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Abstract

This paper analyzes two classes of consensus algorithms in presence of bounded measure-
ment errors. The considered protocols adopt an updating rule based either on constant or
vanishing weights. Under the assumption of bounded error, the consensus problem is cast
in a set-membership framework, and the agreement of the team is studied by analyzing the
evolution of the feasible state set. Bounds on the asymptotic difference between the states
of the agents are explicitly derived, in terms of the bounds on the measurement noise and
the values of the weight matrix.
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1. Introduction

In recent years consensus algorithms have received increasing interest within the context
of multi-agent systems. The ability of a team of interacting agents to reach an agreement
on some quantity of interest is often a key issue for the solution of many problems in dif-
ferent application domains, like distributed sensing [1], cooperative control of autonomous
vehicles [2], rendezvous algorithms for autonomous agents [3], coordination of robotic net-
works [4]. The reader is referred to [5] for an exhaustive presentation of possible applications
of consensus algorithms. A number of solutions to the consensus problem have been pro-
posed by now, and nice theoretical results are available for both stationary and time-varying
communication networks (e.g., see [6, 7, 8] and the survey [9])

Compared to the large amount of papers analyzing how the topology of the communica-
tion graph affects the convergence properties of the consensus protocols, relatively few ones
have addressed the behavior of consensus algorithms in presence of noisy measurements. In
[10] classical consensus algorithms are shown to be input-to-state stable. This property is
exploited in [11] to devise a consensus algorithm for tracking the average of time-varying
signals. A consensus protocol with vanishing weights, mimicking stochastic approximation
algorithms with a decreasing step size, has been proposed in [12]. The authors show that in
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case of measurements affected by stochastic noise, the adoption of vanishing weights guar-
antees the convergence in probability of the agents’ states to the same value. A different
description of the uncertainty is adopted in [13] and [14], where the measurement noise is
only assumed to be bounded. In [13], the authors propose a nonlinear consensus protocol
that ensures the convergence of the states in a tube whose radius depends on the maximum
amplitude of the measurement noise. In [14] a consensus-based rendezvous algorithm, ensur-
ing the convergence of the system towards a ball with a finite radius in presence of bounded
noise, is presented.

In this paper we analyze two classes of consensus algorithms in a set-theoretic framework.
Under the assumption of unknown but bounded measurement errors, the feasible state set
(i.e., the set of all states compatible with the bounds on the noise) is explicitly derived. This
kind of sets naturally arise in the context of set-membership estimation theory, which was
originally developed for dynamic system identification and filtering problems, to guarantee
a worst-case bound in the estimation of the model parameters or of the state vector [15, 16].
The evolution of the feasible state set is used to evaluate the agreement of the team. Linear
consensus protocols adopting both constant weights and vanishing weights are considered, in
the case of undirected and stationary communication graph. It is shown that for both types
of protocols, asymptotic consensus cannot be guaranteed with respect to all possible noise
realizations, and bounds on the asymptotic difference of the agents’ states are explicitly
derived, as a function of the bounds on the measurement errors and the weight matrix. This
work extends previous results presented in [17], where the weight matrix was supposed to
be symmetric.

The paper is organized as follows. Section 2 provides an overview of the consensus pro-
tocols to be analyzed. In Section 3 the consensus problem is formulated in a set-membership
framework, under the assumption of bounded measurement errors. The main contributions
of the paper are presented in Section 4, where the asymptotic difference among the agents’
states is related to the bounds on the measurement noise and to the weights used in the
consensus protocol. A numerical example, illustrating the obtained results, is reported in
Section 5. Finally, in Section 6 some conclusions are drawn and future directions of research
are outlined.

1.1. Notation

The ith component of a vector x ∈ R
n is denoted by xi. The symbol 1 denotes the

vector whose components are all equal to 1, 1 = [1 . . . 1]′. Given a real matrix A ∈ R
n×n,

Ai is the ith column of A and Aij is the ijth element of A. The eigenvalues of A are
denoted by λi(A), and if A is symmetric they are conventionally labeled in decreasing order,
λ1(A) ≥ · · · ≥ λn(A) (unless otherwise specified). The singular value decomposition (SVD)
of a matrix A is denoted by Y AΣAUA′

, where ΣA is the diagonal matrix containing the
singular values σi(A). The singular values of A are conventionally labeled in decreasing
order, σ1(A) ≥ · · · ≥ σn(A) (unless otherwise specified). The 2-norm of A is defined as
‖A‖2 = σ1(A). A non-negative matrix A is a matrix whose entries are all non-negative. An
undirected graph G is a pair G = (V , E), where V denotes the vertex set and E ⊆ V × V is
the edge set. An edge (i, j), i 6= j, belongs to E if and only agents i and j can communicate.

2



Since G is undirected, if (i, j) ∈ E then also (j, i) ∈ E . A path between two vertices i, j ∈ V
is a sequence of edges (lk, lk+1) ∈ E , k = 1, . . . , s− 1 such that l1 = i and ls = j. The graph
G is connected if there exists a path between any two nodes i, j ∈ V . Finally, we denote by
Ni the set of neighbors of agent i, i.e. Ni = {j ∈ V : (i, j) ∈ E}.

2. Motivation and related work

Consider a system of n agents V = {1, . . . , n} communicating among them according to
an undirected graph G. Let xi(t) ∈ R be the state of agent i at time t ∈ N. At the same
time instant, agent i is given a noisy measurement of the state of all its neighbors

yij(t) = xj(t) + ηij(t), i = 1, . . . , n, j ∈ Ni. (1)

The term ηij(t) models the uncertainty affecting the knowledge of the state of agent j, from
agent i’s viewpoint.

Each agent updates its state according to the equation

xi(t+ 1) = xi(t) + ui(t), i = 1, . . . , n,

where ui(t) is the input of the i-th agent. If we denote by Y (i)(t) = {yij(t)}j∈Ni
all the

information available to agent i at time t, the objective of a consensus algorithm is to find
for each agent a control law ui(t) = f

(

xi(t), Y
(i)(t)

)

, i = 1, . . . , n, ensuring the convergence
of the agents’ state to a common value, i.e. such that

lim
t→∞

|xi(t)− xj(t)| = 0, i, j = 1, . . . , n.

