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SUMMARY

The development of feedback control systems for autonomous orbital rendezvous is a key technological
challenge for next generation space missions. This paper presents a new class of control laws for the
orbital rendezvous problem. The controllers belonging to this class are guaranteed to globally asymptotically
stabilize the relative dynamics of two satellites in circular or elliptic orbits. The proposed design procedure
builds on control techniques for nonlinear systems in cascade form, by exploiting the geometric properties of
the orbital element description of the satellite motion. A numerical simulation of a formation flying mission
demonstrates the effectiveness of this approach for long-range and low-thrust rendezvous operations.
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1. INTRODUCTION

Orbital rendezvous technologies play a fundamental role in interplanetary exploration, on-orbit

servicing, and remote sensing space missions. They enable two spacecraft starting a long distance

apart to get closer and perform activities such as inspection or docking. Historically, rendezvous

maneuvers have been performed through manual or semi-automated procedures [1]. Despite the

success of these methods, they are not suited to applications in which ground communication is

limited or delayed, and often very expensive to implement [2]. For these reasons, the development

of fully autonomous rendezvous techniques has been identified as a key challenge for current and

future formation flying missions, see, e.g., [3, 4, 5].

The rendezvous control problem can be tackled by using open-loop optimization techniques

or feedback stabilization methods. In the former approach, no closed-form solution is available

in general and a two-point boundary value problem is solved numerically to obtain the optimal

thrusting profile (see, e.g., [6, 7, 8]). The related computations are lengthy, thus making this

approach not suitable for applications in which the control signal must be computed online. On

the contrary, feedback stabilization methods typically provide closed-form control laws, that can be

employed within an autonomous guidance, navigation and control system.

Many of the rendezvous control schemes discussed in the formation flying literature rely on

results from linear control theory. Linear quadratic regulator design techniques are adopted in

[9, 10, 11]. A robust control problem is addressed in [12, 13], by using H∞ synthesis methods.

Model predictive control strategies, able to cope with both input and state constraints, are presented

in [14, 15, 16, 17]. Unfortunately, most of these approaches are based on linearized, time-invariant

dynamic models, which limits the domain of attraction of the control system to a local neighborhood
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of the rendezvous location. In order to mitigate this issue, linear time-varying controllers have been

presented in [18, 19]. These approaches require to solve numerically a periodic Riccati equation or

a parametric Lyapunov equation.

Several nonlinear control techniques have also been considered in the literature. Feedback

linearization is proposed in early works such as [20, 21]. Adaptive control schemes, accounting for

both parametric uncertainties and unknown disturbances, are presented in [22, 23, 24, 25]. In these

approaches, the control input is chosen so as to exactly cancel or to dominate the effect of differential

gravity (i.e., the difference between the gravitational accelerations acting on the two spacecraft).

This can lead to a large control effort and consequently to poor fuel efficiency, especially when

the relative position error is large. Hence, constraints on the maximum thrust that can be delivered

by the actuators and on the amount of available propellant may restrict the applicability of these

controllers to short-range maneuvers. In order to deal with input and state constraints, approaches

based on nonlinear model predictive control and receding-horizon strategies have been proposed

(see, e.g., [26, 27, 28]). These techniques are usually computationally intensive, as they require to

solve a nonlinear optimal control problem at each time step. Moreover, it is often difficult to prove

the stability of these methods.

In [29], a nonlinear Lyapunov-based control law is obtained by parameterizing the satellite

relative motion in terms of orbital element differences. It is found that, in this way, the control energy

can be made significantly smaller than the one resulting from the application of cartesian feedback

control laws, such as those cited above. The authors, however, recognize that their design is not

supported by a rigorous stability proof. A similar approach is taken in [30], where backstepping

and forwarding techniques are adopted to derive a passivity-based controller. This control strategy

applies only to perfectly circular reference orbits, which leaves out many scenarios of theoretical

and practical interest. It is known, for instance, that low Earth orbits cannot have zero eccentricity,

due to the asymmetry of the Earth’s gravity field. Other control schemes based on orbital elements

can be found in the literature [31, 32, 33]. However, they do not address the tracking of the satellite

phase angle along the orbit, and hence cannot be employed for rendezvous.

