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Abstract

This paper presents a multi-robot simultaneous localization and map build-

ing (SLAM) algorithm, suitable for environments which can be represented in

terms of lines and segments. Linear features are described by adopting the re-

cently introduced M-Space representation, which provides a unified framework

for the parameterization of different kinds of features. The proposed solution to

the cooperative SLAM problem is split into three phases. Initially, each robot

solves the SLAM problem independently. When two robots meet, their local

maps are merged together using robot-to-robot relative range and bearing mea-

surements. Then, each robot starts over with the single-robot SLAM algorithm,

by exploiting the merged map.

The proposed map fusion technique is specifically tailored to the adopted

feature representation, and takes into account explicitly the uncertainty affecting

both the maps and the robot mutual measurements. Numerical simulations

and experiments with a team composed of two robots performing SLAM in a

real-world scenario, are presented to evaluate the effectiveness of the proposed

approach.
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1. Introduction

The self-localization of a mobile robot is widely recognized as one of the most

basic problem of autonomous navigation. While such a task can be performed

pretty well when the environment is a priori known, robot localization becomes

much harder when a map of the environment is not available beforehand. This

may be due to a lack of information on the environment the robot moves in, or

to the excessive cost of manually building a map on purpose. In these circum-

stances, the robot must at the same time build a map of the environment and

localize itself within it. This problem, known as Simultaneous Localization and

Map building (SLAM), has been extensively studied over the last two decades

(see [1–6] and references therein for a thorough review). The solutions to the

SLAM problem presented so far differ mainly for the environment description

adopted and for the estimation technique employed. In many applications of

interest, a mobile robot has to move in indoor environments, which can be well

described in terms of linear features. Typical examples are houses or offices,

where there is plenty of walls and furniture [7, 8]. When it comes to represent

lines and segments, several possibilities are available, each with its pros and

cons. Probably the most intuitive way to represent a segment is to specify the

coordinates of its endpoints. One drawback of such parameterization is that

more often than not the actual extrema of the segment are not really observed

in a single measurement, due to sensor limited field of view or occlusions (e.g.,

only a portion of a long wall is measured by a laser scan). In these circumstances

what can still be measured are the distance ρ and the angle α of the supporting

line of the segment. In fact, the ρ and α parameterization is indeed anther

possible representation of linear features for mapping purposes. The biggest

drawback of such a choice is the so called lever arm effect, meaning that the

parameter uncertainty increases with the distance from the origin of the refer-

ence frame. A possible solution is to resort to special line representations, like

the SP-Model [1] or the recently proposed M-Space representation [9], which

express the feature coordinates in different local reference frames. The M-Space
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representation provides a unified framework for describing different kinds of 2D

and 3D geometric features, thus being versatile enough to be adopted for SLAM

purposes in a wide range of environments and in presence of heterogeneous sen-

sors. One key feature of the M-Space representation is its ability to use only the

partial information contained in a measurement of a given element of the map.

This characteristic is especially useful for the early initialization of the estimate

of a feature which has been only partially observed.

When exploring large areas, the map building procedure can be more effec-

tive if tackled by a team of robots. Besides being able to cover a given area

faster than a single agent, a multi-robot system is more robust to failure and

often also less expensive when compared to a single complex vehicle. Another

crucial issue for a SLAM algorithm is being able to recognize places that have

been already visited (see, e.g., [10–12]). Since the difficulty of the loop closure

increases with the size of the environment, using a team of robots allow one to

break down a large area into smaller regions to be explored by each agent. In

light of these considerations, several multi-robot SLAM algorithms have been

proposed in recent years, adopting different estimation techniques, like Extended

Kalman Filters (EKF) [13, 14], information filters [15], particle filters [16], set-

membership estimators [17], or sparse optimization techniques [18].

Besides the aforementioned advantages, cooperative localization and map-

ping solutions present an additional challenge too. In fact, a key issue for the

effectiveness of multi-robot SLAM algorithms is the ability to merge in a com-

mon reference frame maps built by different robots in different frames. Such

a task, which is particularly difficult if no information is available on the ini-

tial robot poses, is crucial to preserve the quality of the map and fully exploit

the benefits of the multi-agent architecture. Wrong or inaccurate map merg-

ing can completely destroy the map consistency and eventually jeopardize the

correct behavior of the system. Hence, despite the heterogeneity of techniques

employed, most multi-robot SLAM algorithms have tackled this point. A fusion

algorithm for maps made up of point-wise landmarks has been presented in [19].

Under the assumption that the agents can perform range and bearing mutual
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measurements during a rendezvous, the frame transformation is derived from

geometrical arguments and a two step merging procedure has been proposed.

