a stationary underlying graph is
addressed in Section IV, while the effect of non-negligible
computation times is accounted for in Section V. A numerical
example is reported in Section VI and some conclusions are
drawn in Section VII.

Notation: Given a matrix W we denote by wij the element
in the i-th row and j-th column. Given a point p ∈ Rn and
a closed set Z ⊂ Rn, we denote by PZ [p] the projection of
p on Z, defined as PZ [p] = arg minz∈Z ‖p− z‖ , where ‖·‖
denotes the 2-norm in Rn.

II. ASYNCHRONOUS SET MEMBERSHIP ESTIMATION

Consider a network of N peer nodes which collaborate in
order to estimate an unknown parameter x ∈ Rn. The structure
of the network at time t ∈ R+ is modeled by means of a
weighted directed graph G(t) = (V, E(t),W (t)), where V =
{1, . . . , N} is the set of nodes, E(t) ⊆ V × V is the set of
directed edges and W (t) ∈ RN×N is the associated weighted
adjacency matrix. If (j, i) ∈ E(t), then node j communicates
to node i at time t (we say that j is a neighbor of i at time
t) and wij(t) > 0. Conversely, if (j, i) /∈ E(t), necessarily
wij(t) = 0. We denote by Ni(t) = {j | (j, i) ∈ E(t)} ∪ {i}
the set of neighbors of node i at time t (including node i
itself).

We consider a fully asynchronous setting in which agents
compute and communicate independently without any coordi-
nation. When a local timer triggers, node i wakes up, performs
computations and, then, returns in idle mode. For the sake of
presentation, in Sections II and III it is assumed that the local
computation times are negligible. However, in Section V, it
will be shown how to deal with finite computation times.

In order to estimate the unknown parameter x, each node i,
when awake, takes a noisy measurement yi ∈ Rpi of a known
function of x. Let us call t(i)h ∈ R+ the time instant at which
node i wakes up for the h-th time. Then, the measurement
equation is given by

yi(t
(i)
h ) = mi(x) + εi(t

(i)
h ), (1)

where mi(x) is the noise-free measurement function of agent
i and the measurement noise εi is assumed to be unknown-
but-bounded (UBB), i.e.

εi(t
(i)
h ) ∈ Si(t(i)h ) (2)

for all h ≥ 0. The set Si(t(i)h ) ⊂ Rpi is assumed to be a
known (possibly time-varying) compact set. Under the UBB
assumption, the measurement taken at time t

(i)
h by node i

produces a feasible measurement set

Mi(t
(i)
h ) = {x ∈ Rn |

(
yi(t

(i)
h )−mi(x)

)
∈ Si(t(i)h )}, (3)

which contains all the possible values of the unknown param-
eter x that are compatible with the collected measurement.
Consistently, let Xi(t(i)h ) be the feasible parameter set of node
i containing the values of x that are compatible with the
measurements taken by node i up to time t(i)h , i.e.,

Xi(t(i)h ) =

h⋂

τ=1

Mi(t
(i)
τ ).

By construction, for each i, the sequence {Xi(t(i)h )}, h =
1, 2, . . . , is a nonincreasing sequence of sets. Hence, according
to the definition of limit of a sequence of sets [35], it converges
to the set

Xi = lim
h→∞

Xi(t(i)h ). (4)

The nodes aim at cooperatively finding an estimate of the
unknown parameter which is compatible with all the mea-
surements they collect, i.e. an estimate belonging to the global
asymptotic feasible parameter set

X =

N⋂

i=1

Xi. (5)

In order to solve such a problem, we propose an asynchronous
version of a distributed algorithm studied in [30], in which the
nodes produce sequences of estimates eventually converging to
the global asymptotic feasible parameter set X . The algorithm
works as follows. Each node i in the network maintains a
local state variable xi which represents its local estimate of
x. When waking up at time t

(i)
h , node i takes a new noisy

measurement of x and produces a feasible measurement set
Mi(t

(i)
h ). Then, it reads the estimates xj of its neighbors and

computes a weighted average zi of them (including its own
one), according to the weights wij(t

(i)
h ). Finally, it projects zi

on the current feasible parameter set Xi(t(i)h ). It is assumed
that when a new estimate is computed, it is immediately made
available to all neighbors (including those not awake), which
can collect it by means of a buffering mechanism. In this way,
when a node awakes it can read the most recent estimates of
all its neighbors from the corresponding buffer. A pseudocode
of the algorithm is reported in Algorithm 1.