In this paper, a new class of orbital element feedback control laws is presented for the rendezvous

problem. The controllers belonging to this class are guaranteed to globally asymptotically stabilize

the relative dynamics of a satellite pair, for both circular and elliptic reference orbits. Our design

procedure is in the spirit of previous studies dealing with the global stabilization of nonlinear

time-varying systems in cascade form, see, e.g., [34, 35, 36]. A set of tunable design functions is

introduced to parameterize the stabilizing controller family. Such parametrization may be exploited

to enforce further control specifications, or to optimize suitable performance indices. A simulation

case study is presented in order to demonstrate the applicability of the proposed method. It is

observed that, by applying the proposed design, the thrust command can be scaled down to meet

the constraints dictated by modern low-thrust actuator technologies, such as electric propulsion.

A qualitative robustness analysis with respect to environmental disturbances and parametric

uncertainties is also carried out. A preliminary version of this work has been presented in [37].

The paper is organized as follows. In Section 2, a brief introduction to the orbital element

parametrization is given and the considered rendezvous control problem is formulated. Section 3

is devoted to the controller design, which is demonstrated by the numerical case study in Section 4.

Some concluding remarks are outlined in Section 5.

Notation

The notation is fairly standard. Rn is the real n−space, and Z denotes the set of integer numbers;

for a real vector or matrix x, xT denotes its transpose. The symbol 0n×m denotes a null matrix or

vector with n rows andm columns, while the identity matrix of order n is denoted by In. The partial

derivative ∂f/∂x is expressed as a row vector. To save space, cos(·), sin(·) are abbreviated with c(·)
and s(·), respectively. Moreover,

R(φ) =

[

c(φ) −s(φ)
s(φ) c(φ)

]

(2017)
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is the counter-clockwise rotation operator, by an angle φ, in R
2. The definition of the signum

function follows the convention

sgn(x) =







1 x > 0
0 x = 0

−1 x < 0 ,

where x ∈ R. The continuous time index is denoted by t ∈ R
+.

2. PROBLEM FORMULATION

Classical orbital elements are commonly used as a parametrization of the position r ∈ R
3 and

velocity ṙ ∈ R
3 of an orbiting body, since they provide a clear physical insight of the body motion.

The semi-major axis a > 0 and eccentricity e ∈ [0, 1] define the shape of the orbit. The inclination

i ∈ [0, π] and longitude of the ascending node Ω ∈ [0, 2π] define the orientation of the orbital plane

with respect to a given inertial, right-handed reference frame centered at the central body (e.g.,

the Earth). The argument of perigee ω ∈ [0, 2π] describes the position of the perigee in the orbital

plane, and the true anomaly ν(t) ∈ [0, 2π] defines the instantaneous angle at which the orbiting body

is located relative to the perigee position, as illustrated in Fig. 1.

w
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L
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Equatorial orbit

Inclined orbit

Figure 1. Classical orbital elements.

It is well known that ω is indeterminate for circular orbits (i.e., when e = 0) and Ω is indeterminate

for equatorial orbits (i.e., when i = 0). These singularities can be avoided by adopting a different

parameterization of the orbit using the modified equinoctial elements ψ = [ψ1 . . . ψ6]
T , defined as

[38]
ψ1 = L = Ω+ ω + ν
ψ2 = p = a(1− e2)
ψ3 = eX = e c(Ω + ω)
ψ4 = eY = e s(Ω + ω)
ψ5 = hX = tan(i/2) c(Ω)
ψ6 = hY = tan(i/2) s(Ω).

(1)

In this parameterization, L is the true longitude shown in Fig. 1, p is the orbit semi-parameter,

eX , eY are the components of the eccentricity vector, and hX , hY are the components of the

inclination vector. Notice that any closed Keplerian orbit is such that ψ2 = p > 0. Moreover, the

escape to parabolic orbits (i.e., e = 1) is not possible with continuous feedback [33], which is the

(2017)
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case considered in this paper. Therefore, in the following we restrict our attention to the case e < 1.