In the ideal case of noiseless information (i.e., when ηij(t) = 0, ∀t), a number of dif-
ferent solutions have been proposed, both for stationary and time-varying topology of the
communication network, as well as for directed and undirected communication graphs (see,
e.g., [5, 9]). The vast majority of the proposed algorithms adopt a feedback control law f(·)
which is a linear function of the agent states, the so-called linear consensus protocols. When
the topology of the communication graph is stationary, a linear consensus protocol takes on
the form

xi(t+ 1) = xi(t) +
∑

j∈Ni

wij(xj(t)− xi(t)), i = 1, . . . , n, (2)

where the constants wij are the weights of the consensus protocol. If we stack the states of
all the agents into a single vector x(t) = [x1(t) . . . xn(t)]

′, equations (2) can be rewritten in
vector form as

x(t+ 1) = (I +W )x(t).

Clearly, the communication graph determines the sparsity pattern of W . It is well-known
that if the graph is connected then there exist many possible choices of the weight matrix
ensuring consensus, and, if in addition W is symmetric, the consensus value is simply the
average of the initial agents’ states (average consensus problem, [18]).
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When the true state is not accessible, and noisy measurements like in (1) are used to
replace the actual state value, the updating rule (2) becomes

xi(t+ 1) = xi(t) +
∑

j∈Ni

wij(yij(t)− xi(t)) = xi(t)+
∑

j∈Ni

wij(xj(t)−xi(t))+
∑

j∈Ni

wijηij(t) (3)

for i = 1, . . . , n. Let v(t) = [v1(t), . . . , vn(t)]
′, where

vi(t) =
∑

j∈Ni

wijηij(t), i = 1, . . . , n, (4)

then equations (3) can be rewritten in vector form as

x(t+ 1) = (I +W )x(t) + v(t). (5)

Due to the presence of the forcing term v(t), consensus cannot be guaranteed anymore.
However, using input-to-state stability arguments, it can be shown that the maximum dif-
ference between any two states remains bounded provided that the measurement noise ηij(t)
is bounded, and asymptotically vanishes if ηij(t) tends to zero [10].

On the other hand, in order to make the effect of a persistent noise tend to zero, the
measurements yij(t) should be weighted lesser and lesser over time. Let a(t) be a positive
function such that limt→∞ a(t) = 0. If the weights wij in (3) are replaced by a(t)wij, the
updating rule becomes

x(t+ 1) = (I + a(t)W )x(t) + a(t)v(t). (6)

In this case the agents’ states evolve according to a time-varying linear system, fed by a
vanishing input. If the measurement disturbances are modeled as independent stochastic
variables, with zero mean and finite variance, then choosing a(t) ∼ 1

tr
, 0.5 < r ≤ 1, ensures

that the states of all the agents converge in probability to the same limit [12].
Driven by the aforementioned observations, the objective of this paper is twofold. Sup-

pose W is selected so as to guarantee consensus in the noise-free case. Moreover, assume
that the measurement noise ηij(t) is bounded. The first goal is to quantify the difference
between the states as a function of the noise bound, in case constant weights are used (equa-
tion (5)). The second goal is to study the achievement of consensus when vanishing weights
are adopted (equation (6)). The bounded error assumption naturally leads to cast these
problems in a set-membership framework, as it will be shown in the next section.

3. Set-theoretic consensus

Let the state x(t) be updated according to equation (5), where the input v(t) is given
by (4). Assume that the measurement noise is unknown-but-bounded (UBB), i.e.

|ηij(t)| ≤ ǭ, i = 1, . . . , n, j ∈ Ni, ∀t, (7)
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where ǭ > 0 is a known quantity. According to (4), the UBB assumption on the measurement
noise immediately reflects on the possible values taken by the disturbance v(t), i.e. |vi(t)| ≤
ǫi, where ǫi = ǭ

∑

j∈Ni
wij.

For a given initial condition x(0), it is possible to define the feasible state set (FSS) XC(t)
through the recursion

XC(0) = {x(0)}
XC(t+ 1) = (I +W )XC(t)⊕DǫB∞,

(8)

where B∞ denotes the unit ball in the ∞-norm, defined as ‖x‖∞ = maxi |xi|, and Dǫ is the
diagonal matrix whose i-th entry on the diagonal is equal to ǫi. In (8), the symbol ⊕ denotes
the sum of sets. The set DǫB∞ is a box in R

n and contains all the possible realizations of
the disturbance v(t) which satisfy the UBB assumption (7). Consequently, the set XC(t)
contains all the states at time t compatible with the initial condition x(0) and the error
bounds (7). By expanding the recursion (8), it can be checked that the feasible state set at
time t can be written as

XC(t) = {x ∈ R
n : x = xc(t) + T (t)α, ‖α‖∞ ≤ 1} (9)

where

xc(t) = F tx(0),

T (t) = [T1 T2 . . . Tt] ∈ R
n×tn,

F = I +W,

Ti = F t−iDǫ ∈ R
n×n, i = 1, . . . , t.

(10)

The set XC is a parpolygon in R
n, with center xc and edges parallel to the columns si of

T = [s1 . . . stn] (see, e.g., [16]).
Similarly to the case of constant weights, if the state evolves according to equation (6),

under the UBB assumption (7), the feasible state set XV (t) at time t is given by

XV (0) = {x(0)}
XV (t+ 1) = (I + a(t)W )XV (t)⊕ a(t)DǫB∞.

(11)

Hence the feasible state set is still a parpolygon like (9), but with different center and edges

XV (t) = {x ∈ R
n : x = xc(t) + T (t)α, ‖α‖∞ ≤ 1} (12)

where xc(t) = Φ(t, 0)x(0), T (t) = [T1 T2 . . . Tt] ∈ R
n×tn, and

F (t) = I + a(t)W,

Φ(t2, t1) = F (t2 − 1)F (t2 − 2) . . . F (t1), 0 ≤ t1 < t2,

Φ(t, t) = I,

Ti = a(i− 1)Φ(t, i)Dǫ ∈ R
n×n, i = 1, . . . , t.

(13)
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Since the states of the agents at time t are constrained to belong to the parpolygon X(·)(t),
the achievement of consensus can be established by studying the time evolution of X(·)(t).
Specifically, consensus is reached if and only if all the segments defining X(·)(t) (the columns
of matrix T (t)) eventually align with the vector 1 = [1 1 . . . 1]′ ∈ R

n, i.e. if and only if
the parpolygon degenerates into a line. Moreover, should this not happen, a measure of the
disagreement of the team is given by the maximum size of the projection of X(·)(t) on the

subspace orthogonal to 1, denoted by S1
⊥

. As a matter of fact, let P 1
⊥

= I − 11
′

n
be the

projection operator of a vector of Rn on S1
⊥

. Then the projection of X(·)(t) on S1
⊥

is given

by X 1
⊥

(·) (t) = {x1
⊥ ∈ R

n : x1
⊥

= P 1
⊥

x, x ∈ X(·)(t)}. and

r(·)(t) = max
x∈X1⊥

(·)
(t)

‖x‖2 (14)

is the maximum deviation from consensus (in the 2-norm) at time t. Upper and lower
bounds on the asymptotic value of rC(t) and rV (t) will be derived in the next section.