In the following, the convergence of the Asynchronous
Distributed Interpolatory Algorithm is studied by recasting
it as a synchronous algorithm on a suitable time-varying
graph. From a global perspective, it is possible to associate
an iteration k ∈ N to each awakening in the network. Let
G(k) denote the communication graph at iteration k. Since,
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Algorithm 1 Asynchronous Distributed Interpolatory Algo-
rithm (node i)

Initialization: xi, Xi(t(i)0 ) = Rn

Iteration h (time t(i)h )
TAKE MEASUREMENT yi(t

(i)
h ) and produce Mi(t

(i)
h )

READ xj for all j ∈ Ni(t(i)h )
UPDATE

Xi(t(i)h )← Xi(t(i)h−1) ∩Mi(t
(i)
h ) (6a)

zi ←
∑

j∈Ni(t
(i)
h )

wij(t
(i)
h )xj (6b)

xi ← PXi(t
(i)
h )

[zi] (6c)

in principle, it is possible for two or more nodes to awake
exactly at the same time instant, let us denote by A(k) the
set of nodes which are awake at iteration k. Moreover, we
call xi(k) the value of the local state variable of node i at
iteration k. Let us define

Mi(k) =

{
Rn, if i /∈ A(k)

Mi(t
(i)
κi(k)

), otherwise
(7)

where κi(k) denotes the number of times that node i has been
awake in the first k iterations. Similarly, let the weights at
iteration k satisfy

wij(k) =





1, if i /∈ A(k) and i = j

0, if i /∈ A(k) and i 6= j

wij(t
(i)
κi(k)

) if i ∈ A(k).

(8)

Then, Algorithm 1 can be rewritten as the following equivalent
synchronous algorithm

Xi(k + 1) = Xi(k) ∩Mi(k + 1), (9a)

zi(k) =

N∑

j=1

wij(k)xj(k), (9b)

xi(k + 1) = PXi(k+1)[zi(k)], (9c)

for all i and all k ≥ 0, with Xi(0) = Rn. Notice that
(7) and (8) ensure that if a node is not awake at iteration k, its
estimate and its feasible parameter set are not changed when
running the k-th iteration of the synchronous algorithm (9).
Moreover, if we define

Xi = lim
k→∞

Xi(k), (10)

X =

N⋂

i=1

Xi, (11)

we have that Xi = Xi and hence the global asymptotic feasible
parameter set corresponds to the intersection of all the sets Xi,
i.e. X = X . In order to prove that the estimates generated
by Algorithm 1 converge to a common point lying in the
global feasible parameter set X , in the following we will show
that all the sequences of estimates {xi(k)} generated by the
synchronous algorithm (9) converge to a common point lying
in X .

III. CONVERGENCE ANALYSIS

The following assumptions are made on the local measure-
ment sets, the global feasible set, the communication graphs
and the weights.

Assumption 1. The feasible measurement sets Mi(k), k =
1, 2, . . . , are closed convex sets.

Assumption 2. The global asymptotic feasible parameter set
X is not empty.

Assumption 3. There exists a K > 0 and an infinite sequence
of iteration indexes {kl ∈ N}, l = 0, 1, . . . , such that for all l:
i) kl+1 − kl < K, and ii) the union of graphs G(kl), G(kl +
1), . . . , G(kl+1 − 1) is strongly connected.

Assumption 4. For all i, j = 1, . . . , N , and for all k, the
weights wij(k) ≥ 0 in (9b) satisfy

• wii(k) > 0;
• if i 6= j, wij(k) > 0 if and only if (j, i) ∈ E(k);
•
∑N
j=1 wij(k) = 1;

• if wij(k) > 0, then wij(k) > η, for some η > 0.

Under Assumption 1, the local feasible parameter sets
Xi(k), as well as their limit sets Xi, are closed convex sets,
being the intersection of (possibly infinitely many) closed
convex sets. In the considered framework, Assumption 2 is
always satisfied if the measurement noise does not violate the
UBB constraints (2). Assumption 3 requires that the union of
the communication graphs is strongly connected over finite
time intervals. In particular, this assumption rules out the
possibility that the network eventually becomes disconnected
or that a node remains idle indefinitely. Assumption 4 ensures
that the weights are compliant with the network topology
and none of them vanishes over time. Assumptions 3 and 4
are typically made to ensure consensus achievement in the
presence of time-varying graph topology (e.g., see [32], [33]).

