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Abstract

In recent years, the interest in clean renewable energy

resources, such as wind and photovoltaic, has grown rapidly.

It is well known that the inherent variability in wind power

generation and the related difficulty in predicting future

generation profiles, raise major challenges to wind power

integration into the electricity grid. In this work we study

the problem of optimizing energy bids for an independent

Wind Power Producer (WPP) taking part into a competitive

electricity market. It is assumed that the WPP is subject to

financial penalties for generation shortfall and surplus. This

means that, if the energy delivered over a given time slot

is different from that subscribed in the bid, the WPP will

be penalized, the monetary entity of the penalty depending

on the wholesale market behavior, the day of the year

and the time slot involved. An optimization procedure is

devised to minimize this risk and maximize the expected

profit of the seller. Specifically, each energy bid is computed

by exploiting the forecast energy price for the day ahead

market, the historical wind statistics at the plant site and the

day-ahead wind speed forecasts provided by a meteorological

service. We also examine and quantify the strategic role of

an energy storage device in increasing reliability of bids and

mitigating the financial risks of the WPP.

1 Introduction

Energy generation from renewable sources is one of
the main targets for the development of the grid of
the future. The expected advantages are cheaper
energy, the reduction of CO2 emissions, and also the
reduction of transmission costs and losses, since energy
is generated closer to where it is used. On the other
hand, integration of Renewable Energy Sources (RES)
in the grid causes serious problems to transmission and
distribution system operators. In order to cope with
the intrinsic RES intermittency and variability, system
operators need to procure large quantities of reserve
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power, thus incurring in increased costs in the final price
applied to consumers. One possible way to mitigate
the uncertainty of RES generation is to require that
producers provide day-ahead generation profiles, and to
apply penalties if the actual generation profile differs
from the schedule. For example, the Italian Authority
for Electricity and Gas (AEEG) has set this regulatory
framework since January 1, 2013. In a first phase,
20% tolerance is allowed, while in a second phase the
tolerance will be reduced to 10%. On the producers’
side, this calls for the development of suitable bidding
strategies to offer the right amount of energy without
incurring in penalties. In this paper, we address the
above problem in the case of Wind Power Producers
(WPPs).

Wind is an inherently intermittent source of energy
and is difficult to predict. For this reason, forecasting
of wind power generation has recently attracted the at-
tention of researchers, and several different approaches
can be found in the literature. The interested reader is
referred to the survey paper [1], where a categorization
into physical, statistical, spatial correlation and arti-
ficial intelligence models is proposed. In many cases,
the focus is on wind speed forecasts, which are then
converted to power through the power curve of a wind
turbine. Forecasts of wind power generation can be
directly used for bidding. However, since for a given
model structure forecasting models are typically opti-
mized with respect to the prediction performance, bids
based on wind power forecasts may not be the best one
can do, if the objective is to maximize the profit in a
framework with penalties.

The problem of designing optimal WPP bidding
strategies has been addressed in [2, 3, 4], and very re-
cently in [5], where the authors derive explicit formulae
for optimal contract bids based on a given stochastic
model for wind power generation. The optimal offer at
a certain time of the day turns out to be a suitable per-
centile of the wind power probability distribution at the
same time. The result is a generation profile which is
the same every day. This is obvious because no addi-
tional prior knowledge about the next day is assumed
to be available. In this paper we investigate how ad-



ditional prior knowledge can be used to derive better
suited day-ahead schedules. In particular, we assume
that day-ahead wind speed forecasts provided by a me-
teorological service are available. These forecasts may
be inaccurate for wind power prediction, but can give
a rough indication to classify the next day (e.g. high
or low wind, turning out in high or low wind power
generation). This makes it possible to offer the opti-
mal profile for the next day computed as in [5], but
using the conditional wind power probability distribu-
tion of the corresponding class. For the classification
step, many different types of linear and nonlinear clas-
sifiers can be applied (see, e.g., [6]). In this paper, we
adopt the Multicategory Robust Linear Programming
(MRLP) approach described in [7].

Also the use of energy storage can help improve the
expected profit and mitigate the financial risk associated
with the variability of wind power generation. Under
the same framework as in [5], it is shown in [8] that the
problem of determining optimal contract offerings for
a WPP with co-located energy storage can be tackled
using convex programming. However, the optimal bid
cannot be analytically determined anymore. In this
paper, we propose a suboptimal solution to the problem,
which can be computed based on the historical data of
the wind power plant.