Hence, the orbital element vector ψ must belong to the set

Ψ = {ψ ∈ R
6 : ψ2 > 0, ψ2

3 + ψ2
4 < 1}. (2)

The transformation that relates the equinoctial elements to the cartesian position r and velocity ṙ,
expressed in the inertial frame XY Z, can be found in astrodynamics textbooks (e.g., [39]), and is

not reported here for brevity.

The dynamics of the orbital elements ψ in (1), in the presence of perturbing accelerations, are

described by the Gauss’ variational equations. Let us introduce the input vector u = [ur uθ uh]
T ,

where ur, uθ and uh denote the radial, tangential and normal components of the acceleration,

respectively, in a local-vertical-local-horizontal (LVLH) frame centered at the orbiting body. The

resulting dynamics are given by ([39], Chapter 10)

ψ̇ = f(ψ) + g(ψ)u, (3)

where the vector fields f(ψ) and g(ψ) are defined as

f(ψ) =

√

µ

ψ3
2

[

(1 + ζX)2 0 0 0 0 0
]T

(4)

g(ψ) =

√
ψ2√

µ(1+ζX)



























0 0 η

0 2ψ2 0

(1+ζX) s(ψ1) qX −η ψ4

−(1+ζX) c(ψ1) qY η ψ3

0 0
(1+h2)

2
c(ψ1)

0 0
(1+h2)

2
s(ψ1)



























, (5)

µ is the gravitational parameter of the central body, and

ζX = e c(ν) = ψ3 c(ψ1) + ψ4 s(ψ1)

qX = ψ3 + (2 + ζX) c(ψ1)

qY = ψ4 + (2 + ζX) s(ψ1)

η = ψ5 s(ψ1)− ψ6 c(ψ1)

h2 = ψ2
5 + ψ2

6 .

Most rendezvous applications involve a maneuvering spacecraft, called the chaser, and a passive

one, which is referred to as the target [40]. Let ψ(t) be the state of the chaser spacecraft. The control

objective of the chaser is to track the known trajectory of the target, specified by the orbital elements

ψr(t) = [ψr
1, . . . , ψ

r
6]

T . It is assumed that the target spacecraft moves along an unperturbed orbit.

Consequently, the target dynamics are represented by equation (3) with u = 0, i.e.,

ψ̇r = f(ψr). (6)

It can be seen from (4) and (6) that the target phase angle ψr
1(t) is time-varying, while ψr

2, . . . , ψ
r
6

are constants that define the shape and orientation of the reference orbit.

The tracking error is defined as ψ̃ = ψ − ψr. Hence, the error dynamics evolve according to the

nonlinear time-varying system

˙̃
ψ = f̃(ψ̃, ψr) + g(ψ̃ + ψr)u, (7)

where f̃(ψ̃, ψr) = f(ψ̃ + ψr)− f(ψr).
The orbital rendezvous problem considered in this paper can be formulated as follows.

(2017)
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Problem 1

Find a class U of continuous state feedback control laws u = u(ψ̃, ψr) such that the origin of the

error system (7) is globally asymptotically stable, which guarantees that

lim
t→∞

ψ̃(t) = 0

for any initial condition ψ̃(0) = ψ(0)− ψr(0), with ψ(0) ∈ Ψ and ψr(0) ∈ Ψ.

3. MAIN RESULTS

In order to derive a solution to Problem 1, we first introduce a coordinate transformation x =
x(ψ̃, ψr) in system (7), defined as follows

x1 = ψ̃1

x2 =

√

1 +
ψ̃2

ψr
2

− 1





x3

x4



=











ψr
2

ψ̃2 + ψr
2

0

0

√

ψr
2

ψ̃2 + ψr
2











R(ψ̃1+ψ
r
1)





ψ̃3+ψ
r
3

−ψ̃4−ψr
4



+







− ψ̃2

ψ̃2 + ψr
2

0






−





ζrX

ζrY



 (8)

x5 = ψ̃5

x6 = ψ̃6,

where

[

ζrX
ζrY

]

= R(ψr
1)

[

ψr
3

−ψr
4

]

.