The following lemmas, whose proof can be found in [30],
are instrumental to prove the convergence of the estimates
generated by algorithm (9).

Lemma 1. Let {Z(k)}, k = 1, 2, . . . , be a nonincreasing
sequence of closed convex subsets of Rn and denote by Z its
limit. Consider an arbitrary point p ∈ Rn and let q(k) =
PZ(k)[p] be its projection on Z(k). Then, for any z ∈ Z and
k = 1, 2, . . . , it holds

(p− q(k))>(z − q(k)) ≤ 0. (12)

Lemma 2. Let {Z(k)}, k = 1, 2, . . . , be a nonincreasing
sequence of closed convex subsets of Rn and denote by Z its
limit. Let {z(k) ∈ Z(k)} be a sequence admitting a convergent
subsequence {z(kj)}, j = 1, 2, . . . , to a point ẑ. Then, ẑ ∈
Z.

By defining

ui(k) = PXi(k+1)[zi(k)]− zi(k), (13)
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expressions (9b)-(9c) can be written as

xi(k + 1) =

N∑

i=1

wij(k)xj(k) + ui(k), (14)

for i = 1, . . . , N . Denote by

Ψ(r, s) = W (r − 1) . . .W (s+ 1)W (s), r > s (15)

be the state transition matrix of system (14) from iteration
s to iteration r, with the convention Ψ(r, r) = I . The fol-
lowing lemma summarizes some results related to stochastic,
irreducible and aperiodic matrices.

Lemma 3. Let Assumptions 3 and 4 hold. Let {kl} be a
sequence of iterations defined as in Assumption 3. Then, there
exist a scalar δ > 0 and an absolute probability sequence
{v(kl)} such that for i = 1, . . . , N and all kl:

• vi(kl) > δ

•
∑N
i=1 vi(kl) = 1

•
∑N
i=1 vi(kl+1)Ψij(kl+1, kl) = vj(kl)

where Ψ(kl+1, kl) is defined in (15).

Proof. Under Assumptions 3 and 4, Ψ(kl+1, kl) is a row-
stochastic, irreducible and aperiodic matrix, for all kl. Hence,
{Ψ(kl+1, kl)}, l = 0, 1, . . . , is a sequence of matrices admit-
ting an absolute probability sequence {v(kl)}

v>(kl) = v>(kl+1)Ψ(kl+1, kl) (16)

satisfying vi(kl) > δ, for all i = 1, . . . , N and all kl, for some
δ > 0 (see [33]).

Lemma 4. Let Assumptions 1-4 hold. Let ui(k), i = 1, . . . , N ,
k = 1, 2, . . . , be defined as in (13), where zi(k) are computed
according to (9). Then,

lim
k→∞

‖ui(k)‖ = 0, i = 1, . . . , N.

Proof. Let {kl} be a sequence of iterations defined as in
Assumption 3 and let x̄ be any point in X . From (9b),(9c),
one has that for i = 1, . . . , N

‖xi(kl+1)− x̄‖2 ≤ ‖zi(kl+1 − 1)− x̄‖2

≤
N∑

j=1

wij(kl+1 − 1) ‖xj(kl+1 − 1)− x̄‖2 ,

(17)

where the first inequality comes from the properties of pro-
jections on convex sets and the second one from Jensen’s
inequality. By iterating (17) backwards, and recalling the
definition of Ψ(kl+1, kl) in (15), one gets

‖xi(kl+1)− x̄‖2 ≤ ‖zi(kl+1 − 1)− x̄‖2

≤
N∑

j=1

Ψij(kl+1, kl) ‖xj(kl)− x̄‖2 . (18)

Let the vectors v(kl) ∈ RN be defined as in Lemma 3.
Inequality (18) implies that

N∑

i=1

vi(kl+1) ‖xi(kl+1)− x̄‖2

≤
N∑

i=1

vi(kl+1)

N∑

j=1

Ψij(kl+1, kl) ‖(xj(kl)− x̄)‖2

=

N∑

i=1

vi(kl) ‖(xi(kl)− x̄)‖2 , (19)

where the last equality comes from Lemma 3. By (19), for
i = 1, . . . , N , the sequence
{

N∑

i=1

vi(kj)||xj(kj)−x̄||2,
N∑

i=1

vi(kj+1)||zi(kj+1−1)−x̄||2
}

j

is bounded and nonincreasing. Hence, it converges to some
d̄ ≥ 0, i.e.