4. Bounds on asymptotic disagreement

This section contains the main contributions of the paper. First, we will characterize the
feasible state set for the case of constant weights (Section 4.1), and then we will address the
same problem in case of vanishing weights (Section 4.2). In both scenarios, we will study
two aspects. One concerns the finiteness of the consensus value (Propositions 1 and 2). The
other one is related to finding upper and lower bounds on the asymptotic deviation from
consensus (Theorems 1-4). The proofs of all the lemmas are reported in the appendix.

Let the weight matrix W be defined as

Wij =



















wij > 0 if j ∈ Ni

wii = −
∑

j∈Ni

wij > −1

0 otherwise

. (15)

In the remaining of the paper, the following assumptions are made.

Assumption 1 (UBB noise). The noise v(t) is bounded: v(t) ∈ DǫB∞.

Assumption 2 (Connectivity). The undirected communication graph G is connected.

Assumption 3 (Weights). The weight matrix satisfies W1 = W ′1 = 0.

Assumption 3 is a necessary condition for achieving average consensus [18]. The following
identities will be useful for establishing the main results of the paper

P 1
⊥

W = WP 1
⊥

= W

P 1
⊥

F = FP 1
⊥

= P 1
⊥

FP 1
⊥

= F − 11′

n
= P 1

⊥

+W = I − 11′

n
+W. (16)
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4.1. Constant weights

Let us suppose that the state of the agents evolves according to the stationary dynamic
model (5), which we rewrite as

x(t+ 1) = Fx(t) + v(t)

x(0) = x0

, (17)

where F = I +W and the weights are chosen as in (15).

Proposition 1. The feasible state set XC given by (9) is asymptotically unbounded along

the vector 1.

Proof: Denote by X 1

C(t) the orthogonal projection of XC(t) on the subspace spanned by
1, i.e.

X 1

C(t) = {x1 ∈ R
n : x1 =

11′

n
x, x ∈ XC(t)}.

Let us consider the state x̂(t) ∈ XC(t) such that x̂(t) = xc(t) + T (t)α̂, with α̂ = [1 1 ... 1]′ ∈
R

tn. Then, from (9)-(10) and noting that under Assumption 3 1′F = 1′, the projection
x̂1(t) of x̂(t) on 1 is given by

x̂1(t) =
11′

n
x̂(t) =

11′

n
(xc(t) + T (t)α̂) =

1

n
(1′x(0) + [1′Dǫ 1

′Dǫ . . . 1′Dǫ]α̂)

=
1

n
(1′x(0) + t

n
∑

i=1

ǫi).

By construction x̂1(t) ∈ X 1

C(t), and lim
t→∞

∥

∥x̂1(t)
∥

∥

2
= +∞, which concludes the proof. 2

Proposition 1 states that in case of constant weights, when consensus is achieved, the
consensus value is not necessarily bounded. This means that even when the difference among
the agents’ state vanishes, the state of each agent can diverge.

In order to derive asymptotic bounds on the quantity rC(t), defined as in (14), let
us consider the dynamics of the projection of x(t) on the subspace orthogonal to 1. Let

x1
⊥

(t)
△
= P 1

⊥

x(t). From (16) and (17) it follows

x1
⊥

(t+ 1) = P 1
⊥

Fx1
⊥

(t) + P 1
⊥

v(t)

x1
⊥

(0) = P 1
⊥

x0

. (18)

Some preliminary results are needed.

Lemma 1. F is a primitive matrix. Moreover, λ1(F ) = 1 is a simple eigenvalue of F , with

eigenvector 1, and |λi(F )| < 1, i = 2, . . . , n.

Being F = I +W , the following result follows directly from Lemma 1.
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Corollary 1. λ1(W ) = 0 is a simple eigenvalue of W , with eigenvector 1, and |λi(W )+1| <
1, i = 2, . . . , n.

Lemma 2. The norm of matrix P 1
⊥

F is

∥

∥

∥
P 1

⊥

F
∥

∥

∥

2
= σ2(F ) < 1.

We are now ready to present an upper bound on the asymptotic disagreement of the
team, in case of constant weights.

Theorem 1. Let x1
⊥

(t) evolve according to (18). Then

lim
t→∞

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
≤ δ

1− σ2(F )
,

where δ = max
v∈DǫB∞

∥

∥

∥
P 1

⊥

v
∥

∥

∥

2
.

Proof: From (16) and (18) it follows

∥

∥

∥
x1

⊥

(t+ 1)
∥

∥

∥

2
=
∥

∥

∥
P 1

⊥

Fx1
⊥

(t) + P 1
⊥

v(t)
∥

∥

∥

2
≤
∥

∥

∥
P 1

⊥

F
∥

∥

∥

2

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
+ δ

= σ2(F )
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
+ δ

where the last equality comes from Lemma 2. Now, if we consider the system

{

z(t+ 1) = σ2(F )z(t) + δ

z(0) =
∥

∥

∥
x1

⊥

(0)
∥

∥

∥

2

,

then
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
≤ z(t), t ≥ 0. The result follows by noting that lim

t→∞
z(t) =

δ

1− σ2(F )
since

0 ≤ σ2(F ) < 1 by Lemma 2. 2
The following lemma is needed in order to obtain a lower bound on the asymptotic disagree-
ment of the team.

Lemma 3. Let x1
⊥

(t) evolve according to (18) and let v(t) = v, t ≥ 0. Then

lim
t→∞

x1
⊥

(t) = (I − P 1
⊥

F )−1P 1
⊥

v.