A similar transformation is used in [30] for the case of circular reference orbits (i.e., ζrX = ζrY = 0).

System (7) in the new coordinate set takes on the form

ẋ =

[

F (χ, ψr)
02×1

]

+

[

G(χ, ψr)
02×2

] [

ur
uθ

]

+H(x, ψr)uh , (9)

where χ = [x1 . . . x4]
T and

F (χ, ψr) =







0 F12 F13 0
0 0 0 0
0 0 −F33 −F12

0 F42 F12+F43 0






χ

G(χ, ψr) =







0 0
0 G22

0 0
G41 0






,

(2017)
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being

F12 =

√

µ

(ψr
2)

3
(x3 + 1 + ζrX)

2

F13 =

√

µ

(ψr
2)

3
(x3 + 2 + 2ζrX)

F42 =

√

µ

(ψr
2)

3
(x2 + 2) (x3 + 1 + ζrX)

3

F33 = F13 ζ
r
Y

F43 = F13 ζ
r
X

G22 =

√

ψr
2

µ

1

(x3 + 1 + ζrX)

G41 =

√

ψr
2

µ
.

By virtue of the properties of the considered problem (see (2)), all Fij and Gij are strictly positive

functions of χ and ψr, except for F33 and F43. The vector H(x, ψr) in (9) is given by

H(x, ψr) =
∂x

∂ψ̃
gh(ψ) =

G22

(x2 + 1)

























(x5 + ψr
5) s(x1 + ψr

1)− (x6 + ψr
6) c(x1 + ψr

1)

03×1

1 + (x5 + ψr
5)

2 + (x6 + ψr
6)

2

2
c(x1 + ψr

1)

1 + (x5 + ψr
5)

2 + (x6 + ψr
6)

2

2
s(x1 + ψr

1)

























(10)

where gh(·) denotes the third column of g(·) in (5). It can be verified that the vector fields F (χ, ψr),
G(χ, ψr) and H(x, ψr) in (9) are periodic in ψr(t), and turn out to be periodic also in t, with period

equal to the reference orbital period

T = 2π

√

(ψr
2)

3

µ [1− (ψr
3)

2 − (ψr
4)

2]
3
. (11)

The structure of system (9) allows us to tackle the control design problem in a two-step

procedure. The first step is equivalent to solving a co-planar rendezvous problem, by controlling

the χ components of system (9) with the inputs ur and uθ. This is accomplished by applying a

backstepping-inspired technique. The second step amounts to asymptotically stabilizing the x5, x6
components of system (9) with the input uh, while retaining the asymptotic stability of the χ
components. The proposed approach is described in detail in the following.

3.1. Step 1

In this step, we assume uh = 0 in (9) and derive a feedback stabilizer for the fourth order subsystem

χ̇ = F (χ, ψr) +G(χ, ψr)

[

ur
uθ

]

(12)

using the inputs ur and uθ.

(2017)
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For system (12), let us first introduce the following nonsingular transformation in the input

variables

ur =
1

G41

(vr − F43x3) (13)

uθ =
1

G22

(

vθ − F12

∂λ1
∂x1

)

, (14)

where vr and vθ are the new input variables, and λ1 = λ1(x1) is a given positive-definite and

pseudoconvex function of class C2, to be treated as a design parameter. Then, system (12) becomes

ẋ1 = F12x2 + F13x3 (15)

ẋ2 = −F12

∂λ1
∂x1

+ vθ (16)

ẋ3 = −F33x3 − F12x4 (17)

ẋ4 = F42x2 + F12x3 + vr. (18)

Let

x∗4 =
1

F12

(

F13

λ5

∂λ1
∂x1

− F33x3 + λ3

)

, (19)

where λ5 is a positive constant, and λ3 = λ3(x) is a given function of class C1 satisfying sgn(λ3) =
sgn(x3). Similarly to backstepping control design (see, e.g., [41]), we use x∗4 as a virtual input for

system (15)-(17), and consider the transformed state vector

z = [z1 z2 z3 z4]
T = [x1 x2 x3 (x4 − x∗4)]

T . (20)

In the new coordinates, equations (15)-(18) read

ż1 = F12z2 + F13z3 (21)

ż2 = −F12

∂λ1
∂z1

+ vθ (22)

ż3 = −F13

λ5

∂λ1
∂z1

− F12z4 − λ3 (23)

ż4 = F42z2 + F12z3 + vr − ẋ∗4, (24)

where clearly λ1(z1) = λ1(x1). The following theorem addresses the global stabilization of system

(21)-(24), and, equivalently, of (12).