lim
l→∞

N∑

i=1

vi(kl) ‖xi(kl)− x̄‖2

= lim
l→∞

N∑

i=1

vi(kl) ‖zi(kl − 1)− x̄‖2 = d̄. (20)

Moreover, from (9c) one has

‖zi(kl+1 − 1)− x̄‖2

= ‖zi(kl+1 − 1)− xi(kl+1) + xi(kl+1)− x̄‖2

= ‖zi(kl+1 − 1)− xi(kl+1)‖2 + ‖xi(kl+1)− x̄‖2

+ 2(zi(kl+1 − 1)− xi(kl+1))>(xi(kl+1)− x̄)

≥ ‖zi(kl+1 − 1)− xi(kl+1)‖2 + ‖xi(kl+1)− x̄‖2 ,

where the inequality follows from Lemma 1. Hence,

‖xi(kl+1)− x̄‖2 ≤ ‖zi(kl+1 − 1)− x̄‖2

− ‖xi(kl+1)− zi(kl+1 − 1)‖2 . (21)

By multiplying (21) by vi(kl+1), summing over i and exploit-
ing (20), it follows

lim
l→∞

N∑

i=1

vi(kl+1) ‖xi(kl+1)− zi(kl+1 − 1)‖2 = 0,

which, being vi(kl+1) > δ > 0 from Lemma 3, implies that

lim
l→∞

‖xi(kl+1)− zi(kl+1 − 1)‖2

= lim
l→∞

‖ui(kl+1 − 1)‖2 = 0. (22)

So far, we have proved that each subsequence ‖ui(kl − 1)‖,
i = 1, . . . , N, converges to zero. To show that the whole
sequence {ui(k)} actually goes to zero, we notice that the set
of all k ≥ k0 can be obtained as the union of 2K subsequences
of the form k

(q)
h = k0 + q + 2Kh, for q = 0, . . . , 2K − 1

and h = 0, 1, . . . . By construction, each subsequence {k(q)h }
has the same properties as {kl} in Assumption 3, although
for different values of K. Hence, using arguments similar
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to those leading to (22), it can be shown that each sub-
sequence {ui(k(q)h − 1)} tends to zero, thus implying that
limk→∞ ‖ui(k)‖ = 0, for i = 1, . . . , N .

Lemma 5. Let Assumptions 1-4 hold. Let {xi(k)}, i =
1, . . . , N , k = 1, 2, . . . , be the sequences of estimates com-
puted according to (9). Define

y(k) =
1

N

N∑

i=1

xi(k). (23)

Then, limk→∞ ‖y(k)− xi(k)‖ = 0, i = 1, . . . , N .

The proof of Lemma 5 is similar to that of Lemma 9 in [32]
and hence it is omitted. It consists in studying the evolution
of system (14) when driven by a vanishing input, i.e. when
limk→∞ ‖ui(k)‖ = 0.

We can now prove the main result of the paper.

Theorem 1. Let Assumptions 1-4 hold. Let {xi(k)}, i =
1, . . . , N , k = 1, 2, . . . , be the sequences of estimates com-
puted according to (9). Then, there exists a point x̂ such that

lim
k→∞

xi(k) = x̂ ∈ X, i = 1, . . . , N.

Proof. Let y(k) be defined as in Lemma 5 and define qi(k) =
PXi(k)[y(k)]. Since xi(k) ∈ Xi(k) for i = 1, 2, . . . , N and all
k, we have that

N∑

i=1

‖y(k)− qi(k)‖ ≤
N∑

i=1

‖y(k)− xi(k)‖ . (24)

From Lemma 5, (24) implies that

lim
k→∞

N∑

i=1

‖y(k)− qi(k)‖ = 0

and thus
lim
k→∞

‖y(k)− qi(k)‖ = 0 (25)

for i = 1, . . . , N . From (25), it follows

lim
h→∞

‖qi(h)− qj(h)‖ = 0 (26)

for i, j = 1, . . . , N . Since the sequences {xi(k)} are bounded
due to (17), so is the sequence {y(k)}. Consequently, from
(25), the sequences {qi(k)} are bounded too and admit a
converging subsequence {qi(kh)}, i.e.

lim
h→∞

qi(kh) = x̂i. (27)

By Lemma 2, the limit points x̂i ∈ Xi. But, from (26) this
implies that x̂1 = · · · = x̂N