Theorem 2. Let x1
⊥

(t) evolve according to (18). Then there exists a feasible noise realiza-

tion v(t) such that

lim
t→∞

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
≥ max

i=1,...,n−1

δi
σi(W )

where δi
△
= max

v∈DǫB∞

|Y W ′

i v| and W = Y WΣWUW ′

is a SVD of W .
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Proof:
Consider the following SVDs

F̄
△
= (I − P 1

⊥

F )−1 = Ȳ Σ̄Ū ′, (19)

F̃
△
= I − P 1

⊥

F = Ỹ Σ̃Ũ ′, (20)

W = Y WΣWUW ′

. (21)

Clearly the following relationships hold

Ȳ = Ũ , Σ̄ = Σ̃−1, Ū = Ỹ . (22)

From Assumption 3, the smallest singular value of matrix W is σn(W ) = 0 and the corre-

sponding left and right singular vectors are Y W
n = UW

n =
1√
n
. Now, note that from (16)

F̃ = I − P 1
⊥

F =
11′

n
−W =

11′

n
−

n−1
∑

i=1

σi(W )Y W
i UW ′

i . (23)

Hence, from (20), (21) and (23) it follows for i = 1, . . . , n− 1,

Ỹ =

[

Y W
1 . . . Y W

n−1

1√
n

]

, Ũ =

[

−UW
1 · · · − UW

n−1

1√
n

]

, σi(F̃ ) = σi(W ), (24)

and σn(F̃ ) = 1. Exploiting (22), one finally gets for i = 1, . . . , n− 1,

Ȳ =

[

−UW
1 · · · − UW

n−1

1√
n

]

, Ū =

[

Y W
1 . . . Y W

n−1

1√
n

]

, σi(F̄ ) =
1

σi(W )
, (25)

and σn(F̄ ) = 1. Note that σi(F̃ ) and σi(F̄ ) are now not necessarily arranged in decreasing
order. Let

δi
△
= max

v∈DǫB∞

|Y W ′

i v| = Y W ′

i Dǫsgn (Y W
i ), i = 1, . . . , n− 1, (26)

and consider the corresponding noise realizations

v{i}(t) = v{i}
△
= Dǫsgn (Y W

i ) t ≥ 0, i = 1, . . . , n− 1. (27)

Note that v{i} is feasible by construction. Since Y W
i , i = 1, . . . , n − 1 are orthogonal to 1

because Y W is unitary, P 1
⊥

v{i} can be rewritten as

P 1
⊥

v{i} =
n−1
∑

j=1

βijY
W
j (28)
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for some βij ∈ R. Note that by (26)-(27), it holds βii = δi, for each i. Then, from (19), (25),
and (28), one gets

∥

∥

∥
(I − P 1

⊥

F )−1P 1
⊥

v{i}
∥

∥

∥

2

2
=

∥

∥

∥

∥

∥

Ȳ Σ̄Ū ′

(

n−1
∑

j=1

βijY
W
j

)∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

n−1
∑

j=1

σj(F̄ )βijU
W
j

∥

∥

∥

∥

∥

2

2

=
n−1
∑

j=1

(

βij

σj(W )

)2

≥
(

δi
σi(W )

)2

.

The thesis follows from Lemma 3. 2

From Theorems 1 and 2, it can be concluded that the set X 1
⊥

C (t) is bounded for all t.
Moreover, rC(t) in (14) satisfies

max
i=1,...,n−1

δi
σi(W )

≤ lim
t→∞

rC(t) ≤
δ

1− σ2(F )
, (29)

where δi = Y W ′

i Dǫsgn (Y W
i ) and δ = max

v∈DǫB∞

∥

∥

∥
P 1

⊥

v
∥

∥

∥

2
.

4.2. Vanishing weights

Let us now turn our attention to consensus protocols featuring vanishing weights. To
this purpose, consider the LTV system

x(t+ 1) = F (t)x(t) + a(t)v(t)

x(0) = x0

, (30)

where F (t) = I + a(t)W , and the weight matrix W is chosen as in (15). From now on, the
following assumption is made on the weighting sequence a(t).

Assumption 4 (Forgetting factor). The sequence a(t) ∈ R satisfies

0 < a(t) <
1

maxi |wii|
, t ≥ 0, (31)

lim
t→∞

a(t) = 0, (32)

∞
∑

t=0

a(t) = +∞. (33)

Examples of such functions are a(t) = 1/(t + γ)r, γ > 1, 0 < r ≤ 1. Recall that if
∑∞

t=0 a(t) < +∞, then asymptotic consensus is not guaranteed any more in the noiseless
case [12].

Proposition 2. Let a(t) satisfy (31)-(33). Then, the feasible state set XV given by (12) is
asymptotically unbounded along the direction identified by the vector 1.
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Proof: Since, under Assumption 3, 1′F (t) = 1′, from (13) it follows

1′Φ(t2, t1) = 1′, 0 ≤ t1 < t2. (34)

Denote by X 1

V (t) the orthogonal projection of XV (t) in (12) on the subspace spanned by 1,
and consider the state x̂(t) ∈ XV (t) corresponding to α̂ = [1 1 ... 1]′ ∈ R

tn in (12). Then,
from (12)-(13) and exploiting (34), its projection x̂1(t) on 1 is given by

x̂1(t) =
1

n
(1′x(0) +

n
∑

j=1

ǫj

t−1
∑

i=0

a(i)).

By construction x̂1(t) ∈ X 1

V (t) and its norm tends to infinity by Assumption 4, which con-
cludes the proof. 2

Proposition 2 shows that, also in case of vanishing weights, the consensus value is not
necessarily bounded.

In order to get asymptotic bounds on the quantity rV (t) in (14), let us consider the
dynamics of the projection of x(t) on the subspace orthogonal to 1. From (30) it follows

x1
⊥

(t+ 1) = P 1
⊥

F (t)x1
⊥

(t) + a(t)P 1
⊥

v(t)

x1
⊥

(0) = P 1
⊥

x0

. (35)

The following lemmas are instrumental in establishing asymptotic upper and lower bounds
to rV .

Lemma 4. Let z(t) ∈ R evolve according to

z(t+ 1) = (1− ca(t))z(t) + a(t)δ, (36)

where a(t) satisfies Assumption 4, c > 0 and δ ≥ 0. Then

lim
t→∞

z(t) =
δ

c
.

Lemma 5. Let c1 = −λ2(W+W ′) > 0, c2 = λ1(W
′W ) > 0, c3 = −λ2(W+W ′+W ′W ) > 0,

F (t) = I + a(t)W , and a(t) satisfy Assumption 4. Then, there exists a finite time t̂ such

that

0 < a(t)(c1 − c2a(t)) < 1, ∀t ≥ t̂, (37)

and
∥

∥

∥
P 1

⊥

F (t)x
∥

∥

∥

2

2
≤ [1− a(t)(c1 − c2a(t))] ‖x‖22 ≤ [1− c3a(t)] ‖x‖22 , ∀t ≥ t̂, (38)

for any x ∈ R
n such that 1′x = 0.

