
ar
X

iv
:1

80
4.

01
35

9v
3 

 [
m

at
h.

O
C

] 
 1

0 
D

ec
 2

01
8

Distributed interpolatory algorithms

for set membership estimation

Francesco Farina, Andrea Garulli, Antonio Giannitrapani ∗†

Abstract

This work addresses the distributed estimation problem in a set mem-

bership framework. The agents of a network collect measurements which

are affected by bounded errors, thus implying that the unknown param-

eters to be estimated belong to a suitable feasible set. Two distributed

algorithms are considered, based on projections of the estimate of each

agent onto its local feasible set. The main contribution of the paper is

to show that such algorithms are asymptotic interpolatory estimators, i.e.

they converge to an element of the global feasible set, under the assump-

tion that the feasible set associated to each measurement is convex. The

proposed techniques are demonstrated on a distributed linear regression

estimation problem.

1 Introduction

Set membership approaches to estimation problems have been studied since
a long time [1, 2]. Under the assumption of bounded noise, the estimation
process can be carried out in terms of feasible sets. A feasible measurement set
is associated to each measurement. Such a set contains all the possible values of
the unknown parameter compatible with the corresponding measurement and
the noise bound. The intersection of all the feasible measurement sets gives the
feasible parameter set, which is guaranteed to contain the unknown parameter.
The set membership paradigm has been applied to a number of estimation
problems, ranging from system identification to state estimation for dynamic
systems (see, e.g., [3, 4, 5] and references therein), including applications in a
variety of fields, such as mobile robotics [6, 7] and automotive systems [8, 9].

A coarse classification of set membership estimation algorithms distinguishes
between set-valued estimators, aimed at providing an approximation of the gen-
erally intractable true feasible set, and pointwise estimators, which return a
single estimate of the unknown parameter enjoying some optimality or subop-
timality property with respect to a suitable measure of the feasible set itself
[10]. Among pointwise estimators, the class of interpolatory estimators has
been widely investigated. These estimators return an element of the feasible
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set. They possess a number of nice properties and have been studied within
different estimation settings (see, e.g., [11, 12, 13]).

In recent years, the increasing interest toward multi-agent systems has led
to the design of distributed versions of set membership estimators in order to
exploit the inherent robustness and versatility of the distributed approach. For
example, the problem of approximating the feasible parameter set in a sensor
network has been addressed by using different approximating regions such as
parallelotopes [14], ellipsoids [15] or the union of rectangular cells [16].

In this paper, we focus on the problem of finding an element of the feasible
set in a distributed manner, i.e. a distributed interpolatory estimator. The
number of distributed optimization methods flourished very recently provide a
useful framework which can be exploited for distributed estimation as well (e.g.,
[17, 18, 19] and references therein). Two different scenarios are considered. In
the first one, the agents are active one at a time, in a cyclic order. They proceed
by iteratively projecting the current estimate on their local feasible set and then
passing the projected estimate to the next active agent. To this aim, each agent
recursively updates its feasible set on the basis of the current measurements. The
second scenario assumes that the agents process simultaneously the information
provided by the local measurements. After updating the local feasible sets,
they perform a consensus step on the current estimates and then project the
resulting weighted averages of the estimates on the local feasible sets. The
main feature of both scenarios is that each measurement provides a new feasible
measurement set, and therefore asymptotically the procedure has to deal with
infinitely many sets, a setting for which few theoretical results are available.
The convergence properties of the proposed algorithms are analyzed. It is shown
that if the measurement sets are convex, in both scenarios the sequence of the
estimates converges to a point belonging to the true feasible parameter set, thus
providing an asymptotic interpolatory estimator. These results can be seen as
an extension of previous results on the convergence of alternating projection
methods [20, 21, 22] and of constrained consensus algorithms [23, 24], in which
a finite number of convex sets was involved.

The paper is structured as follows. In Section 2, the estimation problem
in the presence of bounded measurement errors is formulated and the two dis-
tributed solutions corresponding to the considered scenarios are presented. The
convergence properties of the proposed approaches are studied in Section 3.
The application of these techniques to a linear regression estimation problem is
illustrated in Section 4. Finally, some conclusions are drawn in Section 5.

