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Abstract: This paper presents an experimental analysis of a recently proposed
decentralized control strategy, for collective circular motion of a team of non-
holonomic vehicles. Theoretical results ensuring global asymptotic stability in the
single-vehicle case and local asymptotic stability in the multi-vehicle scenario, are
validated on an experimental setup including the mobile robots Pioneer 3AT and
Nomad XR4000. In addition, the role of the control law parameters is discussed
and a design procedure is proposed.
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1. INTRODUCTION

Multi-robot systems have received increasing in-
terest in recent years due to their impact in
many different fields, including exploration, dis-
tributed sensing, coordinated manipulation, etc.
(see e.g. (Arai et al., 2002) and references therein).
Several theoretical frameworks have been pro-
posed to analyze the collective motion of multi-
agent systems, considering linear motion mod-
els (Leonard and Fiorelli, 2001; Jadbabaie et

al., 2003; Lin et al., 2004) or unicycle-like motion
models (Justh and Krishnaprasad, 2004; Marshall
et al., 2004). Although nice theoretical results
have been obtained, still few experimental vali-
dations are present in the literature (Marshall et

al., 2005).
In this paper, we present an experimental anal-
ysis of a decentralized control law for a team of
nonholonomic vehicles, introduced by Ceccarelli
et al. (2005a). This control strategy guarantees
asymptotic stability of the collective circular mo-
tion around a virtual reference beacon. The pur-
pose of this work is to verify the viability of the
proposed technique in a real-world scenario and its

effectiveness in dealing with important practical
issues such as unmodeled dynamics, measurement
errors, etc. In this respect, the considered control
law seems particularly appealing since it is easy to
implement and does not require information ex-
change among the vehicles. As an additional con-
tribution, the paper presents a discussion about
the role of the control law parameters and pro-
poses some design guidelines.
The paper is organized as follows. Section 2 re-
views the considered control law and its proper-
ties. In Section 3 the role of the control parameters
is analyzed. Experimental results are presented
in Section 4 and some conclusions are drawn in
Section 5.

2. DECENTRALIZED CONTROL LAW

In order to illustrate the main features of the
decentralized control scheme proposed by Cecca-
relli et al. (2005a), the single-vehicle case and the
multi-vehicle scenario are considered separately.
The interested reader is referred to (Ceccarelli et

al., 2005b) for the technical details.



2.1 Single vehicle scenario

Let us consider a nonholonomic vehicle featuring
unicycle-like kinematics

ẋ(t) = v cos θ(t) (1)

ẏ(t) = v sin θ(t) (2)

θ̇(t) = u(t) (3)

where [x y θ] ∈ R
2 × [−π, π) represents the

vehicle pose, v is the forward speed (assumed to
be constant) and u(t) is the angular speed, which
plays the role of control input. The objective is
to achieve a rotational motion around a virtual
reference beacon. The following control law, based
on the relative pose of the vehicle with respect to
the beacon, is adopted:

u(t) =

{

kb · g(ρ(t), cb, ρ0) · αdist(γ(t), ψ) if ρ > 0
0 if ρ = 0

(4)
with

g(ρ(t), cb, ρ0) = ln
( (cb − 1) · ρ(t) + ρ0

cb · ρ0

)

(5)

and

αdist(γ(t), ψ) =

{

γ(t) if 0 ≤ γ(t) ≤ ψ
γ(t) − 2π if ψ < γ(t) < 2π.

(6)
In (4)-(6), ρ is the distance of the vehicle to the
beacon and γ ∈ [0, 2π) represents the angular
displacement between the heading of the vehicle
and the direction of the beacon (see Fig. 1(a)).
The parameters kb > 0, cb > 1, ρ0 > 0 and
ψ ∈ (3

2
π, 2π) are given constants. The following

result holds.