The following theorem gives an upper bound to the asymptotic disagreement of the team,
in case of vanishing weights.

11



Theorem 3. Let x1
⊥

(t) evolve according to (35). Then

lim
t→∞

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
≤ − 2δ

λ2(W +W ′)

where δ = max
v∈DǫB∞

∥

∥

∥
P 1

⊥

v
∥

∥

∥

2
.

Proof: From the definition of δ and from equation (35) it follows
∥

∥

∥
x1

⊥

(t+ 1)
∥

∥

∥

2
≤
∥

∥

∥
P 1

⊥

F (t)x1
⊥

(t)
∥

∥

∥

2
+ a(t)δ.

Since 1′x1
⊥

(t) = 0, from Lemma 5 one gets
∥

∥

∥
x1

⊥

(t+ 1)
∥

∥

∥

2
≤ [1− a(t)(c1 − c2a(t))]

1/2
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
+ a(t)δ, t ≥ t̂, (39)

where c1 = −λ2(W +W ′) and c2 = λ1(W
′W ). Recall that for 0 < x < 1, (1−x)1/2 ≤ 1− 1

2
x.

Then, from (37), inequality (39) becomes

∥

∥

∥
x1

⊥

(t+ 1)
∥

∥

∥

2
≤
(

1− a(t)
c1 − c2a(t)

2

)

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
+ a(t)δ, t ≥ t̂. (40)

For all ǫ > 0 there exists a time instant t(ǫ) such that c2a(t) ≤ ǫ, t ≥ t(ǫ) and consequently

(

1− a(t)
c1 − c2a(t)

2

)

≤
(

1− a(t)
c1 − ǫ

2

)

, t ≥ t(ǫ).

Hence from (40)

∥

∥

∥
x1

⊥

(t+ 1)
∥

∥

∥

2
≤
(

1− a(t)
c1 − ǫ

2

)

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
+ a(t)δ, t ≥ t(ǫ),

which, combined with Lemma 4, implies

lim
t→∞

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
≤ 2δ

c1 − ǫ
= − 2δ

λ2(W +W ′) + ǫ

The thesis follows from the arbitrariness of ǫ. 2
The following lemma is instrumental in establishing a lower bound on the asymptotic dis-
agreement of the team.

Lemma 6. Let x1
⊥

(t) evolve according to (35), and let v(t) = v, t ≥ 0. Then

lim
t→∞

x1
⊥

(t) = (I − P 1
⊥

F )−1P 1
⊥

v.

By noting that Lemma 6 gives the same limit as Lemma 3, the next result stems directly
from Theorem 2.

12



Theorem 4. Let x1
⊥

(t) evolve according to (35). Then there exists a feasible noise realiza-

tion v(t) such that

lim
t→∞

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
≥ max

i=1,...,n−1

δi
σi(W )

where δi
△
= max

v∈DǫB∞

|Y W ′

i v|, and W = Y WΣWUW ′

is a SVD of W .

Summarizing, from the results in Theorems 3 and 4, one can conclude that the set X 1
⊥

V (t)
is bounded for all t. Moreover, rV (t) in (14) satisfies

max
i=1,...,n−1

δi
σi(W )

≤ lim
t→∞

rV (t) ≤ − 2δ

λ2(W +W ′)
, (41)

where δi = Y W ′

i Dǫsgn (Y W
i ) and δ = max

v∈DǫB∞

∥

∥

∥
P 1

⊥

v
∥

∥

∥

2
.

By comparing the results of Theorems 2 and 4, one finds that the lower bounds on the
asymptotic value of rC(t) and rV (t) are the same. On the contrary, Theorems 1 and 3
provides upper bounds on the asymptotic disagreement rC(t) and rV (t) which are different,
in general. It is natural to wonder whether there is a relationship between the two upper
bounds. The next lemma provides the answer to this question.

Lemma 7. Let F = I +W , where W is defined as in (15). Then

1

1− σ2(F )
≥ − 2

λ2(W +W ′)
.

Lemma 7 implies that the upper bound on the asymptotic value of rV (t) is smaller than or
equal to the upper bound found for the asymptotic value of rC(t).

It is worth remarking that the upper and lower bounds obtained in Theorems 1-4 are
valid for all possible time-varying sequences v(t) satisfying the condition v(t) ∈ DǫB∞,
stemming from the UBB noise assumption (7). A constant noise realization is used only to
derive instrumental theoretical results, like Lemma 3 and Lemma 6.

4.3. Symmetric weight matrix

The results (29) and (41) take on a special form when the weight matrixW in (15) is sym-
metric. Let as usual σi(F ) and λi(F ) denote the singular values and the eigenvalues, respec-
tively, of matrix F , arranged in decreasing order. Being F symmetric, σi(F ) = |λji(F )|, for
i = 1, . . . , n and for some ji ∈ {1, . . . , n}. Then, according to Lemma 1, σ1(F ) = λ1(F ) = 1
and

σ2(F ) = max
i=2,...,n

|λi(F )| = max{λ2(F ),−λn(F )}.

Moreover, λ2(W +W ′) = 2λ2(W ). Let ei be a unitary eigenvector associated to λi(F ). From
the definition of F , clearlyWei = (λi(F )−1)ei. WhenW is symmetric, the input and output
singular vectors Y W

i , UW
i correspond (up to a sign and a reordering) to its eigenvectors

Y W
i = en−i+1, UW

i = −en−i+1, i = 1, . . . , n.

13



Hence σi(W ) = −λn−i+1(W ) = 1− λn−i+1(F ) and

δi = Y W ′

i Dǫsgn (Y W
i ) = en−i+1Dǫsgn (en−i+1).

The above discussion leads to the following corollaries.

Corollary 2. Let W be a symmetric matrix. Then, the set X 1
⊥

C (t) is bounded for all t.
Moreover, rC(t) in (14) satisfies

max
i=2,...,n

δ̃i
1− λi(F )

≤ lim
t→∞

rC(t) ≤
δ

1− λM(F )
, (42)

where δ̃i = eiDǫsgn (ei), δ = max
v∈DǫB∞

∥

∥

∥
P 1

⊥

v
∥

∥

∥

2
and λM(F ) = max{λ2(F ),−λn(F )}.