First, the map built by one robot is incorporated into the map of the other one,

according to the coordinate transformation relating the reference frames of the

two robots. Then, correspondences between landmarks present in both maps

are sought for, in order to improve the accuracy of the coordinate transforma-

tion. An algorithm for merging two occupancy grid maps has been proposed

in [20]. In this case a set of possible reference frame transformations are com-

puted by analyzing the cross-correlation of suitable spectra of the two maps.

Each transformation is then assigned a weight representing the confidence on

the corresponding merged map. In this way it is also possible to track multiple

hypotheses in case of ambiguous associations. While this approach does not

require robot rendezvous and mutual measurements, it can be applied only if

the two maps have significant overlap. Recently, a probabilistic map merging

procedure has been proposed in [21]. Analogously to what is done in [19], map

fusion is carried out in two steps. An initial map alignment is performed based

on range and bearing robot-to-robot measurements. Then the merged map is

updated according to duplicate features present in both original maps. The nov-

elty of this approach lies in the probabilistic method adopted for the merging

procedure, which is suitable for particle filter based SLAM algorithms. A map

merging algorithm for mixed topological/metric maps has been presented in [22].

A graph-like topological map is built, with vertices representing local occupancy

grid maps and edges describing relative positions of adjacent local maps. In this

framework, the map fusion between two robots boils down to adding an edge

that connects the two topological maps, and associating to it the estimation of

the relative robot pose. A similar approach is adopted in [23], where each robot

builds landmark-based local maps topologically connected through an adjacency

graph. In this framework, rendezvous between robots, feature correspondences

in different robot maps and absolute localization measurements give rise to a

cycle in the global graph which translates into constraints that allow the system

to refine the estimates of the transformation between the local reference frames.
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This work has been extended in [24] for dealing with heterogeneous teams of

aerial and ground robots equipped with monocular cameras. Several local 3D

maps containing visual landmarks and line segments are built, whereas a global

connectivity graph capture their relative relationships. Another visual SLAM

algorithm for a team of robots has been recently presented in [25]. In this case,

a Rao-Blackwellized particle filter is proposed to collaboratively build a global

map made of 3D visual landmarks detected by stereo cameras.

In this paper, a new multi-robot SLAM algorithm is presented, for line-based

environment descriptions. The proposed approach builds upon the M-Space rep-

resentation to describe linear features and adopts a map fusion scheme inspired

by the technique proposed in [19]. The multi-robot algorithm goes through three

stages. Initially, each robot runs an EKF-based single-robot SLAM algorithm

for independently building local maps until a rendezvous occurs. When two

robots meet, the local maps are merged by using the information coming from

mutual robot measurements and feature matching. Afterward, the agents start

over with the single-robot SLAM algorithm, taking advantage of the merged

map. The main contribution of the paper is to present a novel map fusion algo-

rithm tailored to environments described in terms of lines and segments. The

uncertainty of the resulting map is properly updated, and the covariance matri-

ces necessary to resume the single-robot SLAM when the M-Space representa-

tion is adopted are analytically computed. Results from numerical simulations

and experimental tests involving real robots are reported, to assess the viability

of the proposed approach in a real-world scenario. A preliminary version of this

work has been presented in [26].

The paper is organized as follows. In Section 2, the M-Space representation

of linear features is revisited. The single-robot SLAM algorithm, based on the

EKF and M-Space representation is outlined in Section 3. The main contribu-

tion of the paper is presented in Section 4, where the map fusion technique, as

well as the update of the resulting map uncertainty, are illustrated. In Section 5

the results of simulations and experimental tests with real robots are reported.

Finally, in Section 6 some conclusions are drawn and lines of future research are
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outlined.

Notation. The symbol Iq denotes the identity matrix of order q. The matrix

diag(a1, . . . , an) is the diagonal matrix having the scalars a1, . . . , an on its di-

agonal. Similarly, the matrix blkdiag(A1, . . . , An) is the block diagonal matrix

having matrices A1, . . . , An on its diagonal. Boldface symbols denote vectors.

The symbol x̂ denotes the estimate of the quantity x, and x̃ = x− x̂ is the cor-

responding estimation error. In the notation fxr, the left superscript f means

that the quantity x is expressed in the reference frame 〈Rf 〉, whereas the right

subscript r indicates which robot the quantity x refers to. Whenever found, the

subscript s denotes a quantity expressed in the M-Space.