2 Problem formulation

2.1 Preliminaries

Some basic concepts on the convergence of a sequence of sets are first re-
called [25]. Let {A(k)}, k = 1, 2, . . . , be an infinite sequence of subsets of
R

n. The limit infimum of the sequence {A(k)} is defined as

lim
k→∞

inf A(k) =
⋃

k≥1

⋂

j≥k

A(j).
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Similarly, the limit supremum of the sequence {A(k)} is defined as

lim
k→∞

supA(k) =
⋂

k≥1

⋃

j≥k

A(j).

Definition 1. [Limit of a sequence of sets.] The sequence {A(k)} converges to
the set A if

lim
k→∞

inf A(k) = lim
k→∞

supA(k) = A,

for some A ⊂ R
n. �

If sequence {A(k)} converges to A, then the set A is called the limit of
{A(k)} and this is denoted by writing

lim
k→∞

A(k) = A.

Definition 2. [Nonincreasing sequence of sets.] If A(k + 1) ⊆ A(k), for all k,
the sequence {A(k)} is called nonincreasing. �

It is easy to verify that if {A(k)} is nonincreasing, then its limit always exists
and it is given by

lim
k→∞

A(k) =
⋂

j≥1

A(j).

2.2 Set membership estimation

Consider N processing nodes which cooperate to compute an estimate of an
unknown parameter x ∈ R

n and denote by xi(k) the estimate computed at time
k by node i. Let G = (V , E), where V = {1, . . . , N} and E ⊆ V×V , be a directed
graph describing the communication among the agents. An edge (j, i) ∈ E if
and only if agent j sends its estimate to agent i. In this case, we say that j is
a neighbor of i. At each time instant k, each node i takes a measurement of
a known function of x, which is corrupted by an unknown-but-bounded (UBB)
noise. The UBB assumption allows one to define for each node i and each time
instant k a feasible measurement set, denoted by Mi(k), which contains all the
possible values of x compatible with the current measurement and the noise
bound. Moreover, each node stores its local feasible parameter set, i.e. the set
of the values of x compatible with all the measurements taken by that node up

to time k. Let Xi(k) be the local feasible parameter set for node i at time k.
Formally,

Xi(k) =
k⋂

h=1

Mi(h), i = 1, . . . , N. (1)

Since {Xi(k)} is a nonincreasing sequence of sets by construction, it converges
to

Xi = lim
k→∞

Xi(k). (2)

Hence, the global asymptotic feasible parameter set can be defined as

X =

N⋂

i=1

Xi. (3)
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In this work, we consider two different scenarios. In the first one, it is
supposed that the agents process their measurements and update their estimates
one at a time. For the sake of presentation it will be assumed that in this
scenario the communication graph G is a ring, although the same approach
can be applied in a more general setting. In the second scenario, the agents
process simultaneously the information locally available and then broadcast the
updated estimates to their neighbors. In the following, we present interpolatory
estimators for the unknown parameter x in both considered scenarios. The
proposed algorithms generate sequences of estimates that eventually converge
to a point belonging to the global feasible parameter set. Let PZ [p] denote the
projection of point p ∈ R

n on the closed set Z ⊂ R
n, defined as

PZ [p] = argmin
z∈Z

‖p− z‖ ,

where ‖·‖ denotes the 2-norm in R
n.

2.2.1 Incremental algorithm

The estimation of x is carried out by cyclically projecting the current estimate
on the local feasible parameter sets of each node. For i = 1, . . . , N and k =
0, 1, 2, . . . , the incremental estimation algorithm with cyclic order of projections
can be written as

Xi(k + 1) = Xi(k) ∩Mi(k + 1), (4)

xi(k + 1) = PXi(k+1)[xi−1(k + 1)], (5)

with the initial conditions xN (0) = x0 and Xi(0) = R
n, and the convention that

x0(k + 1) = xN (k).