Corollary 3. Let W be a symmetric matrix, and let a(t) satisfy Assumption 4. Then, the

set X 1
⊥

V (t) is bounded for all t. Moreover, rV (t) in (14) satisfies

max
i=2,...,n

δ̃i
1− λi(F )

≤ lim
t→∞

rV (t) ≤
δ

1− λ2(F )
, (43)

where δ̃i = eiDǫsgn (ei) and δ = max
v∈DǫB∞

∥

∥

∥
P 1

⊥

v
∥

∥

∥

2
.

The bounds provided by the previous corollaries are exactly the same found in [17], except
for the lower bound in (42). In fact, in [17], a non-constant noise realization v(t) has been
found, giving rise to the (generally tighter) lower bound

max
i=2,...,n

δ̃i
1− |λi(F )| ≤ lim

t→∞
rC(t). (44)

Clearly, if the maximum in (44) is attained in correspondence of a positive λi(F ), then the
two bounds coincide.

4.4. Discussion

For the classes of consensus algorithms considered, it turns out that if the updating
scheme ensures the achievement of consensus in the noise-free scenario, then the feasible
state set is asymptotically contained in an infinite cylinder aligned with 1, and whose radius
can be bounded by functions of the singular values (or eigenvalues) of the weight matrix
and of the maximum amplitude of the measurement errors. It is worth remarking that the
radius does not depend on the initial state of the agents. This means that the maximum
deviation from consensus, with respect to all possible noise realizations, is independent of
the initial disagreement of the team.

Identical lower bounds have been found for constant and vanishing weights. Concerning
the upper bound, the one found in case of vanishing weights is smaller than or equal to its
counterpart in case of constant weights (Lemma 7). This means that an algorithm like (6)

14



provides some improvement also in a worst-case scenario, at least in principle. However,
whenever matrix W is symmetric and such that λM(F ) = λ2(F ), the upper bound is the
same for both classes (Corollaries 2 and 3). Moreover, it depends only on the second largest
eigenvalue of matrix F . It is known that such an eigenvalue determines the convergence rate
to the consensus value in absence of measurement noise (the smaller meaning the faster, see
[6, 18]). Hence, a faster mixing network guarantees also a smaller worst-case asymptotic
difference among the agents’ states.

It is interesting to observe that the upper bound in case of vanishing weights does not
depend on the rate of convergence of the weighting sequence a(t), as long as it satisfies (33).
Note that if a(t) is selected such that

∑∞
t=0 a(t) < +∞, then even if v(t) = 0, ∀t ≥ 0, i.e.

in the noise-free scenario, consensus cannot be reached. Nonetheless, an a(t) such that its
summation converge, would have the advantage of bounding the feasible state set also along
the direction 1 (see the proof of Proposition 2). Hence, in a worst-case analysis it could be
of interest to choose a faster vanishing a(t), in order to trade off boundedness of the agents’
states and maximum asymptotic disagreement of the team.

Finally, it is worth remarking that the main reason why protocols like (6) do not guar-
antee consensus in a set-membership framework (differently from what happens when mea-
surement noise is modeled in a stochastic setting, see [12]) is that the noise is only assumed
to be bounded, and biased noise realizations are allowed as well.

5. Numerical results

This section presents a numerical example, illustrating the main theoretical results de-
scribed so far. The team is composed of 10 agents, connected through a communication
graph generated similarly to what has been done in [18]. The network topology has been
obtained by randomly distributing the positions of the agents in a 1 × 1 box in the plane,
and connecting two agents if and only if their distance is smaller than 0.5. The resulting net-
work, composed of 31 edges, is connected, thus satisfying Assumption 2. The weight matrix
W has been randomly generated according to equation (15) and such that Assumption 3 is
satisfied. The measurement noise ηij is assumed to be bounded as in (7), with ǭ = 0.1. The
forgetting factor a(t) adopted in the updating rule (6) is chosen as a(t) = 1

(t+5)0.6
, thus sat-

isfying Assumption 4. Within this setting, the asymptotic bounds (29) on the disagreement
in case of constant weights become rC ≤ limt→∞ rC(t) ≤ rC , where rC = 0.49 and rC = 0.85.
In case of vanishing weights, the bounds (41) take on the value rV ≤ limt→∞ rV (t) ≤ rV ,
where rV = 0.49 and rV = 0.62. In this example, the updating scheme based on vanishing
weights provides a smaller upper bound than the constant weights scheme, rV < rC , as
pointed out in Section 4.4.

Figures 1-(a) and 1-(b) summarize the results of 1000 simulation runs, starting from
initial conditions xi(0) randomly generated in the interval [−10, 10]. The average and the

maximum of
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
are depicted at each time instant, for both choices of the updating

rule. The asymptotic upper bounds r(·) (dash-dotted line) are also shown. The measurement
noise ηij(t) is uniformly distributed in the interval [−ǭ, ǭ]. When constant weights are used,
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Figure 1: Average value (a) and maximum (b) of
∥

∥

∥
x
1
⊥

(t)
∥

∥

∥

2

, over 1000 simulation runs, in case of constant

weights (dashed line) and vanishing weights (solid line).

the average of
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
settles around 0.085, while the maximum values oscillate around

0.15 (Figure 1). In case of vanishing weights, the same quantities are one order of magnitude
smaller. It can be noticed that in general constant weights protocols feature faster transient
at the expense of larger steady-state error. In the previous example, the theoretical upper
bound on the asymptotic value of r(t) turns out to be quite conservative. However, it is
worth recalling that such a bound holds for all possible noise realizations satisfying (7). Even
though the worst-case noise ηij(t) is not easy to determine, some unfavorable realizations

can be figured out. In Figure 2,
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
is shown when ηij(t) is generated such that

v(t) = v{i
∗} as defined in equation (27), and i∗ is the index of the largest ratio

δ
i

σi(W )
(see

Theorems 2 and 4), i.e.

i∗ = arg max
i=1,...,n−1

δi
σi(W )

.

For this noise realization, the actual value of
∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
is eventually larger than r(·) (lower

dash-dotted line in Figure 2), and the final value is the same for both choices of the weights.

6. Conclusions

In this paper, the asymptotic properties of two classes of linear consensus algorithms have
been analyzed, in presence of bounded measurement errors. The consensus protocols taken
into account differ for the way the weighting matrix is chosen, being either constant over
time or vanishing as time increases. Under the assumption of bounded errors the consensus
problem has been formulated in a set-theoretic framework. By studying the evolution of
the feasible state set, a worst-case analysis on the asymptotic disagreement of the team has
been performed.
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Figure 2: Value of
∥
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∥
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for noise realization (27), in case of constant weights (dashed line) and vanishing

weights (solid line).