The paper is organized as follows. Section 2 pro-
vides the problem formulation both in the case with
and without storage. Section 3 reviews the optimal bid-
ding strategies reported in [5] and [8], and describes the
proposed suboptimal solution in the case with storage.
The use of wind speed forecasts and the related classi-
fication strategy are addressed in Section 4. Section 5
reports the experimental results obtained under differ-
ent pricing scenarios using experimental data from a
real Italian wind farm composed of 34 wind turbines.
Finally, conclusions are drawn in Section 6.

2 Problem formulation

In this section the problem of finding the optimal energy
bids for an electricity market is formulated in a setting
mainly adapted from [8]. Let wn be a discrete-time
random process denoting the active power generated by
the wind plant, averaged over the n-th sampling interval
of the day, with h being the sampling time. Let C(m),
m = 1, . . . ,M denote the bid of active power for the
m-th interval of the day, as per contract. To ease the
notation, let us assume that length k of the contract
interval is an integer multiple N of the sampling time of
the average power, i.e. k = Nh. For instance, if actual
power was averaged over 10 minutes and the WPP
should make a bid for the power generated during each
hour of the day, then h = 10 min, k = 1 hour, M =

24, N = 6. Given a sample wn of the generated power,
the corresponding bid is C(m), where m = ⌈n/N⌉ and
⌈x⌉ denotes the smallest integer greater than or equal
to x. Finally, let C = [C(1), . . . , C(M)]T ∈ R

M
+ .

2.1 Scenario without energy storage. It is as-
sumed that the WPP is remunerated according to the
bid C and its deviation from the actual power w in the
following way. Let p denote the unitary price of offered
energy, q denote the unitary penalty for energy short-
fall and λ be the unitary price for energy surplus. The
WPP receives p units of money for each unit of offered
energy hC(m). In case the actual generated energy hwn

is smaller than the corresponding bid hC(m), the WPP
is penalized by q units of money for each unit of short
energy h(C(m) − wn). On the contrary, if the actual
generated energy hwn is greater than the corresponding
bid hC(m), the energy surplus h(wn − C(m)) is remu-
nerated at unitary price λ. Hence, the net daily profit
amounts to

Π(C,w) =h
M
∑

m=1

mN
∑

n=(m−1)N+1

(

pC(m)

− q[C(m) − wn]
+ + λ[wn − C(m)]+

)

,

(2.1)

where [x]+ = max{0, x}. Throughout the paper the
prices p, q and λ are supposed to be constant and known
beforehand. Moreover, in order to rule out meaningless
scenarios, it is assumed that 0 < p < q and 0 ≤ λ < p.
Notice that λ < 0 means that the WPP would incur
in a monetary penalty if its generation exceeds the
corresponding bid. While such a scenario could be of
interest, in general, one can assume λ ≥ 0 without loss
of generality, if the WPP has curtailment capabilities.

Since the profit Π(C,w) is a stochastic quantity due
to the uncertainty on the generated wind power w, the
optimal bidding problem consists in determining the bid
C∗ maximizing the expected profit J(C) = E[Π(C,w)]

(2.2) C∗ = argmax
C

J(C).

2.2 Scenario with energy storage. When an en-
ergy storage system is available, it can be exploited to
mitigate the volatility of the generated energy and be
more compliant with the bids put on the market. Before
formulating the optimal bidding problem, let us intro-
duce a simplified model of energy storage system. The
energy en stored in the device at time n evolves accord-
ing to the difference equation

(2.3) en+1 = en + h
[

ηiPn,i −
1

ηe
Pn,e

]

.



In (2.3), Pn,i ≥ 0 and Pn,e ≥ 0 are the power
injected into and extracted from the device at time
n, respectively. The parameters defining the storage
system are the energy capacity ē, the charging power
capacity P̄i and discharging power capacity P̄e, the
charging efficiency ηi ∈ (0, 1) and discharging efficiency
ηe ∈ (0, 1). The time evolution (2.3) holds as long as it
satisfies some constraints. The stored energy cannot be
negative nor it can exceed the energy capacity, i.e.

(2.4) 0 ≤ en ≤ ē.