4
= x̂ ∈ X . From (25) and

Lemma 5, it follows

lim
h→∞

xi(kh) = x̂ (28)

for i = 1, . . . , N . By the definition of limit, for any ε > 0
there exists a ĥ such that ‖xi(kh)− x̂‖ < ε for all h ≥ ĥ and

G

G(t) G(t + 1) G(t + 2)

(V , E(t)) (V , ⋃t+1
τ=t E(τ )) (V , ⋃t+2

τ=t E(τ ))

Fig. 1: Time varying graph induced by node awakenings. The
underlying graph G is depicted on the left.

i = 1, . . . , N . Using the same arguments leading to (18), one
has that for i = 1, . . . , N and all k ≥ kĥ

‖xi(k)− x̂‖2 ≤
N∑

j=1

Ψij(k, kĥ)
∥∥xj(kĥ)− x̂

∥∥2

≤ max
j

∥∥xj(kĥ)− x̂
∥∥2 ≤ ε2,

where the second inequality comes from the row-stochasticity
of matrices Ψ(k, kĥ), from which the thesis follows.

Remark 1. The convergence analysis is carried out in a
very general framework. It applies to distributed asynchronous
implementation and time-varying communication graphs. We
stress that the considered setup encompasses changes in the
graph topology (e.g., due to temporary link failures), as well
as changes in the weight coefficients. Assumptions 3 and 4
are similar to those adopted in related work on constrained
consensus such as [32], [33]. In particular, unbalanced graphs
are allowed and the strongly connectedness property must
hold only over finite-length time intervals. A peculiarity of
the considered recursive estimation setting is that the sets
on which the estimates are projected are infinitely many
and each of them is processed only once in general. As
a consequence, convergence results from previous works on
constrained consensus cannot be directed applied. Theorem 1
shows that convergence is indeed guaranteed in this setting as
well, provided that the sequence of sets is nonincreasing.

When the asynchronous Algorithm 1 is run over an underly-
ing communication graph with static topology, Assumption 3
can be replaced by a simple condition about the awakenings
of the nodes, as shown next.

IV. STATIONARY UNDERLYING COMMUNICATION GRAPH

In this section, we assume that the network has static
topology and it is modeled by the graph G = (V, E ,W ). The
communication graph G is supposed to be strongly connected
and the weight matrix W satisfies Assumption 4. Similarly
to what done in Section III, the asynchronous execution of
Algorithm 1 is equivalent to the execution of the synchronous
algorithm (9) over a suitable time-varying graph G(k) =
(V, E(k),W (k)). Denote by A(k) the subset of nodes awake
at iteration k. Let D(k) ∈ RN×N be a diagonal matrix whose
i-th element of the diagonal is set to 1 if node i ∈ A(k) and to
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0 otherwise and define D−(k) = I−D(k). Then, the weighted
adjacency matrix associated with E(k) can be written as

W (k) = D(k)W +D−(k). (29)

The graph G(k) is induced from G (see Figure 1 for a graphical
representation) and definition (29) guarantees that if a node is
not awake at iteration k it does not change its estimate and its
feasible parameter set. Notice that, if the matrix W satisfies
Assumption 4, then also the matrices W (k) satisfy it for all
k.

In an asynchronous setup like the one we are considering,
some nodes may wake up more often than others. The follow-
ing technical assumption regarding the local triggers ensures
that a node cannot remain idle forever or have an infinite
frequency of awakenings.

Assumption 5. For each node i ∈ V there exist constants
T

(i)
m , T

(i)
M , with 0 < T

(i)
m ≤ T (i)

M <∞, such that

T (i)
m ≤ t(i)h+1 − t

(i)
h ≤ T

(i)
M , for all h

i.e., node i stays in idle mode for at most T (i)
M seconds, but

not less than T (i)
m seconds. �

The following lemma shows that the union of the graphs
G(k) over a sufficiently long time interval has the same
topology as the underlying graph G.

Lemma 6. Let Assumption 5 hold. Then, for all k,

k+K⋃

τ=k

E(τ) = E

with K =
∑N
i=1

⌊
maxj T

(j)
M

T
(i)
m

⌋
+ 1.

Proof. Assumptions 5 implies that, for all i ∈ V node i

is triggered at least once every T
(i)
M seconds and no more

frequently than once every T (i)
m seconds. Hence, all nodes are

awake at least once every K iterations, thus completing the
proof.