2.2.2 Distributed algorithm

In this scenario, an agent updates its estimate in two steps. First, it computes
a weighted average of its estimate and those of its neighbors. Then, it projects
such an average on the current local feasible parameter set. For i = 1, . . . , N
and k = 0, 1, 2, . . . , the distributed estimation algorithm can be written as

Xi(k + 1) = Xi(k) ∩Mi(k + 1), (6)

zi(k) =

N∑

j=1

aijxj(k), (7)

xi(k + 1) = PXi(k+1)[zi(k)], (8)

with the initial conditions xi(0) and Xi(0) = R
n. Clearly, the weights aij must

comply with the topology of the communication graph, i.e. aij = 0 if (j, i) /∈ E .

Remark 1. Notice that the incremental algorithm is not a special case of the
distributed algorithm. Indeed, at each time step, in the distributed scheme the
agents have to process their measurements simultaneously. In contrast, in the
incremental scheme sequential updates of the agent estimates are performed.
In this respect, although in (4)-(5) a cyclic order of node activation has been
assumed, the convergence property of the incremental algorithm that will be
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presented in Section 3.1 is preserved also with different activation rules. For
instance, it can be shown that the order of the processing agents does not affect
the convergence of the algorithm as long as each agent projects infinitely often
on its local feasible set.

Remark 2. The estimation schemes proposed in this paper can be seen as
an extension of alternating and distributed projection methods for computing
a point lying in the intersection of a finite number of sets. In that case, the
estimates are projected infinitely many times on each of the considered sets.
This is a main difference with the approaches presented here. In fact, the
considered scenarios involve the computation of a point lying in the intersection
of an infinite number of sets, each of which is in general processed just once.
This is the typical situation in recursive set membership estimation schemes,
in which a new measurement set is generated at each time instant. To the
best of our knowledge, very few theoretical results are available for alternating
projection schemes on infinite sets [26]. The interested reader is referred to
[20, 21, 22] for thorough reviews on alternating projection methods. Similarly,
the proposed distributed estimation scheme builds on constrained consensus
algorithms studied in [23, 24] and adapts them to the case of infinite sequences
of nonincreasing sets.

In the next section, it will be shown that, under mild assumptions on the fea-
sible measurement sets and on the communication graph, the sequences {xi(k)}
generated by both algorithms converge to a common point x̂ ∈ X .

3 Convergence analysis

3.1 Incremental algorithm

The following assumptions are made in the remaining of the paper.

Assumption 1. The feasible measurement sets Mi(k), k = 1, 2, . . . , are closed

convex sets. �

Assumption 2. The global asymptotic feasible parameter set X is not empty.

�

Under Assumption 1, the local feasible parameter sets Xi(k), as well as their
limit sets Xi, are closed convex sets, being the intersection of (possibly infinitely
many) closed convex sets. In the considered framework, Assumption 2 is always
satisfied if the measurement noise does not violate the UBB constraints. The
following lemmas are instrumental to prove the convergence of the estimates
generated by the incremental algorithm.

Lemma 1. Let {Z(k)}, k = 1, 2, . . . , be a nonincreasing sequence of closed

convex subsets of R
n and denote by Z its limit. Consider an arbitrary point

p ∈ R
n and let q(k) = PZ(k)[p] be its projection on Z(k). Then, for any z ∈ Z

and k = 1, 2, . . . , it holds

(p− q(k))⊤(z − q(k)) ≤ 0. (9)
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Proof. If p ∈ Z(k), then q(k) = p and (9) clearly holds. Conversely, assume p /∈
Z(k). Since Z(k) is convex, there exists a halfspace with supporting hyperplane
passing through q(k) and orthogonal to p − q(k), that contains the whole set
Z(k). Hence, for any z(k) ∈ Z(k), (p − q(k))⊤(z(k) − q(k)) ≤ 0. The thesis
follows by observing that {Z(k)} is a nonincreasing sequence, hence z ∈ Z
implies that z ∈ Z(k) for all k. �

Lemma 2. Let {Z(k)}, k = 1, 2, . . . , be a nonincreasing sequence of closed

convex subsets of Rn and denote by Z its limit. Let {z(k) ∈ Z(k)} be a sequence

admitting a convergent subsequence {z(kj)}, j = 1, 2, . . . , to a point ẑ. Then,

ẑ ∈ Z.