The in/out power flow cannot exceed the corresponding
power capacity

0 ≤ Pn,i ≤ P̄i,(2.5)

0 ≤ Pn,e ≤ P̄e.(2.6)

At a given sampling time n, the WPP selects the
power Pn,i and Pn,e according to a suitable policy g
aiming at maximizing the matching between the bid
and the power actually delivered. In general, the policy
g computes the in/out power flow on the basis of the
current storage state en, the generated wind power wn

and the corresponding bid C(m) (with m = ⌈n/N⌉) [8]:

(2.7) g
(

en, wn, C
(m)

)

=

[

Pn,e

Pn,i

]

,

subject to the constraints (2.3)-(2.6). This additional
degree of freedom allows the WPP to modulate to
some extent the energy injected into the grid, and
consequently the net daily profit (2.1) in the presence
of a storage system becomes

Π(C,w, g) = h

M
∑

m=1

mN
∑

n=(m−1)N+1

(

pC(m) − q[C(m) − wn

+P g
n,i − P g

n,e]
+ + λ[wn − C(m) + P g

n,e − P g
n,i]

+
)

,

(2.8)

where the superscript g emphasizes the dependence of
the in/out storage power flow on the policy g. In
this setting, the optimal bidding problem consists in
determining the bid C∗ and the policy g∗ maximizing
the expected profit

(2.9) J(C, g) = E[Π(C,w, g)],

while satisfying the storage constraints (2.3)-(2.6)

(C∗, g∗) = argmax
C, g

J(C, g)

s. t. en+1 = en + h
[

ηiP
g
n,i

−
1

ηe
P g
n,e

]

, n = 1, . . . , NM,

0 ≤ en ≤ ē,

0 ≤ P g
n,i ≤ P̄i,

0 ≤ P g
n,e ≤ P̄e.

(2.10)

3 Optimal bidding strategies

This section describes possible solutions to the optimal
bidding problems described so far. First, the exact
solution when no storage devices are installed at the
WPP premises (problem (2.2)) is recalled. Then, an
approximate solution for suitably exploiting the storage
capabilities (problem (2.10)) is proposed.

3.1 Scenario without energy storage. When no
storage systems are available, the bid C(m) that the
WPP offers for the m-th time interval depends only on
the expected energy generated during the same period.
Hence, two bids C(i) and C(j), i 6= j, related to
different intervals are independent from each other. As
a result, the optimization problem (2.2), involving an
M -dimensional optimization variable C, boils down to
M scalar optimization problems
(3.11)

C(m)∗ = argmax
C(m)

Jm

(

C(m)
)

, m = 1, . . . ,M,

where

Jm

(

C(m)
)

= E

[

mN
∑

n=(m−1)N+1

(

pC(m) − q[C(m) − wn]
+

+ λ[wn − C(m)]+
)

]

.

The optimal solution to (3.11) depends on the wind
power statistics over the considered interval. Let

F (w;n) = Pr(wn ≤ w)

denote the cumulative distribution function (CDF) of
the random variable wn. Then the time-averaged CDF

(3.12) Fm(w) =
1

N

mN
∑

n=(m−1)N+1

F (w;n)

plays a key role in the computation of the optimal bid
C(m)∗. As a matter of fact, in [5] it has been shown that

(3.13) C(m)∗ = F−1
m (γ),



where γ =
p− λ

q − λ
and F−1(x) = inf{y ∈ [0, 1] : F (y) ≥

x}, is the quantile function.

3.2 Scenario with energy storage. Let us focus
on the optimal policy g∗ solution of the optimization
problem (2.10) first. When λ = 0, i.e. the energy
surplus is not remunerated at all, the optimal policy
is as follows [8]. Since p and q are constant, there
is no possibility of price arbitrage. Then, in case of
positive imbalance, the best choice is to inject the power
surplus wn − C(m) into the storage device as long as
it is not full. Similarly, in case of negative imbalance,
the power shortfall C(m) − wn can be extracted from
the storage device as long as it is not empty. Letting
m = ⌈n/N⌉, the optimal policy at sampling time n can
be summarized as