Proposition 1. Let ψ ∈ (3

2
π, 2π). If the control

parameters kb, cb, ρ0 are chosen so that

min
ρ

ρ · g(ρ, cb, ρ0) > −
2 v

3 π kb

, (7)

then the counterclockwise rotation about the bea-
con with rotational radius ρe, defined as the
unique solution of

ρe · g(ρe, cb, ρ0) =
2 v

π kb

, (8)

and angular velocity v
ρe

, is a globally asymptoti-

cally stable limit cycle for the system (1)-(6).

Notice that the choice ψ ∈ (3

2
π, 2π) together

with inequality (7) ensures that the clockwise
rotation about the beacon is not an equilibrium
configuration.

2.2 Multi-vehicle scenario

Now let us consider the case of a team of n vehi-
cles. Their motion is described by the equations
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(a) One vehicle (triangle) and beacon (placed in
the origin)

ij

γij

γji

ρij

(b) Two vehicles (triangles)

Fig. 1. Relative distance and angular displace-
ments.

ẋi(t) = v cos θi(t) (9)

ẏi(t) = v sin θi(t) (10)

θ̇i(t) = ui(t), (11)

with i = 1 . . . n. Let ρij and γij denote respec-
tively the linear and angular distance between
vehicle i and vehicle j (see Fig. 1(b)). The team
has to achieve collective circular motion around
a fixed beacon. Further requirements to take into
account are collision avoidance and sensory limi-
tations. A visibility region Vi is associated to each
vehicle, representing the portion of environment
that each vehicle perceives through its sensing
equipment. The visibility region is chosen as the
union of two sets: i) a circular sector of radius dl

and angular amplitude 2αv; ii) a circle of radius
ds around the vehicle (see Fig. 2).
The single-vehicle control law (4) is modified by
adding a new term accounting for the interaction
between vehicles. Let Ni denote the set containing
the indexes of the vehicles lying inside Vi. The
control input of the i-th vehicle is

ui(t) = fib(ρi, γi) +
∑

j∈Ni

fij(ρij , γij) (12)

where fib is the same as in the right hand side of
(4), while

fij(ρij , γij) = kv ·g(ρij , cv, d0)·αdist(γij , π). (13)

The functions g(·) and αdist(·) have been defined
in (5)-(6) while kv > 0, cv > 1, d0 > 0 are given
constants. The basic idea underlying the control
law (12)-(13) is that each agent i is driven by the
term fib(·) towards the counterclockwise circular
motion around the beacon (according to Propo-
sition 1), while the terms fij(·) favor collision
free trajectories, trying to keep distance ρij = d0

for all the agents j ∈ Ni. Intuitively, vehicle i



Vi

Vj

i

j

ds

dl

d0

2αv

Fig. 2. Visibility region of i-th and j-th vehicle.

is attracted by any vehicle j ∈ Ni if ρij > d0,
and repulsed if ρij < d0. The expected result of
such combined actions is that the agents reach
the counterclockwise circular motion in a number
of platoons, in which the distances between con-
secutive vehicles is d0. Let us suppose that the
parameters d0, dl and the number of vehicles n
are such that

(n− 1) arcsin
( d0

2ρe

)

+ β < π, (14)

with

β = min

{

αv, arcsin

(

min{dl, 2ρe}

2ρe

)}

.

This choice guarantees that n vehicles can lie on
a circle of radius ρe, with distance d0 between
two consecutive vehicles and so that there is at
least one vehicle wich does not perceive any other
vehicle. The following result holds.

Proposition 2. Let d0, dl and n be such that
condition (14) holds. Then, every configuration
of n vehicles in counterclockwise circular motion
around a fixed beacon, with rotational radius ρi =
ρe defined in (8), γi = π

2
and ρij = d0 ∀i = 1 . . . n

and ∀j ∈ Ni, corresponds to a limit cycle for
the system (9)-(13). Moreover. if the parameters
kb, cb, kv, cv in the control law (12)-(13) are such
that

kv

kb

≤ 2
cv
cb

cb − 1

cv − 1
, (15)

then the aforementioned limit cycles are locally
asymptotically stable.