Proof. By contradiction, assume that ẑ /∈ Z and let d be the distance of ẑ to
Z. Notice that since Z is closed, d must be strictly greater than zero. From
the assumption of convergence, for any ε > 0 there exists a ball of radius ε
and centered at ẑ which contains the subsequence {z(kj)} from some j̄ onward.
Since z(kj) ∈ Z(kj) by assumption, it follows that

Z(kj) ∩ B(ẑ, ε) 6= ∅, ∀j ≥ j̄. (10)

But, if we take ε < d, then Z ∩ B(ẑ, ε) = ∅, which implies that there exists
a k̄ such that Z(k) ∩ B(ẑ, ε) = ∅ for all k ≥ k̄, since the sequence {Z(k)} is
nonincreasing. This clearly contradicts (10). �

The main convergence result can now be proved by resorting to arguments
adapted from the case of finite sets (e.g., see [27]).

Theorem 1. Let Assumptions 1 and 2 hold. Let {xi(k)}, i = 1, . . . , N , k =
1, 2, . . . , be the sequences of estimates computed according to (4),(5). Then,

there exists a point x̂ such that

lim
k→∞

xi(k) = x̂ ∈ X, i = 1, . . . , N,

where X is given by (1)-(3).

Proof. Let x̄ be any point in X . From (5) one has

‖xi−1(k)− x̄‖2 = ‖xi−1(k)− xi(k) + xi(k)− x̄‖2

= ‖xi−1(k)− xi(k)‖
2 + ‖xi(k)− x̄‖2

+ 2(xi−1(k)− xi(k))
⊤(xi(k)− x̄)

≥ ‖xi−1(k)− xi(k)‖
2 + ‖xi(k)− x̄‖2 ,

where the inequality follows from Lemma 1. Hence,

‖xi(k)− x̄‖2 ≤ ‖xi−1(k)− x̄‖2 − ‖xi−1(k)− xi(k)‖
2
, (11)

which implies that the sequence

{‖x1(1)− x̄‖2 , . . . , ‖xN (1)− x̄‖2 , ‖x1(2)− x̄‖2 , . . . }

is bounded and nonincreasing. Hence, it converges to some d̄ ≥ 0. Consequently,
the subsequences {‖xi(k)− x̄‖2} converge to d̄ as well and, from (11),

lim
k→∞

‖xi(k)− xj(k)‖
2
= 0, i, j = 1, . . . , N. (12)
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Since {‖xi(k)− x̄‖2} is bounded, so are the estimates xi(k). Hence, from (12),
the sequences {xi(k)} admit subsequences {xi(kh)}, h = 1, 2, . . . , converging to
a common point x̂. By invoking Lemma 2 for the sequences {xi(k)}, it turns out
that x̂ must belong to Xi, i = 1, . . . , N , and hence x̂ ∈ X . We can now replace
x̄ in (11) with x̂ and observe that {‖xi(k)− x̂‖2} are nonincreasing bounded
sequences, and hence they converge. But, since it has been previously shown
that the subsequences {‖xi(kh)− x̂‖2} converge to zero, then necessarily

lim
k→∞

‖xi(k)− x̂‖2 = 0, i = 1, . . . , N,

which concludes the proof. �

Corollary 1. Let Assumptions 1 and 2 hold. Let {xi(k)}, i = 1, . . . , N , k =
1, 2, . . . , be the sequences of estimates computed according to (4),(5). If X =
{x}, then

lim
k→∞

xi(k) = x, i = 1, . . . , N.

�

Corollary 1 states that if the asymptotic feasible parameter set is a singleton,
then the sequence of the estimates converges to the true value x.

3.2 Distributed algorithm

The following assumptions are made, in order to guarantee the convergence of
the consensus protocol embedded in the distributed algorithm (6)-(8).