Theorem 1

Let the control inputs of system (12)-(14) be given as

vr = ẋ∗4 − λ4 (25)

vθ = −F42 λ5 z4 − λ2, (26)

where λ2=λ2(z) and λ4=λ4(z) are given functions of class C0 satisfying sgn(λ2)=sgn(z2) and

sgn(λ4) = sgn(z4), respectively. Then, the equilibrium point χ = 0 of the closed-loop system (12)-

(14) with the control inputs (25)-(26) is uniformly globally asymptotically stable.

Proof

Consider the Lyapunov function candidate

V1(z) = λ1(z1) +
1

2
z22 +

λ5
2

(

z23 + z24
)

. (27)

The time derivative of (27), along the trajectories of (21)-(24), reads

V̇1(z) = (vθ+F42λ5z4)z2 − λ5λ3z3 + λ5(vr−ẋ∗4)z4. (28)

(2017)
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By substituting (25)-(26) in (28), one gets

V̇1(z) = −λ2z2 − λ5λ3z3 − λ5λ4z4. (29)

Clearly, (29) is negative semidefinite and vanishes for z2 = z3 = z4 = 0. From (21), the latter

condition implies that z1 is constant. Moreover, since λ1(z1) is pseudoconvex, ∂λ1/∂z1 in (22)-(23)

vanishes if and only if z1 = 0. Combining these observations, it follows that the largest invariant

set in which V̇1 = 0 is z = 0. Being system (21)-(26) periodic, by invoking LaSalle’s principle for

periodic systems ([42], Theorem 5.26), one has that z = 0 is globally uniformly asymptotically

stable. Then, since the coordinate transformation (20) is diffeomorphic and χ = 0 if and only if

z = 0, it can be concluded that the equilibrium point χ = 0 is globally asymptotically stabilized by

the proposed control scheme.

3.2. Step 2

The stabilization of the full system can be tackled by substituting into (9) the control inputs ur, uθ
defined by (13)-(14) and (25)-(26), and rewriting the resulting dynamics as

ẋ =

[

Fcl(χ, ψ
r)

02×1

]

+H(x, ψr)uh, (30)

where

Fcl(χ, ψ
r) =











F12x2 + F13x3

−F12
∂λ1

∂x1

− F42 (x4 − x∗4)λ5 − λ2

−F13
1

λ5

∂λ1

∂x1

− F12(x4 − x∗4)− λ3

F42x2 + F12x3 + ẋ∗4 − λ4











.

Given the structure of (30), it turns out that the origin of the system can be globally stabilized using

uh via a damping-like controller, as stated by the next result.

Theorem 2

Consider the Lyapunov function candidate

V (x, ψr) = V1(z) +
1

2
x25 +

1

2
x26, (31)

with V1 defined by (27) and z as in (20). Let

uh = −λ6, (32)

where λ6 = λ6(x, ψ
r) is a given function of class C0 satisfying

sgn(λ6) = sgn

(

∂V (x, ψr)

∂x
H(x, ψr)

)

. (33)

Then, the equilibrium point x = 0 of the closed-loop system (30) with the control input (32) is

uniformly globally asymptotically stable.

Proof

The time derivative of (31), along the trajectories of (30),(32), can be written as

V̇ (x, ψr) =
∂V (x, ψr)

∂x

[

Fcl(χ, ψ
r)

02×1

]

+
∂V (x, ψr)

∂ψr
f(ψr)− ∂V (x, ψr)

∂x
H(x, ψr)λ6

= V̇1(z)−
∂V (x, ψr)

∂x
H(x, ψr)λ6,

(2017)
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where V̇1(z) is given by (29). Notice that V̇ is negative semidefinite and vanishes if and only if















x2 = x3 = 0

x4 = x∗4

∂V (x, ψr)

∂x
H(x, ψr) = 0.