(3.14) g∗n =

[

min
{

C(m) − wn,
ηe
h
en, P̄e

}

0

]

if C(m) − wn > 0, or

(3.15) g∗n =





0

min

{

wn − C(m),
1

ηih
(ē− en), P̄i

}





if C(m) − wn ≤ 0. The min{·} function is used to
guarantee that the limitations on the energy capacity,
power capacity and charging efficiency are satisfied. In
general, the policy (3.14)-(3.15) is still optimal when
λ 6= 0, provided that it is smaller than a critical
value. In fact, when an energy surplus h(wn − C(m))
is available, the corresponding profit is λh(wn − C(m))
if it is immediately injected into the grid. On the
contrary, if the surplus is stored in the battery and
subsequently extracted for compensating an energy
shortfall, the saving amounts to qηiηeh(wn−C(m)). The
total efficiency ηiηe of the storage system accounts for
energy loss when injecting into and extracting energy
from the device. Hence, if λ < ηiηeq it is still preferable
to store energy surplus rather than immediately selling
it. Clearly, if λ ≥ ηiηep the optimal policy is to sell
energy surplus at a price λ rather then storing it. In
this case the storage device does not bring any benefit to
the WPP. In the remaining of the paper we will assume
λ < ηiηep.

Since the policy g∗ in (3.14)-(3.15) is optimal irre-
spective of the bids C, the optimization problem (2.10)

simplifies to

C∗ = argmax
C

J(C, g∗)

s. t. en+1 = en + h
[

ηiP
g∗

n,i

−
1

ηe
P g∗

n,e

]

, n = 1, . . . , NM,

0 ≤ en ≤ ē,

0 ≤ P g∗

n,i ≤ P̄i,

0 ≤ P g∗

n,e ≤ P̄e.

(3.16)

Notice that the bids related to different time intervals
are now no longer independent due to the presence of the
storage device. Consequently, problem (3.16) has to be
solved for the whole bid portfolio C ∈ R

M . Moreover,
the equality constraints related to the evolution of the
storage system state en involve the actual wind power
wn which is unknown at the time of the contract sizing.
As a result, the optimal bid C∗ cannot be analytically
determined anymore.

A suboptimal (“sample”) solution to the prob-
lem (3.16) can be found by analyzing the historical data
of the wind power plant. The basic idea is to approxi-
mate the expected profit (2.9) with its sample mean

J̄(C, g) =
1

D

D
∑

d=1

[

h

M
∑

m=1

mN
∑

n=(m−1)N

(

pC(m)

− q[C(m) − w(d)
n + P

g,(d)
n,i − P g,(d)

n,e ]+

+ λ[w(d)
n − C(m) + P g,(d)

n,e − P
g,(d)
n,i ]+

)

]

(3.17)

where the superscript ·(d) denotes the realization taken
by the corresponding quantity on the d-th day of the
time series, and D is the total number of days available.
The optimal bids C∗ are then computed by numerically
solving the problem

C̄∗
∗

= argmax
C

J̄(C, g∗)

s. t. e
(d)
n+1 = e(d)n + h

[

ηiP
g∗,(d)
n,i

−
1

ηe
P g∗,(d)
n,e

]

, n = 1, . . . , NM,

0 ≤ e(d)n ≤ ē, d = 1, . . . , D,

0 ≤ P
g∗,(d)
n,i ≤ P̄i,

0 ≤ P g∗,(d)
n,e ≤ P̄e.

(3.18)

In the next section, we show how to suitably exploit
meteorological forecasts to compute the suboptimal
bidding solution.



4 Exploiting wind forecasts

Since the generated power is highly dependent on the
wind speed, meteorological forecasts for the day the
bids refer to (typically, the next day) can help guess
the generated power, and hence refine the amount of
energy to offer. Assuming that the power curve of
the wind plant is available (e.g. from wind turbine
data sheet or estimated from data), one could simply
substitute the wind speed forecasts into the equation
of the power curve, and be tempted to build the
bids based on the forecasts of generated power thus
obtained. However, such a naive approach has a number
of drawbacks. First, inaccurate wind speed forecasts
may lead to unacceptable errors when predicting wind
power. Second, and more importantly, forecasts of
generated power do not take into account the price p and
the penalties q and λ. This implies that bidding these
forecasts may not be the best one can do. For instance,
let us consider the limit case q = p, i.e. energy shortfall
is not penalized. Clearly, under this assumption the
optimal strategy is to offer the maximum allowable
amount of energy, since this results in having all the
generated energy be remunerated at price p . Similarly,
should λ = p, i.e. energy surplus is remunerated at
the same price of the bids, then the optimal strategy
is to bid zero contracts. As shown in Section 3.1, the
optimal bidding strategy has to take into account the
relative weight of p, q and λ, besides the wind power
statistics.