It has been shown that for both kinds of algorithms, consensus cannot be guaranteed
with respect to all possible noise realizations, but the difference among the agents’ states is
asymptotically bounded. Both upper and lower bounds have been derived, as a function of
the bounds on the measurement noise and of the weight matrix.

There is a number of issues related to set-membership consensus which are going to be
addressed in future work. One is the characterization of the noise realization giving rise
to the maximum disagreement of the team, in order to achieve possible tighter bounds.
Closely related to this topic is the synthesis of the weight matrix minimizing the worst-case
asymptotic deviation from consensus. The extension of the results presented in this paper
to communication networks with time-varying topology is also under investigation.
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A. Appendix

A.1. Proof of Lemma 1

By construction, F is non-negative and, from Assumption 2, the matrix F is irreducible
(Theorem 6.2.24 in [19]). Since Fii > 0, F is also aperiodic. Hence F is a primitive matrix
and the Perron-Frobenius (PF) theorem applies (Theorem 1.1 in [20]). Hence, there exists
a simple eigenvalue of maximum modulus λ1(F ) with positive eigenvector. Moreover, λ1(F )
lies between the minimum and maximum row sum of F (Corollary 1 in [20]). Since, by
Assumption 3, F1 = 1, then λ1(F ) = 1 and 1 is the corresponding eigenvector.

A.2. Proof of Lemma 2

Consider a SVD of F = Y FΣFUF ′

. Since FF ′ has the same sparsity pattern of F 2, and F
is primitive by Lemma 1, then F 2, and hence FF ′, is primitive as well, and the PF theorem
applies. Hence λ1(FF ′) = 1. Since, by Assumption 3, F ′1 = 1, then Y F

1 = UF
1 = 1/

√
n,

and F = 11
′

n
+
∑n

i=2 σi(F )Y F
i UF ′

i . Hence, from (16), P 1
⊥

F =
∑n

i=2 σi(F )Y F
i UF ′

i . In other

words, P 1
⊥

F has the same singular values of F , except for that at 1 (which is replaced by

a singular value at 0). Thus
∥

∥

∥
P 1

⊥

F
∥

∥

∥

2
= σ2(F ) < 1 where the inequality follows from the

PF theorem applied to FF ′.
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A.3. Proof of Lemma 3

Recall that for any square matrix A, the spectral radius ρ(A) ≤ ||A||, for any matrix

norm || · || (Theorem 5.6.9 in [19]). Then from Lemma 2 one has ρ(P 1
⊥

F ) ≤
∥

∥

∥
P 1

⊥

F
∥

∥

∥

2
< 1,

and the result follows from the asymptotic stability of system (18).

A.4. Proof of Lemma 4

Notice that Assumption 4 ensures that there exists a finite time t0 such that ca(t) < 1,
t ≥ t0. Moreover, the state ze = δ

c
is the only equilibrium point for the time-varying

system (36). Consider the change of coordinates z′(t)
△
= z(t)− δ

c
. Then, from (36) it follows

z′(t + 1) = (1− ca(t))z′(t), and hence z′(t) =
[
∏t−1

k=t0
(1− ca(k))

]

z′(t0), t ≥ t0. It is known
that an infinite product of the form

∏∞
k=0(1− α(k)), with 0 ≤ α(k) < 1, converges to a non

zero value if and only if
∑∞

k=0 α(k) < +∞ (e.g., see result 0.252 in [21], p. 14). This implies
that if

∑∞
k=0 α(k) = +∞, then

∏∞
k=0(1− α(k)) = 0. Hence, from (33), limt→∞ z′(t) = 0, for

all z′(t0). Since z′(t) = 0 implies z(t) = δ
c
, the thesis follows.

A.5. Proof of Lemma 5

Since F is primitive, then F ′F is primitive as well, and its eigenvalues satisfy

0 < λn(F
′F ) ≤ · · · ≤ λ2(F

′F ) < λ1(F
′F ) = 1.

Define S = W +W ′ +W ′W . Then, S = F ′F − I and hence

−1 < λn(S) ≤ · · · ≤ λ2(S) < λ1(S) = 0.

Hence S is negative semidefinite, and c3 = −λ2(S) > 0. Since W ′W is positive semidefinite,
and rank(W ′W ) = n−1 by Corollary 1, then c2 = λ1(W

′W ) > 0. It is known (see Corollary
4.3.3 in [19]) that given two symmetric matrices A, B, with B positive semidefinite, then
λi(A) ≤ λi(A + B), i = 1, . . . , n. Let A = W + W ′ and B = W ′W , so that A + B = S.
Then λi(W + W ′) ≤ λi(W + W ′ + W ′W ) = λi(S), i = 1, . . . , n, from which it follows
λ2(W + W ′) ≤ λ2(S) < 0. Hence c1 = −λ2(W + W ′) > 0 and c3 ≤ c1. Given the special
structure of matrices A, B and S, it can be shown that the last inequality holds strictly. In

fact, by contradiction, suppose c3 = c1, i.e. λ2(A) = λ2(S)
△
= l. Let vAi , v

S
i , i = 1, . . . , n, be

unitary eigenvectors associated to λi(A) and λi(S), respectively. Then

vA
′

2 AvA2 = vS
′

2 SvS2 = l. (45)

Now, notice that, by Corollary 1, ker(A) = ker(B) = ker(S) = Span{1}. Hence, vAi , v
S
i ,

i = 2, . . . , n, are all orthogonal to the vector 1 and it is possible to write

vA2 =
n
∑

i=2

αiv
S
i (46)
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for some αi such that
∑n

i=2 α
2
i = 1. By substituting (46) into (45), and recalling the

expression of A, B and S, one gets

l =

(

n
∑

i=2

αiv
S
i

)′

A

(

n
∑

i=2

αiv
S
i

)

=

(

n
∑

i=2

αiv
S
i

)′

(S −B)

(

n
∑

i=2

αiv
S
i

)

=

(

n
∑

i=2

αiv
S
i

)′

S

(

n
∑

i=2

αiv
S
i

)

− γ

where γ = vA
′

2 BvA2 > 0, since B is positive semidefinite and vA2 is orthogonal to ker(B). By
noting that

(

n
∑

i=2

αiv
S
i

)′

S

(

n
∑

i=2

αiv
S
i

)

=
n
∑

i=2

α2
iλi(S)

it follows

λ2(S) = l =
n
∑

i=2

α2
iλi(S)− γ ≤

(

n
∑

i=2

α2
i

)

λ2(S)− γ = λ2(S)− γ < λ2(S).