Assumption 3. The communication graph G is strongly connected. �

Assumption 4. For all i, j = 1, . . . , N , the weights aij ≥ 0 in (7) satisfy

• aii > 0;

• if i 6= j, aij > 0 if and only if (j, i) ∈ E;

•
∑N

j=1 aij = 1. �

The following result holds (see, e.g., Theorems 7.6 and 7.10 in [28]).

Lemma 3. Let Assumptions 3 and 4 hold. Then, there exists a unique v ∈ R
N ,

with vi > 0, i = 1, . . . , N ,
∑N

i=1 vi = 1 and such that
∑N

i=1 viaij = vj , j =
1, . . . , N . �

By exploiting the input-to-state stability property of consensus protocols
[29], the following result holds.

Lemma 4. Let Assumptions 3 and 4 hold and consider the dynamic system

xi(k + 1) =

N∑

j=1

aijxj(k) + ui(k), i = 1, . . . , N, (13)

where xi(k) ∈ R
n, ui(k) ∈ R

n. If limk→∞ ui(k) = 0, for i = 1, . . . , N , then

limk→∞ ‖xi(k)− xj(k)‖ = 0, for all i, j. �
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Theorem 2. Let Assumptions 1-4 hold. Let {xi(k)}, i = 1, . . . , N , k = 1, 2, . . . ,
be the sequences of estimates computed according to (6)-(8). Then, there exists

a point x̂ such that

lim
k→∞

xi(k) = x̂ ∈ X, i = 1, . . . , N,

where X is given by (1)-(3).

Proof. Let x̄ be any point in X . From (7),(8), one has that for i = 1, . . . , N

‖xi(k + 1)− x̄‖2 ≤ ‖zi(k)− x̄‖2 ≤
N∑

j=1

aij ‖xj(k)− x̄‖2 , (14)

where the first inequality comes from the properties of projections on convex
sets and the second one from Jensen’s inequality. Moreover, similarly to the
proof of Theorem 1, from Lemma 1 it follows that

‖xi(k + 1)− x̄‖2 ≤ ‖zi(k)− x̄‖2 − ‖xi(k + 1)− zi(k)‖
2
. (15)

Let the vector v ∈ R
N be defined as in Lemma 3. From (15) one gets

N∑

i=1

vi ‖xi(k + 1)− x̄‖2 ≤
N∑

i=1

vi ‖zi(k)− x̄‖2

−
N∑

i=1

vi ‖xi(k + 1)− zi(k)‖
2 .

(16)

Moreover, inequalities (14) imply that

N∑

i=1

vi ‖xi(k + 1)− x̄‖2 ≤
N∑

i=1

vi ‖zi(k)− x̄‖2

≤
N∑

i=1

vi

N∑

j=1

aij ‖xj(k)− x̄‖2 (17)

=
N∑

i=1

vi ‖xi(k)− x̄‖2 ,

where the last equality stems from Lemma 3. By (17), for i = 1, . . . , N , the
sequence

{
N∑

i=1

vi‖xi(1)−x̄‖2,
N∑

i=1

vi‖zi(1)−x̄‖2,
N∑

i=1

vi‖xi(2)−x̄‖2,. . . }

is bounded and nonincreasing. Hence, it converges to some d̄ ≥ 0, i.e.

lim
k→∞

N∑

i=1

vi ‖xi(k)− x̄‖2 = lim
k→∞

N∑

i=1

vi ‖zi(k)− x̄‖2 = d̄. (18)

From (16) and (18), it follows

lim
k→∞

N∑

i=1

vi ‖xi(k + 1)− zi(k)‖
2 = 0,

8



which, together with Lemma 3, implies that

lim
k→∞

‖xi(k + 1)− zi(k)‖
2
= 0. (19)

Now, observe that (7),(8) can be rewritten as (13), where

ui(k) = PXi(k+1)[zi(k)]− zi(k). (20)

Since (8), (19) and (20) imply that limk→∞ ui(k) = 0, from Lemma 4 one gets

lim
k→∞

‖xi(k)− xj(k)‖ = 0, i, j = 1, . . . , N. (21)