In this paper we pursue a different idea to exploit
effectively wind speed forecasts for bidding of wind
power. The idea is that even inaccurate wind speed
forecasts may give a qualitative information about the
meteorological conditions which can be expected for the
next day, e.g. whether the next day will be a windy one
or not. The proposed approach consists in classifying
the days for which the bids are planned on the basis of
the expected energy generated by the wind plant, and
then determine an optimal bidding strategy for each of
such classes. Let us group the M bidding time intervals
of one day into g sets Si = {ai, ai+1, . . . , ai+1−1, ai+1},
i = 0, . . . , g− 1, where the integers ai ∈ N are such that

1 = a0 < ai < · · · < ag = M.

To ease the notation let us assume that the sets Si have
the same cardinality, i.e. they contain an equal number
of bidding intervals. Denote by Ē an upper bound on
the amount of energy that the power plant can produce
during the intervals associated to any set Si. The energy
interval [0, Ē) is then partitioned into s contiguous, non
overlapping intervals [Ei, Ei+1), i = 0, . . . , s − 1, such
that

0 = E0 < E1 < · · · < Es−1 < Es = Ē.

Now, each day can be classified according to the amount
of energy generated during each period Si. For example,
let us suppose hourly bids (M = 24) and consider
the energy generated during “day” and “night” hours
(g = 2, a1 = 12). If we consider only two levels
of generated energy (s = 2), e.g. “high” (H) and
“low” (L) generation, then each day belongs to one
of four possible classes {(L,L), (L,H), (H,L), (H,H)}
where the pair (X,Y ) denotes the class of days having
a X generation level during the first 12 hours and a Y
generation level during the last 12 hours. In general,
given g sets of bidding intervals and s levels of energy
generation, it is possible to define a family of sg classes
C = {Di1,...,ig , ij = 1, . . . , s, j = 1, . . . , g} such that a
day d belongs to the class Di1,...,ig , d ∈ Di1,...,ig , if
(4.19)

h

aj
∑

m=aj−1

mN
∑

n=(m−1)N

w(d)
n ∈ [Eij , Eij+1

), j = 1, . . . , g,

where w
(d)
n denotes the n-th sample of power generated

in the d-th day.
The next step is to train an automatic classifier

which takes as inputs the wind speed forecasts and
returns the class the next day will belong to. To this
purpose, a training set is created from past data of
generated power and wind speed forecasts. First, each
day of the data set is assigned to the corresponding
class on the basis of the actual generated energy. Then,
a g-dimensional feature vector representative of the
considered day is built from wind speed forecasts.
Features have been selected as a function of the cube
of the wind speed forecasts. Specifically, given the wind

speed forecasts v̂
(d)
m , m = 1, . . . ,M , for each bidding

interval of the day d, the corresponding features are

stacked in a vector f (d) = [f
(d)
1 , . . . , f

(d)
g ]T ∈ F ⊆ R

g,
where

(4.20) f
(d)
j = Nh

aj
∑

m=aj−1

(

v̂(d)m

)

3, j = 1, . . . , g.

At this point, the training set

(4.21) T =
{(

D
(d)
i1,...,ig

, f (d)
)

, d = 1, . . . , D
}

contains the pairs class/features for each day d, where

D
(d)
i1,...,ig

denotes the class the day d belongs to according

to the definition (4.19) and D is the cardinality of the
training set. The set T is used to train a classifier
H : F → C which, given a feature f ∈ F , returns a
class H(f) ∈ C. Several approaches can be adopted to
identify the function H [6]. In this paper, we adopt the
Multicategory Robust Linear Programming (MRLP)
approach described in [7].



Having a classifier available, the last step is to
determine the optimal bidding strategy for each of the
classes which have been defined. When no storage
devices are available, this boils down to estimating a
CDF F (i1,...,ig)(w;n) for each class D(i1,...,ig), and then
using the time averaged distributions

(4.22) F (i1,...,ig)
m (w) =

1

N

mN
∑

n=(m−1)N+1

F (i1,...,ig)(w;n),

in place of (3.12) when computing the optimal bid.
When a storage system is available, an optimization
problem like (3.18) has to be solved for each class,
by including in the cost function (3.17) only the days
belonging to the corresponding class.