Thus, it must be c3 < c1. Hence, Assumption 4 ensures that there exist two finite time
instants t̄, t̂, t̂ ≥ t̄ such that

−c1 + c2a(t) ≤ −c3, t ≥ t̄, (47)

and
0 < a(t)(c1 − c2a(t)) < 1, t ≥ t̂,

which concludes the first part of the proof.
Let us now consider a vector x such that 1′x = 0. By recalling that λ1(W +W ′) = 0 and

λi(W +W ′) < 0, i = 2, . . . , n, Corollary 1 ensures that x′(W +W ′)x ≤ λ2(W +W ′) ‖x‖22 ,
and, from (47),

x′(W +W ′ + a(t)W ′W )x = x′(W +W ′)x+ a(t)x′(W ′W )x

≤ λ2(W +W ′) ‖x‖22 + a(t)λ1(W
′W ) ‖x‖22 ,

= (−c1 + c2a(t)) ‖x‖22 ≤ −c3 ‖x‖22 , t ≥ t̄.

(48)

Since, by Assumption 3, P 1
⊥

F (t) = I − 11
′

n
+ a(t)W , then

∥

∥

∥
P 1

⊥

F (t)x
∥

∥

∥

2

2
= x′F ′(t)P 1

⊥

P 1
⊥

F (t)x = x′ [(I + a(t)W )′(I + a(t)W )] x

= ‖x‖22 + a(t)x′ [W +W ′ + a(t)W ′W ] x.

Finally, from (37)- (48) one gets

∥

∥

∥
P 1

⊥

F (t)x
∥

∥

∥

2

2
≤ [1− a(t)(c1 − c2a(t))] ‖x‖22 ≤ [1− c3a(t)] ‖x‖22 , t ≥ t̂.
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A.6. Proof of Lemma 6

Being F (t) = I + a(t)W , one has

P 1
⊥

F (t) = I − (1− a(t))
11′

n
− a(t)

(

11′

n
−W

)

. (49)

Define η(t) = x1
⊥

(t)− (I − P 1
⊥

F )−1P 1
⊥

v, where F = I +W . Then

η(t+ 1) = x1
⊥

(t+ 1)− (I − P 1
⊥

F )−1P 1
⊥

v

= P 1
⊥

F (t)x1
⊥

(t) + a(t)P 1
⊥

v − (I − P 1
⊥

F )−1P 1
⊥

v

= P 1
⊥

F (t)η(t) +
(

a(t)I − (I − P 1
⊥

F (t))(I − P 1
⊥

F )−1
)

P 1
⊥

v.

(50)

Since, from (16), (I − P 1
⊥

F )−1 =
(

11
′

n
−W

)−1
, by exploiting (49) one gets

a(t)I − (I − P 1
⊥

F (t))(I − P 1
⊥

F )−1= a(t)I −
[

(1− a(t))
11′

n
+ a(t)

(

11′

n
−W

)]

×
(

11′

n
−W

)−1

= −(1− a(t))
11′

n

(

11′

n
−W

)−1

= −(1− a(t))
11′

n
,

(51)

where the last equality comes from the identity (see Corollary 5.6.16 in [19] and recall
Lemma 2)

(

11′

n
−W

)−1

= (I − P 1
⊥

F )−1 =
∞
∑

k=0

(P 1
⊥

F )k =
∞
∑

k=0

(P 1
⊥

+W )k

and by noting that 11
′

n
(P 1

⊥

+W )k = 0, if k > 0. Finally, substituting (51) in (50) one gets

η(t+ 1) = P 1
⊥

F (t)η(t). (52)

Now consider the function V (η, t) = ‖η(t)‖22. Since 1′η(t) = 0, from (38) in Lemma 5 one
gets

V (η, t+ 1) =
∥

∥

∥
P 1

⊥

F (t)η(t)
∥

∥

∥

2

2
≤ (1− c3a(t))V (η, t), t ≥ t̂,

where c3 = −λ2(W +W ′ +W ′W ). From Lemma 4 it follows limt→∞ V (η, t) = 0, which in
turn implies limt→∞ η(t) = 0.

A.7. Proof of Lemma 7

Let us consider the matrix A = F+F ′

2
= I + W+W ′

2
. Being F primitive by Lemma 1, then

A is primitive and all its row sums equal to 1. Hence

−1 < λn (A) ≤ · · · ≤ λ2 (A) < λ1 (A) = 1, (53)
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and the unitary eigenvector corresponding to the largest eigenvalue is 1/
√
n. As a conse-

quence, a SVD of A has the form

A =
11′

n
+

n
∑

i=2

σi(A)Y
A
i UA′

i , (54)

where 0 < σi(A) < 1, i = 2, . . . , n. Now consider the matrix B = P 1
⊥

+ W+W ′

2
, where

P 1
⊥

= I − 11
′

n
. Clearly, B = A− 11

′

n
. Moreover, B1 = 0 and hence a SVD of B is given by

B =
n
∑

i=2

σi(A)Y
A
i UA′

i . (55)

By recalling the definition of A and B, equations (54)-(55) imply that

σ2

(

I +
W +W ′

2

)

= σ1

(

P 1
⊥

+
W +W ′

2

)

. (56)

By Lemma 2 and from equation (16), one has

σ2(F ) = σ1(P
1
⊥

F ) = σ1(P
1
⊥

+W ). (57)

Putting together (56) and (57), one gets

σ2

(

I +
W +W ′

2

)

= σ1

(

P 1
⊥

+W

2
+

P 1
⊥

+W ′

2

)

≤ σ1

(

P 1
⊥

+W

2

)

+ σ1

(

P 1
⊥

+W ′

2

)

= σ2(F )

(58)

Looking at the spectrum of I + W+W ′

2
(equation (53)), one concludes that

σ2

(

I +
W +W ′

2

)

= max

{

λ2

(

I +
W +W ′

2

)

,−λn

(

I +
W +W ′

2

)}

≥ λ2

(

I +
W +W ′

2

)

= 1 +
1

2
λ2(W +W ′).

(59)

Finally, from (58)-(59), one gets σ2(F ) ≥ 1 + 1
2
λ2(W + W ′), from which the result easily

follows.
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