(34)

The above conditions imply uh = 0. By substituting (32) in (30) and enforcing (34), the closed-loop

system becomes,

ẋ =















0

−F12 ∂λ1/∂x1

−F13 λ
−1

5 ∂λ1/∂x1

γ̇

02×1















, (35)

where γ = γ(x1, ψ
r) is obtained from (19) as

γ = λ−1

5

F13

F12

∂λ1
∂x1

.

Clearly, the only solution of system (35) satisfying the first two conditions in (34) is such that χ = 0.

Hence, according to Theorem 1, the set χ = 0 is invariant. Moreover, x5 and x6 are constant along

the solutions of (35). By using (10), for χ = 0 one gets

∂V (x, ψr)

∂x
H(x, ψr) =

√

ψr
2

µ

[1 + (x5 + ψr
5)

2 + (x6 + ψr
6)

2]

2(1 + ζrX)
[x5 c(ψr

1) + x6 s(ψr
1)] .

Being ψr
2 > 0, 1 + ζrX > 0 and ψ̇1

r 6= 0, one must have x5 = x6 = 0 in order for the third condition

in (34) to hold. Summarizing, the largest invariant set in which V̇ = 0 is x = 0. Then, by invoking

LaSalle’s principle for periodic systems, one has that that the proposed control strategy renders the

equilibrium point x = 0 of system (30) globally uniformly asymptotically stable.

The final expression of the control u = [ur, uθ, uh]
T is obtained from (13)-(14), (20), (25)-(26)

and (32) as

ur = ur(x, ψ
r;λ) = − 1

G41

(F43 x3 − ẋ∗4)−
λ4
G41

(36)

uθ = uθ(x, ψ
r;λ) = −F12

G22

∂λ1
∂x1

− F42

G22

(x4−x∗4)λ5 −
λ2
G22

(37)

uh = uh(x, ψ
r;λ) = −λ6, (38)

with x∗4 given by (19) and V (x, ψr) defined by (31).

Expressions (36)-(38) define a class of globally stabilizing feedback controllers parameterized by

the tunable vector-valued function λ : R6 ×R
6 → R

6. Indeed, let

Λ=













































λ1
...

λ6






:

λ1 ∈ C2 positive definite,
∂λ1

∂x1

= 0 ⇔ x1 = 0

λ2 ∈ C0 : sgn(λ2) = sgn(x2)
λ3 ∈ C1 : sgn(λ3) = sgn(x3)
λ4 ∈ C0 : sgn(λ4) = sgn(x4−x∗4)
λ5 > 0 constant

λ6 ∈ C0 : sgn(λ6) = sgn(∂V
∂x
H)







































.

Then, the controller class

U =
{

u(x, ψr;λ) : λ ∈ Λ
}

(39)
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is a solution to Problem 1.

Finally, note that U can be further generalized by taking λ5 as a strictly positive function, with

minor amendments of the control law (36)-(38).

Remark 1

The degrees of freedom provided by the proposed controller class, i.e., by the tunable parameters

λ ∈ Λ, can be used to enforce further control specifications or to meet given performance

requirements. A typical specification in aerospace applications is to keep the magnitude of the thrust

command within the safe operating range of the satellite engines. Notice that this is a very simple

task for circular reference orbits (F33=F43=0), as it amounts to properly scale the tuning functions

λ. The problem is more challenging for elliptical reference orbits, due to the presence of the term

(F43x3 − ẋ∗4) in (36). An example that demonstrates the tuning of λ for a specific case study is

presented in the next section. A systematic method for exploiting the proposed parameterization in

order to optimize relevant performance indices is the subject of current investigation.