Notice that the proposed control law does not
require exteroceptive orientation measurements,
nor labeling of the vehicles. Each agent can easily
compute its control input from range measure-
ments, without any exchange of information.
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Fig. 3. Feasible region for parameters kb and ρ0.

3. SELECTION OF THE PARAMETERS

The control law under investigation is character-
ized by several parameters, which must be prop-
erly tuned in order to achieve a satisfactory collec-
tive behavior. In this section we discuss the role
played by the control parameters and present a
possible procedure for selecting their values.

First notice that the clockwise rotation around
the beacon must not be an equilibrium point, i.e.
the parameters have to verify inequality (7). This
can be obtained by choosing a sufficiently small
ρ0 or, alternatively, a sufficiently small control
gain kb in (4). The equilibrium radius ρe must
be consistent with the number of vehicles and the
desired inter-vehicle distance d0. This means that
the configuration of a single platoon in circular
motion must be feasible with respect to inequality
(14). Notice that this requires a sufficiently large
ρe (for fixed d0), and therefore a sufficiently large
ρ0. This introduces a trade-off with the require-
ment imposed by (7). On the other hand, since
ρe can be increased by suitably reducing kb, it
is always possible to find a sufficiently small kb

satisfying both (7) and (14). However, a too small
kb may lead to violation of the sufficient condition
(15), and hence stability of the desired circular
collective motion is not guaranteed anymore. Fig-
ure 3 shows the region of feasible parameters kb

and ρ0, for the scenario considered in Section 4
(cb = cv = 4, kb = 0.2). The region below the
dashed curve contains the values of kb and ρ0

satisfying (7). In the case of two vehicles with
αv < π

2
, constraint (14) is satisfied for all pairs

(kb, ρ0). Finally, the sufficient condition (15) of
Theorem 2 is satisfied by all values of kb lying
on the right of the dash-dotted line (notice that
for cb = cv, condition (15) boils down to kb ≥ kv

2
).

Therefore, by choosing kb and ρ0 inside the dashed
region it is possible to satisfy all the geometrical
constraints and the stability condition.



4. EXPERIMENTAL RESULTS

The experimental setup features two robots avail-
able at the DII Mobile Robotics Lab: a Pioneer
3AT and a Nomad XR4000. The first one is a four-
wheeled robot whose kinematics can be described
by the unicycle model. The latter is an holonomic
mobile robot which has been programmed in order
to behave as a unicycle. A laser rangefinder is
available on both robots, with angular visibility
π, hence αv = π

2
in Fig. 2. The environment is an

empty room, with a reference beacon placed in the
middle (see Fig. 4). The extraction of the reference
beacon as well as the measurements of the inter-
vehicle linear and angular distances ρij , γij are
obtained from the laser raw readings, via standard
filtering techniques. Because of the limited field
of view of the sensors, the robots cannot detect
the beacon position from every pose. To overcome
this problem, odometry-based estimation of the
robot pose is performed whenever the beacon is
not perceived. The control strategy described in
Section 2 has been implemented locally on each
robot, from data extraction to control input com-
putation, without neither communication between
the robots nor centralized supervisor (like a vision
system or GPS). Considering the dimension of
the available space in the room and the achiev-
able angular and tangential velocities, we chose
v = 0.2m/s and, according to Fig. 3, kb = 0.16,
ρ0 = 1m (corresponding to the black asterisk).
By equation (8), one has ρe = 1.76m.

Figure 5 reports an experimental test for the
single-robot scenario featuring the Nomad. The ρ
and γ measurements in Fig. 5(a) are performed by
the laser rangefinder on the robot, while the actual
trajectory in Fig. 5(b) is measured by another
stationary laser rangefinder. One can see the cor-
rect asymptotic behavior of the measured ρ and γ,
converging respectively to ρe and π

2
(dashed lines

in Figs. 5 and 6). The trajectory confirms that
the Nomad achieves the desired counterclockwise
circular motion.
Figure 6 concerns a similar experimental test with
the Pioneer. Figure 6(b) shows that also in this