2. M-Space representation of segments

Among the several possible representations, in this paper a line segment in

the plane is described in a reference frame 〈G〉 either by its endpoints coordinates

xf = [xA yA xB yB ]
T , (1)

or, alternatively, by the parameters

xp = [α, ρ, dA, dB ]
T . (2)

The parameter α ∈ (−π, π] is the angle between the x-axis of 〈G〉 and the normal

n to the segment passing through the origin, whereas ρ ≥ 0 is the distance of

the origin of 〈G〉 to the line. To define dA and dB , let us introduce a second

reference frame 〈S〉, whose origin is at the intersection between the segment

and the normal n, and whose x-axis lies on n pointing out from the origin of

〈G〉. Then, dA and dB are the coordinates (with proper sign) of the segment

endpoints A and B along the y-axis of 〈S〉 (see Figure 1).

As pointed out in the previous section, both parameterizations suffer from

some drawbacks: the segment endpoints are not always observable from a mea-

surement, whereas the ρ− α representation is prone to the lever-arm effect. A

possible solution, overcoming both problems, is provided by the measurement
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Figure 1: Two different segment parameterizations. In this case dA < 0 and dB > 0.

subspace representation (briefly, the M-Space representation). In this frame-

work, a local reference frame is attached to each feature, with respect to which

the feature parameters (or coordinates) are expressed. The M-Space is general

enough to allow for a uniform treatment of many different kinds of features, like

2D or 3D point-wise landmarks, segments, lines, planes. In the following, we

will focus on maps made up of 2D segments, referring the reader interested to

the M-Space representation of generic features to [9].

The M-Space coordinates of a segment are the parameters xp in (2), ex-

pressed in the reference frame of the corresponding feature. As a consequence,

coordinates xp relative to different features live in different reference frames.

An immediate benefit of the M-Space representation is that being each feature

described in a local reference frame, the effects of the lever-arm phenomenon

are mitigated. Intuitively, this happens because each segment is close to the

origin of the corresponding local reference frame. Another nice property of

the M-Space representation is that the features are parametrized in a way that

both their location and extent are fully specified, as it occurs when the seg-
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ment endpoints are used. However, until a segment is not completely observed,

the M-Space representation allows one to initialize the feature in a subspace

corresponding to the partial information provided by the robot sensors. As a

consequence, the dimension q of the M-Space coordinates xp can grow from a

minimum of 2 (when the robot first measures the line position and orientation)

up to 4 (when it has observed both segment endpoints). Similarly, whenever a

segment already included in the map is not entirely observed, i.e. only ρ and

α are measured, still this information can be exploited to correct the current

estimate of the feature.

The M-Space coordinates and feature space coordinates of a feature are

related by two projection matrices Bf (xf ) and B̃f (xf ). Let δxf denote a small

change in the feature coordinates corresponding to a small change in the M-

Space coordinates δxp. The relationships between δxp and δxf are

δxp = B(xf )δxf ,

δxf = B̃(xf )δxp.
(3)

Equations (3), relating small changes in the M-Space to small changes in the

feature space, can be applied to project estimate corrections from one space to

the other, as it will be shown in the next section. Notice that the projection

matrices B(xf ) and B̃(xf ) are a function of the value of the feature space

coordinates xf , and their dimension varies with the dimensions q of xp. In the

following treatment, for ease of notation we will always assume q = 4 (the case

q < 4 requiring straightforward modifications). In this case, B(xf ) and B̃(xf )

take on the form

B(xf ) =




cosα

L
√
2

sinα

L
√
2

− cosα

L
√
2

− sinα

L
√
2

cosα√
2

sinα√
2

cosα√
2

sinα√
2

− sinα cosα 0 0

0 0 − sinα cosα




,
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B̃(xf ) =




L cosα√
2

cosα√
2

− sinα 0

L sinα√
2

sinα√
2

cosα 0

−L cosα√
2

cosα√
2

0 − sinα

−L sinα√
2

sinα√
2

0 cosα




.

where L denotes the length of the segment.

3. Single-robot SLAM

In this section, first the single-robot SLAM problem will be cast as a state

estimation problem for an uncertain dynamic system. Then, an EKF-based

solution, suitable when an M-Space representation of linear features is adopted,

will be briefly reviewed.