Thanks to Lemma 6, Assumption 5, along with the assump-
tion of strongly connected underlying graph G, guarantees
that Assumption 3 is satisfied. Hence, in this setting, the
convergence result of Theorem 1 holds true if one replaces
Assumption 3 with Assumption 5. This is summarized in the
following corollary.

Corollary 1. Let the underlying communication graph G =
(V, E ,W ) be strongly connected. Let Assumptions 1,2,4 and 5
hold. Let {xi(k)}, i = 1, . . . , N , k = 1, 2, . . . , be the
sequences of estimates computed according to (9). Then, there
exists a point x̂ such that

lim
k→∞

xi(k) = x̂ ∈ X, i = 1, . . . , N.

V. FINITE COMPUTATION TIMES

In this section we consider the case in which the com-
putation time associated with the processing taking place at
each node is not negligible. In this case, we assume that
if node i is asked for the value of its estimate xi while
computing, it will send to its neighbors the value that xi
had at the beginning of the computation. As a consequence,
in this set-up the nodes may use outdated information from
their neighbors. Nonetheless, we will show that under the
assumption of bounded computation times, convergence of
Algorithm 1 can still be proved.

Assumption 6. For each node i ∈ V there exists a finite
constant Ci ≥ 0 such that, at each awakening, the node
performs the local computations in at most Ci seconds.

In this scenario, when node i wakes up, it reads the
local estimate of its neighbors and, then, it takes up to Ci
seconds in order to update xi. However, in the mean time,
its neighbors may have updated their local estimates one or
more times. Thus, if at iteration k node i is awake (i.e.,
i ∈ A(k)), instead of using xj(k), j ∈ Ni(k) to produce
xi(k + 1), it may use outdated versions of them. This means
that xi(k) is computed by using xj(k − dij(k)), for some
integer variables dij(k) ≥ 0. In other words, the presence
of non negligible computation times induces communication
delays in the time varying communication graph. Hence, the
equivalent synchronous algorithm (9) becomes

Xi(k + 1) = Xi(k) ∩Mi(k + 1), (30a)

zi(k) =

N∑

j=1

wij(k)xj(k − dij(k)), (30b)

xi(k + 1) = PXi(k+1)[zi(k)]. (30c)

Notice that dii(k) = 0 for all i and all k. The value of dij(k)
is upper bounded for all k and all i, j ∈ V in the following
result.

Lemma 7. Let Assumptions 5 and 6 hold. Then, for any i ∈ V ,

dij(k) ≤ Di =

N∑

`=1

⌊
Ci

T
(`)
m

⌋
+ 1

for all k and all j ∈ Ni(k).

Proof. The result follows by using the same arguments as in
the proof of Lemma 6.

By resorting to arguments similar to those used in [32], it
can be shown that algorithm (30a)-(30c) can be put in the
form of (9) (i.e., without communication delays) by adding
suitable fictitious nodes to the communication graph, corre-
sponding to the states xi(k−1), xi(k−2), . . . , xi(k−D), with
D = maxiDi. Being the delays dij(k) bounded, according to
Lemma 7, the number of such fictitious nodes is bounded as
well. Hence, the following result holds.

Corollary 2. Let Assumptions 1,2,4, 5 and 6 hold. Let
{xi(k)}, i = 1, . . . , N , k = 1, 2, . . . , be the sequences of
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estimates computed according to (30). Then, there exists a
point x̂ such that

lim
k→∞

xi(k) = x̂ ∈ X, i = 1, . . . , N.

VI. NUMERICAL EXAMPLE

In order to show how the proposed algorithm works and to
validate the provided theoretical results, an example involving
a localization problem in a sensor network is presented. Con-
sider N agents which are deployed in a two dimensional region
and collaborate in order to estimate the unknown position
x? ∈ R2 of a certain target. Let ci ∈ R2 denote the position of
agent i. Each agent is equipped with a sensor for measuring
the bearing angle from the target. In particular, when node i
wakes up at time t(i)h , it takes a noisy measurement

φi(t
(i)
h ) = atan2(x? − ci) + ξi(t

(i)
h ). (31)

In (31), with some abuse of notation, given r = [r1, r2]>

we denote atan2(r) = atan2(r2, r1). The measurement error
ξi(t

(i)
h ) ∈ R is uniformly distributed in [−εi, εi], with εi ≥ 0.