5 Experimental results

In this section, the bidding strategies previously intro-
duced are validated on experimental data taken from a
real Italian wind farm composed of 34 wind turbines,
having a nominal power of 2 MW. For each turbine, the
following data are available:

• actual generated power w
(d)
n , n = 1, . . . , NM , d =

1, . . . , DT ;

• actual wind speed v
(d)
n , n = 1, . . . , NM , d =

1, . . . , DT ;

• wind speed forecasts v̂
(d)
m , m = 1, . . . ,M , d =

1, . . . , DT ;

where DT = 150 is the number of days spanned
by the data set (about 5 months of recordings), the
measurements of generated power and wind speed are
taken every h = 10 minutes, whereas hourly bids are
assumed. This results in M = 24 bids per day and
N = 6 power samples per bid interval. Notice that the
wind speed forecasts have a coarser temporal resolution,
i.e. the meteorological service provides hourly forecasts
of the average wind speed for the area where the plant is
located. The data set is split in a training set composed
of the data of the first 100 days (D = 100 in (3.18) and
(4.21)) and a validation set containing the data of the
remaining 50 days.

The optimal bidding strategy when no stor-
age is available requires the knowledge of the CDF
F (w;n) in (3.12) (or, equivalently, the per-class CDF
F (i1,...,ig)(w;n) in (4.22) when exploiting weather fore-
casts). The function F (w;n) can be estimated from the

power measurements w
(d)
n , d = 1, . . . , D contained in

the training set according to one of the many CDF ap-
proximation methods available [9]. Figure 1 shows the
empirical CDF of the random variable wn (normalized
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Figure 1: Empirical CDF for random variable wn̄

(normalized with respect to the maximum power).

with respect to the nominal power of a wind turbine)
for a given sampling time n = n̄. This solution has
been used to compute the optimal bids from the inverse
quantile function as in (3.13).

In order to exploit the wind speed forecasts, a
classifier like that described in Section 4 has been
trained. Days are classified on the basis of the energy
generated during the first and the second 12 hours of
the day. For each period, two levels of generation
have been defined, with the threshold set at 25% of
the maximum amount of producible energy. With the
notation of Section 4, we have g = 2, a1 = 12, s = 2,
E1 = 0.25Ē, where Ē = 24 MWh is the maximum
energy which a 2MW wind turbine can produce in 12
hours. This choice results in a family of four classes
C = {D11,D12,D21,D22}. For each day d in the training

set, the feature vector f (d) = [ f
(d)
1 f

(d)
2 ]T ∈ F ⊆ R

2

is computed as in (4.20). A Multicategory Robust
Linear Programming (MRLP) classifier has been trained
using the data set (4.21), by solving a linear program to
minimize the number of misclassifications [7]. Figure 2
shows the final regions in the feature space associated
to each of the four classes for one of the considered wind
turbines.

The training phase ends with the computation of
the optimal bids with or without storage devices. When
no weather forecasts are assumed to be available, C∗

is computed according to (3.13) (where a single CDF
F (w;n) is estimated from all the days belonging to the
training set) or (3.18) (where the cost function contains
all the days in the training set). On the contrary, when
wind forecasts are available, a CDF F (i1,i2)(w;n) is
estimated for each of the four classes (without storage)
and one problem of the form (3.18) is solved for each of
the four classes (with storage). The performance of such
bidding strategies has been evaluated using the data



 

 

D11
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D21
D22
Separating
hyperplanes

f1

f 2

Figure 2: Regions resulting from the training of the
MRLP classifier for one of the wind turbines.

e (KWh) ΠSC̄(e) ΠSC(e)
10 352.48 492,50
25 353.05 493,18
50 353.96 494,11
100 355.67 496,12
200 360.66 501,81
500 368.05 509,46
1000 380.43 520,91

Table 1: Market scenario I: Average daily profit with
different energy capacity.

contained in the validation data set under two possible
market scenarios.