Fig. 4. The experimental environment.
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Fig. 5. Single-robot experiment: Nomad.
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Fig. 6. Single-robot experiment: Pioneer.

case the circular motion is achieved. Nonetheless,
the errors |ρ(t) − ρe| and |γ(t)− π

2
| do not vanish

asymptotically, as shown in Fig. 6(a). This is due
to the particular position of the laser sensor on
the robot, which is aligned with the orientation
of the Pioneer and placed almost in the center of
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Fig. 7. Odometry effect: ρ(t) estimated by the
robot (dark line) and measured by an exter-
nal sensor (light line).

it. Because of that, when the robot achieves the
circular motion, it cannot extract the beacon from
the laser readings and odometry-based estimation
is required. The odometry drift effect is clearly
visible in Figure 7, where the distance ρ(t) esti-
mated by the Pioneer (and used to compute the
control input) is compared with the same distance
measured by the external laser rangefinder.

Several experimental tests have been performed
on the multi-vehicle scenario featuring both robots.
We chose cv =cb =4, kv =0.2, so that the sufficient
condition (15) is satisfied, and d0 = 2m (recall
that (14) is satisfied in this setup). Figures 8 and
9 show the behavior of the multi-vehicle system
for different initial conditions. In the figures, ρPN

and γPN (ρNP and γNP ) denote respectively the
linear and angular distance of the Nomad from
the Pioneer (of the Pioneer from the Nomad). At
the end of the experiment in Figure 8 the Nomad
is behind the Pioneer, while in that of Figure
9 the Pioneer ends up following the Nomad. In
both cases one can observe that the inter-vehicle
distance d0 = 2m (dashed line in upper Figs. 8(a)
and 9(a)) is achieved after a transient and main-
tained. The same occurs for the equilibrium an-
gular distance between the two robots, given by

γij = π
2
− arccos

(

d0

2ρe

)

(dashed line in lower

Figs. 8(a) and 9(a)). Figures 8(b)-8(c) and 9(b)-
9(c) show the linear and angular distance of each
robot from the beacon, confirming that collective
circular motion with radius ρe is achieved.

A further validation of the results provided by
the experimental tests is achieved by comparing
the experimental behaviors with the simulation
results obtained with the same control law pa-
rameters and the same initial conditions. Figures
10 and 11 refer to the same scenario considered
respectively in Figures 5 and 6. In both cases the
real data (dark line) and simulation data (light
line) show almost the same behavior. However,
one can notice that the odometry drift is present
in Figure 11, and both figures show a sort of
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Fig. 8. Multi-vehicle experiment #1.
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Fig. 9. Multi-vehicle experiment #2.

underdumping effect, mainly due to unmodeled
dynamics. Finally, a comparison between exper-
imental and simulation data for the multi-vehicle
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Fig. 10. Comparison between experimental and
simulation data: Nomad.
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Fig. 11. Comparison between experimental and
simulation data: Pioneer.
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Fig. 12. Comparison between experimental and
simulation data: ρNP and γNP in multi-
vehicle experiment #1.

experiment presented in Figure 8 is reported in
Figure 12, where the linear and angular distances
ρNP and γNP are plotted. Despite the unmodeled
dynamics and all the difficulties related with the
interaction of different mobile robots moving on
an irregular floor, the behavior of the real multi-
robot system is quite similar to the one provided
by the simulation.

5. CONCLUSIONS

In this paper, experimental validation of a decen-
tralized control law for collective circular motion
of multi-vehicle systems has been presented. Tests
have been performed on two mobile platforms,
moving in a laboratory setup. Experimental re-
sults are in good agreement with the simulation
runs, in spite of several sources of uncertainty
(unmodeled dynamics, measurement noise, pro-
cessing delays, etc.).
This work represents a first step towards the ap-
plication of the proposed control scheme on real-
world multi-vehicle systems. More extensive vali-
dation campaigns are under development, whose
aim is to analyze the behavior of larger teams
moving in more complex scenarios.
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