Remark 2

Although U is a global stabilizer for Problem 1, it can lead to unwinding when applied to the

physical system (7), in which the configuration space of the rotational degree of freedom ψ̃1 is

the unit circle [43]. A possible way to overcome this issue is suitably amend the definition of

λ1, by choosing e.g. λ1(x1) = κ(1− c(x1)), where κ > 0. Notice that this introduces a set of

unstable equilibrium points in the closed-loop system dynamics, corresponding to x1 = π + 2mπ,

with m ∈ Z. In this setting, only almost global stability can be guaranteed by adopting a reasoning

similar to Theorems 1 and 2.

4. RENDEZVOUS CASE STUDY

In order to validate the proposed approach, a simulation model based on Cowell’s formulation [39]

has been implemented. In this model, the plant dynamics are given by











r̈ = − µ

‖r‖3 r + uI + d

r̈ r = − µ

‖rr‖3 r
r+ dr

(40)

where r and rr denote the inertial position of the chaser and the target, respectively, and uI is the

control input of the chaser, expressed in the inertial frame. Moreover, the two vectors d and dr in

(40) represent environmental perturbations (e.g., aspherical gravity). These are treated as exogenous

disturbances to be rejected by the control system. The proposed control law is applied to system (40)

by first converting r, ṙ and rr, ṙr into orbital elements and then rotating the input vector u given by

(36)-(38) from the LVLH frame to the inertial frame. The resulting closed-loop system is shown in

Fig. 2.

Plant Inertial states to
Orbital elements

LVLH to
Inertial

Controller

d, dr

uI

u

r, ṙ, rr, ṙr ψ, ψr

Figure 2. Block diagram of the closed-loop system (36)-(38), (40).

The considered rendezvous case study involves an actively controlled chaser spacecraft that must

intercept a non-maneuvering target spacecraft, by using continuous, low-thrust propulsion. Both

(2017)
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spacecraft are released in a near-circular orbit with an altitude of about 800 km above the Earth,

which is a typical setting for remote sensing missions. Their initial orbital elements are reported in

Table I, and correspond to the relative position error

y(0) = [−21, 102, 71]T km,

where y(t) = r(t)− rr(t). The settling time for the rendezvous maneuver is defined as

t̄ : ∀t > t̄ ‖y(t)‖≤ 1 km,

where the relative distance of 1 km typically marks the transition from the rendezvous phase to the

close proximity phase [40]. It is required to keep the maximum input magnitude in the order of 1
mm/s2, for the given initial condition. This value is compatible with the characteristics of missions

equipped with low-thrust propulsion technologies [44, 45].

In order to meet the control specifications, the following choices have been made for the tuning

functions λ, by adopting a trial-and-error procedure:

λ1 = 10−4 · x21
λ2 = 10−8 · atan(104 · x2)
λ3 = 10−3 · x3
λ4 = 10−8 · atan(106 · (x4 − x∗4))

λ5 = 10−2

λ6 = 1.5 · 10−4 ·
∂V
∂x

H

10−9+

∣

∣

∣

∂V
∂x

H

∣

∣

∣

.

Notice that λ2, λ4 and λ6 are tuned as saturation functions, in order to limit the control effort,

without increasing too much the settling time.

The proposed solution is compared to a traditional control law based on feedback linearization

(see, e.g., [29]). In this approach, the nominal error dynamics are obtained from (40) with d = dr =
0, as follows

ÿ = r̈ − r̈ r = − µ

‖r‖3 r +
µ

‖rr‖3 r
r + uI . (41)

The control input vector is chosen as

uI =

(

µ

‖r‖3 r −
µ

‖rr‖3 r
r

)

−Kp y −Kv ẏ, (42)

whereKp > 0 andKv > 0 are diagonal gain matrices. By using (42) into (41), it can be verified that

this control law linearizes the nominal closed-loop system and makes the equilibrium point y = 0
asymptotically stable. The control gains of the three decoupled second order systems (41)-(42) have

been tuned so as to reduce as much as possible the magnitude of the control input (42), while

guaranteeing a settling time close to that of the proposed controller. This results in Kp = 10−6 · I
and Kv = 2 · 10−5 · I . The selected value of Kp is such that the natural frequency of system (41)-

(42) is 2π/T , with T given by (11).