Being {
∑N

i=1 vi ‖xi(k)− x̄‖2} bounded, so are the sequences {xi(k)}. Hence,
from (21), there exist subsequences {xi(kh)} converging to a common x̂, which
implies

lim
h→∞

N∑

i=1

vi ‖xi(kh)− x̂‖2 = 0. (22)

From Lemma 2, x̂ ∈ X . By setting x̄ = x̂ in (18) and exploiting (22), we
conclude that

lim
k→∞

N∑

i=1

vi ‖xi(k)− x̂‖2 = 0,

which, from Lemma 3, implies that limk→∞ xi(k) = x̂, i = 1, . . . , N . �

Corollary 2. Let Assumptions 1-4 hold. Let {xi(k)}, i = 1, . . . , N , k =
1, 2, . . . , be the sequences of estimates computed according to (6)-(8). If X =
{x}, then

lim
k→∞

xi(k) = x.

�

Remark 3. Both estimation algorithms presented in this paper require a very
small amount of information to be exchanged among the agents. In fact, only the
current estimates are shared in the network, whereas both the measurements
and the corresponding feasible sets are computed and stored locally by each
agent.

Remark 4. Any choice of the weights satisfying Assumption 4 guarantees con-
vergence of the estimates. Possible alternatives falling into this class are uniform
weights, Metropolis-Hastings weights or maximum degree weights. Together
with the graph topology, the choice of the weights affects the convergence rate
(e.g., see [30]).

4 Application to linear regression models

The nonincreasing property of the sequence of sets on which the estimates are
projected is crucial for the convergence of the proposed algorithms to the global
asymptotic feasible parameter set X . Indeed, when such a property is not
satisfied, counterexamples can be easily constructed.
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The only requirement on the measurement sets Mi(k) for the above results
to hold is that they be closed convex sets (not even necessarily bounded). In
practice, the proposed approaches can be applied whenever the intersection
Xi(k) of the measurement sets can be computed and stored easily (see (4)
and (6)). This actually occurs in many situations of practical interest, in which
the measurement sets have some suitable structure, such as strips, circular sec-
tors, parallelotopes or, more generally, weighted balls in some vector norm. In
the following, we use the proposed algorithms to estimate the parameters of a
linear regression model.

Consider a sensor network composed by N nodes. At time k, each node i
takes a measurement of the unknown parameter θ⋆ ∈ R

n according to the model

yi(k) = ϕ⊤
i θ

⋆ + wi(k), (23)

where yi(k) ∈ R, ϕi ∈ R
n and wi(k) ∈ R is an UBB noise such that

|wi(k)| ≤ ǫi, ∀k, (24)

where ǫi ≥ 0. Without loss of generality, we assume the regressors ϕi to be
normalized, i.e. ‖ϕi‖ = 1, for i = 1, . . . , N . From (23) and (24), we have that
each measurement set is a strip in the parameter space, i.e.

Mi(k) = {θ ∈ R
n : |ϕ⊤

i θ − yi(k)| ≤ ǫi}. (25)

Notice that, from (4) and (25), the local feasible set for node i at time k can be
written as

Xi(k) = {θ ∈ R
n : max

h≤k
{yi(h)} − ǫi ≤ ϕ⊤

i θ ≤ min
h≤k

{yi(h)}+ ǫi}. (26)

We stress that (26) can be easily computed by each node by storing just the
maximum and minimum value of the measurements yi(k).

In order to compare the convergence rate of the two algorithms, a Monte
Carlo simulation has been performed for the case n = 5. For different values of
N ranging from 7 to 200, 1000 simulation runs have been performed. At each
run, the initial estimates xi(0) are uniformly generated in [−5, 5]n. Similarly,
the regressors ϕi in (23) are uniformly generated in [0, 1]n and then normalized
so that ‖ϕi‖ = 1. The measurement errors wi(k) are uniformly distributed in
[−ǫi, ǫi], with ǫi selected at random in [0.10, 0.13]. The distributed algorithm
has been tested with two differpsent network topologies, namely a complete
graph and a ring. The weights have been chosen so that each agent computes
the average of its estimate and those of its neighbors, i.e. the non-zero weights
are set to 1/N for the complete graph and to 1/3 for the ring graph. Each
simulation run is stopped when the distance of the estimates of all the nodes
to X is smaller than δ = 10−3. The true value of the unknown parameter θ⋆ is
uniformly generated in [−5, 5]n.