5.1 Market scenario I. In the first scenario, the
energy surplus is supposed to be not remunerated at
all, i.e. λ = 0. The following market parameters are
assumed: p = 72 e/MWh and q = 88 e/MWh. When
neither meteorological forecasts nor energy storage are
available (situation denoted by the subscript S̄C̄), the
optimal bids computed as in (3.13) result in an average
daily profit ΠS̄C̄ = 352.42 e per wind turbine. Table 1
reports the average daily profit ΠSC̄ in the case with
energy storage and without meteorological forecasts,
and the average daily profit ΠSC in the case with both
energy storage and meteorological forecasts.

For computation of ΠSC̄ , the bids are determined
according to (3.18) and evaluated on a plant equipped
with the same storage system. In the validation phase,
storage systems featuring different energy capacity have
been taken into account in order to evaluate the im-
pact of such a parameter on the expected profit (corre-
sponding to different rows of Table 1). The remaining
storage parameters have been set to ηi = ηe = 0.85,
P̄i = P̄e = ē/4 corresponding to a recharging time of

e (KWh) ΠSC̄(e) ΠSC(e)
10 457.74 545,03
25 458.03 545,33
50 458.66 545,95
100 459.85 547,22
200 462.98 550,44
500 467.61 555,23
1000 474.91 560,62

Table 2: Market scenario II: Average daily profit with
different energy capacity.

4 hours. All the results are averaged over all the days
of the validation set and all the turbines of the wind
farm. Depending on the capacity of the storage device,
a profit increase up to 8% with respect to ΠS̄C̄ can be
expected (first column of Table 1).

When exploiting the weather forecasts, the optimal
bids computed and validated assuming no storage device
result in an average daily profit ΠS̄C = 491.72 e per
wind turbine. This result shows the huge impact that
the wind speed forecasts can have on the expected
profit (40% higher than ΠS̄C̄). It is worth remarking
that these results have been achieved using very rough
forecasts provided by a meteorological service.

For computation of ΠSC , the bids are determined
according to (3.18) for each class and evaluated on a
plant equipped with the same storage system. Corre-
sponding results are reported in the second column of
Table 1. It has to be noted that the success rate of
the classifier has a major impact on the performance of
the bidding strategy. As a matter of fact, it turns out
that the classifier has very different classification per-
formance depending on the true class a day belongs to
(85 % of correct day classification for classes D11 and
D22 vs. 50 % of hit rate for the remaining classes).

5.2 Market scenario II. In this scenario, the energy
surplus is remunerated at λ = 30 e/MWh. All the other
market parameters and storage system characteristics
are the same as before.

In this case, the average daily profit ΠS̄C̄ is
457.67 e . Now the benefits introduced by the storage
system and strategy (3.18) when meteorological fore-
casts are not assumed to be available, are less evident
than before (ΠSC̄ in the first column of Table 2), since
positive imbalances are now remunerated to some extent
and consequently the role played by the storage device
is less significant. This phenomenon is also confirmed
when exploiting the wind speed forecasts in the bidding
strategy. In this case, when the bidding strategy and
validation are carried out by neglecting the storage sys-



tem, the average daily profit is ΠS̄C = 545.02 e. While
the improvement provided by the meteorological fore-
casts is still relevant (about 19% with respect to ΠS̄C̄),
the presence of a storage system yields only a little in-
crease (ΠSC in the second column of Table 2).

6 Conclusions

In this paper, optimal bidding for wind power produc-
ers has been addressed. By starting from a dynamic
stochastic optimization problem formulation, we intro-
duced a statistical approach based on classification for
fully exploiting the information contained in meteoro-
logical forecasts. Information in historical wind power
data and wind speed forecasts is used to train a classi-
fier which allows for using the wind power conditional
probability distribution function in place of the uncon-
ditional distribution in the optimization problem. The
approach improves consistently the quality of the bid-
ding strategy, both with respect to the unconditional
case and to the case in which the bidding plan is com-
puted simply by offering the wind power corresponding
to the wind speed forecasts.

The approach has been exploited in both the case
when a storage device is available or not. The derived
algorithm has been tested on historical real data of wind
and generated power gathered in a wind farm over a pe-
riod covering almost five months. The obtained quan-
titative results confirm the effectiveness of the newly
proposed procedure, showing the roles of classification
and storage in different scenarios.

Ongoing research is concerned with extensions of
the proposed approach to the case where additional me-
teorological information is available, e.g., wind direction
and speed at different heights, instead of wind speed at
regional level only.
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