The measurement (31) defines the local feasible measurement
set of node i at time t(i)h as

Mi(t
(i)
h ) = {x ∈ R2 | |φi(t(i)h )− atan2(x− ci)| ≤ εi}. (32)

Therefore, from (6a) and (32), the local feasible parameter
set can be explicitly computed by storing the maximum and
minimum value of the measurements at each iteration as

Xi(t(i)h ) =
{
x ∈ R2 |max

k≤h
φi(t

(i)
k )− εi

≤ atan2(x− ci) ≤ min
k≤h

φi(t
(i)
k ) + εi

}
.

The proposed algorithm has been implemented with DIS-
ROPT [36]. The considered scenario involves N = 10 agents
interconnected through a stationary communication graph as
in Section IV, generated as a binomial random graph with
edge probability p = 0.3. The associated static weight matrix
W is generated with the Metropolis-Hastings rule. Idle times
are uniformly distributed in the interval [T

(i)
m , T

(i)
M ] and com-

putation times are bounded by Di for all i = 1, . . . , 10. The
target is located at x? = [0.6,−0.1]> and we set εi = 0.2

for all i. The initial estimates xi(t
(i)
0 ) and the agent positions

ci are uniformly randomly generated in [−1.5, 1.5]2. We let
agents run two instances of Algorithm 1 for T = 300 seconds.
In the first run we set T (i)

m = 10−4, T (i)
M = 0.1, and Di = 0.1,

while in the second one we set T (i)
m = 10−4, T (i)

M = 0.5, and
Di = 0.2. The evolution of the distance of the local estimates
xi from XT = ∩Ni=1X (T ) (i.e., the global feasible set at the
end of the simulation) is depicted in Figure 2 (blue lines). As
expected, it can be observed that the estimates converge to
the global feasible set. Moreover, Figure 2 shows that higher
computation and idle times result in a slower convergence rate.

To emphasize the benefits of computing the local feasible
parameter set Xi(t(i)h ), we have analyzed the convergence
behavior when (6a) is not performed and the local estimates
are projected on the local measurement sets, i.e., when in
Algorithm 1 (6c) is replaced with

xi ← PMi(t
(i)
h )

[zi]. (33)
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Fig. 2: Evolution of the distance between the local estimates
xi and the global feasible set at the end of the simulation:
Comparison with (33).
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Fig. 3: Evolution of the distance between the local estimates
xi and the global feasible set at the end of the simulation:
Comparison with (35).

This can be interpreted as a constrained consensus algorithm
applied to the current measurement sets. The results are
reported in Figure 2 in terms of the distance of the local
estimates xi from XT (orange lines). It can be appreciated
that such distances decrease at a significantly slower rate.
Moreover, it is easy to construct counterexamples in which
the local estimates generated according to (33) converge to a
point which does not belong to the global feasible set.

Finally, the proposed algorithm has been compared to a dis-
tributed gradient descent algorithm solving the unconstrained
localization problem

minimize
x

N∑

i=1

∑

h≥0
‖φi(t(i)h )− atan2(x− ci)‖2. (34)

Techniques for solving such a problem in a distributed and
asynchronous way have been widely studied (see e.g. [37]).
By setting f ih(x) = ‖φi(t(i)h )−atan2(x−ci)‖2, the distributed
gradient descent algorithm for agent i is obtained by skip-
ping (6a) and replacing (6c) with

xi ← zi − α∇f ih(zi) (35)

in Algorithm 1. Results are reported in Figure 3 for different
values of the step size α. It is apparent that a proper choice of
α is crucial for obtaining a satisfactory behavior. Moreover,
different values of α may be needed for different problem
instances, i.e. whenever T (i)

M or Di change. Conversely, Algo-
rithm 1 is guaranteed to provide estimates that converge to the
asymptotic feasible set without the need to tune any parameter.
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VII. CONCLUSION

A set membership estimation problem has been addressed
in a distributed way, within a fully asynchronous network,
accounting for node or link failures and finite computation
times. Convergence of the node local estimates to the global
feasible parameter set has been proven, under two main
assumptions: strong connectedness of the union of graphs over
finite time intervals and convexity of the feasible measurement
sets. While the former is standard in networked estimation
and control problems, keeping track of generic convex sets
might require a high computational burden at the node level.
The use of set approximations and the analysis of its impact
on the convergence properties of the distributed estimation
scheme will be the subject of future research. The application
of the proposed technique to set membership state estimation
problems is also under investigation.
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