The average number of iterations needed to reach the given accuracy δ is
shown in Fig. 1. It can be seen that the incremental estimation scheme (green
solid line) features a faster convergence rate than the distributed ones, the
difference increasing with the number of nodes. As expected, among the two
network topologies considered, the complete graph (blue solid line) shows a
faster convergence with respect to the ring graph (orange solid line). However,
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Figure 1: Average number of iterations for different number of nodes N .

in the above comparison it is implicitly assumed that the incremental algorithm
is able to carry out a complete cycle of node activations between two consecutive
measurements (i.e. the whole cycle ofN sequential projections can be completed
before a new set of measurements is available). This may not be the case in
many real-world scenarios (e.g. large networks, nodes with limited processing
power, reduced communication bandwidth). In the limit case in which the time
required by one node for processing a measurement and passing its estimate to
its neighbors is comparable with the sampling time of the measurement process,
the incremental algorithm as defined in (4)-(5) must be modified in order to
account for the fact that only one node can be active at each time k. In this
scenario, the distributed scheme is clearly faster than the incremental one (green
dashed line), even in case of scarcely connected topologies like a ring.

5 Conclusions

Two interpolatory algorithms for distributed set membership estimation have
been proposed. Under the assumption of convex measurement sets, both tech-
niques generate sequences of estimates that converge to a point lying in the
global asymptotic feasible set. The main technical contribution of this work
is the proof of convergence of the proposed estimation schemes. This is a non
trivial result, since projections on infinitely many sets are involved. From a
practical viewpoint, the proposed techniques are general enough to be suitable
for any kind of sensors whose uncertainty measurement set is convex. Numerical
results show that the incremental estimation scheme provides better results in
terms of convergence rate than its distributed counterpart. However, a num-
ber of factors may limit its applicability (e.g., large networks, slow processors
or communication link, high measurement frequency). In all this cases, the
distributed algorithm represents an effective alternative.

Several extensions of this work are currently under investigation, including
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studying the convergence rate of the proposed algorithms, extending the con-
vergence analysis to time-varying communication graphs, devising distributed
algorithms for set-valued estimation. A further problem of interest when the
network is a design parameter is to find the combination of graph topology and
edge weights maximizing the convergence rate.
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[16] J.-B. Léger and M. Kieffer, “Guaranteed robust distributed estimation in
a network of sensors,” in Proceedings of the 2010 IEEE International Con-

ference on Acoustics Speech and Signal Processing. IEEE, 2010, pp. 3378–
3381.

[17] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[18] G. Notarstefano and F. Bullo, “Distributed abstract optimization via con-
straints consensus: Theory and applications,” IEEE Transactions on Au-

tomatic Control, vol. 56, no. 10, pp. 2247–2261, 2011.

[19] D. P. Bertsekas, “Incremental gradient, subgradient, and proximal methods
for convex optimization: A survey,” Optimization for Machine Learning,
vol. 2010, pp. 1–38, 2011.

[20] R. Escalante and M. Raydan, Alternating projection methods. SIAM, 2011,
vol. 8.

[21] A. Galántai, Projectors and projection methods. Springer Science & Busi-
ness Media, 2013, vol. 6.

[22] H. H. Bauschke and J. M. Borwein, “On projection algorithms for solving
convex feasibility problems,” SIAM review, vol. 38, no. 3, pp. 367–426,
1996.

[23] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Automatic

Control, vol. 55, no. 4, pp. 922–938, 2010.

[24] A. Nedic and J. Liu, “On convergence rate of weighted-averaging dynamics
for consensus problems,” IEEE Transactions on Automatic Control, vol. 62,
no. 2, pp. 766–781, 2017.

13



[25] S. Resnick, A probability path. Birkäuser, 2013.
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