Table I. Initial orbital elements of the chaser and the target

Orbital element Chaser Target

True longitude L(0) = 0.0175 rad Lr(0)= 0

Semi-parameter p(0) = 7158 km pr(0) = 7178 km

Eccentricity vector
eX(0) = 1.1 · 10−3

eY (0) = 0

erX(0) = 10−3

erY (0) = 0

Inclination vector
hX(0) = 0.313

hY (0) = 0

hrX(0) = 0.315

hrY (0) = 0

(2017)
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Figure 3. Relative position error magnitude obtained with the control schemes (36)-(38) (blue, dashed) and
(42) (red, solid).
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Figure 4. Magnitude of the control inputs uI(t) provided by (36)-(38) (top) and (42) (bottom).

System (40) has been numerically simulated with d = dr = 0 for a time interval of approximately

6 days (corresponding to 86 orbital revolutions), using the control schemes (36)-(38) and (42). The

magnitude ‖y(t)‖ of the relative position error, resulting from the simulation, is reported in Fig. 3.

Both controllers are able to keep the inter-satellite distance below 1 km, for all t > t̄, with t̄ = 5.5
days. In Fig. 4, it can be seen that the maximum magnitude of the control input (42) is about 70
times higher than that of the input uI corresponding to (36)-(38), which explains the two different

transient behaviours in Fig. 3. Notice that, due to the nonlinear contribution between brackets in

(42), it has not been possible to scale the amplitude of the control signal down to the desired level

(1 mm/s2), despite our best effort to tune the control gains Kp and Kv. In this respect, the proposed

design procedure is clearly more flexible, as expected.

The true longitude tracking error ψ̃1(t) obtained with the control scheme (36)-(38) is depicted

in Fig. 5. Such angle turns out to be very small even for large initial spacecraft separations. The

three-dimensional profile of the trajectory of the chaser relative to the target is shown in Fig. 6 for

the two controllers (note the different axis scale).

(2017)
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Figure 5. True longitude tracking error ψ̃1, obtained with the control scheme (36)-(38).
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Figure 6. Relative trajectory y(t) provided by the control laws (36)-(38) (left) and (42) (right), with the initial
condition y(0) (circled).

A qualitative assessment of the robustness of the control law (36)-(38) with respect to exogenous

disturbances and parametric uncertainties has been also carried out. To this aim, the disturbance

terms d and dr in (40) have been specified so as to model the effect of the J2-harmonic of the

Earth’s gravity field, which is the dominant environmental disturbance in the considered scenario.

Moreover, actuator scale factor and alignment errors have been included in the simulation model,

by replacing the control command u (see Fig. 2) with a corrupted input u of the form

u(t) = α

[

R(ǫ) 02×1

01×2 1

]

u(t), (43)

where α and ǫ denote the scale factor and alignment errors, respectively. Figure 7 depicts the closed-

loop system response obtained for different values of α ∈ [0.9, 1.1] and ǫ ∈ [−0.1, 0.1] rad (the

considered parametric intervals are in line with the typical uncertainties affecting the spacecraft

actuation mechanism). It can be observed that the tracking error asymptotically converges to zero,

for all parameter values in the specified range. This suggests an appreciable robustness of the design

with respect to both disturbances and parametric uncertainties.
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Figure 7. Relative position error magnitude obtained with the input u in (43), with α ∈ [0.9, 1.1] and
ǫ ∈ [−0.1, 0.1].

5. CONCLUSIONS

This paper has studied the rendezvous control problem for a formation of two spacecraft orbiting

about a central body. The problem is cast as that of tracking the modified equinoctial elements of

a target spacecraft moving along an unperturbed closed orbit. A class of globally asymptotically

stabilizing feedback control laws has been derived for this problem. They enable an actively

controlled chaser spacecraft to approach and eventually dock the target. The results of a numerical

case study demonstrate that the control system performance is adequate for practical implementation

with low-thrust actuators. A systematic method for exploiting the proposed controller class for

performance optimization is the subject of ongoing research. Robustness analysis with respect to

disturbances and parametric uncertainties is another topic deserving further investigation.
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