Let us consider an autonomous robot navigating in a 2D environment, and

let xR = [xR yR θR]
T
be its pose, where [xR yR]

T
is the position and θR is the

orientation with respect to a global reference frame. The generic robot motion

model based on linear and angular velocity commands u(k) = [v(k) ω(k)]T is

denoted by

xR(k + 1) = f(xR(k),u(k), εu(k)), (4)

where εu is a white noise affecting the velocities, with E[εu(k)] = 0 and

E[εu(k)ε
T
u
(k)] = Q(k). Assume that the surrounding environment can be de-

scribed in terms of linear features, as usually happens in indoor environments

presenting walls, doors, or furniture. Then, a map of the environment can be

given in terms of n line segments, identified by the coordinates of their endpoints

xfi , i = 1, . . . , n, defined in (1), expressed in the global reference frame. Since

static features are considered, their location does not change with time, i.e.

xfi(k + 1) = xfi(k), i = 1, . . . , n. (5)

By stacking into the vector x both the robot pose and the segment endpoints

x(k) = [xT
R(k) x

T
f1
(k) . . . xT

fn
(k)]T , (6)
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Figure 2: Measurements mi.

equations (4) and (5) can be rewritten in compact form as

x(k + 1) = F (x(k),u(k), εu(k)). (7)

Notice that features are incrementally detected as the robot explores new regions

of the environment, and hence the dimension of the vector x ∈ R
3+4n grows with

time.

The robot is equipped with sensors able to take measurements of linear

features detected during the navigation. Let

mi(k) = [αi(k) ρi(k) dAi
(k) dBi

(k)]
T
+ εmi

(k), i = 1, . . . , n (8)

denote the measurement of the i-th line segment at time k, affected by noise

εmi
(k) (see Figure 2). It is assumed that the measurement noise can be modeled

as a white noise, with E[εmi
(k)] = 0 and E[εmi

(k) εT
mi

(k)] = Rmi
(k). Mea-

surements like those in (8) can be easily obtained in practice if the vehicle is

equipped with a laser rangefinder, returning pairs of range and bearing measure-

ments taken from planar scans of the environment. From the raw laser readings,

the measurements m can be extracted through segmentation and line fitting al-

gorithms. As a by-product of such extraction phase, also the covariance matrix

Rmi
(k) of the measurement noise can be estimated, given the accuracy of the

laser readings [8]. Notice that dAi
(k) and dBi

(k) are present in the measurement
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vector mi(k) only if the endpoints of the i-th identified segment are detected

(e.g., due to a corner). From geometrical considerations, the measurement mi

can be expressed as a function of the robot pose and the segment endpoints

mi(k) = h(xR(k),xfi(k)) + εmi
(k), i = 1, . . . , n. (9)

By grouping all the measurements into a single vector

m(k) = [mT
1 (k) . . . mT

n (k)]
T ,

the measurement equations (9) can be rewritten as

m(k) = H(x(k)) + εm(k) (10)

where εm = [εT
m1

. . . εT
mn

]T .

Within this framework, the SLAM problem boils down to estimating the

state vector x given the measurements m. More precisely, let x̂(0|0) be an

estimate of the initial robot pose and feature coordinates. Given the dynamic

model (7) and the measurement equation (10), find an estimate x̂(k|k) of the

robot pose and feature coordinates x(k) based on the measurements m collected

up to time k.

When adopting the M-Space representation, the SLAM problem can be tack-

led by introducing an auxiliary state vector xs, which includes the robot pose

xR in the global frame and the M-Space coordinates xpi
of each feature, defined

in (2)

xs =
[
xT
R xT

p1
. . . xT

pn

]T
. (11)

A standard EKF is run to compute at each time k an estimate x̂s(k|k) of (11),

and the covariance matrix

Pxs
(k|k) = E

[
x̃s(k|k) x̃

T
s (k|k)

]

of the corresponding estimation error x̃s. Then, the state correction based only

on the measurement taken at time k

δx̂s(k) = x̂s(k|k)− x̂s(k|k − 1) (12)

11



is used to update the estimate of the original state vector x̂(k|k) in the following

way. First, the previous estimate x̂(k − 1|k − 1) is propagated according to the

motion model (7), obtaining the predicted state

x̂(k|k − 1) = F (x̂(k − 1|k − 1),u(k − 1),0).

Then, x̂(k|k − 1) is corrected by projecting δx̂s(k) from the M-Space to the

feature space according to the relationship (3). Thus, from (3), (6) and (11)

one has

x̂(k|k) = x̂(k|k − 1) + Π δxs(k),

where Π = blkdiag
(
I3, B̃(x̂f1), . . . , B̃(x̂fn)

)
is built by using the B̃(xfi) ma-

trices in (3) evaluated at the current feature estimates x̂fi(k|k − 1).

Remark 1. The estimation scheme described so far can be efficiently imple-

mented without explicitly computing the nominal estimates of the auxiliary

vector xs. It can be shown that the correction term δx̂s in (12) can be ex-

pressed as a function of the current estimates in the feature space x̂, the current

measurements m and the covariance matrix Pxs
of the estimation error in the

M-Space. A detailed description of this procedure can be found in [9].

Summarizing, the single-robot SLAM algorithm produces an estimate x̂(k)

of the robot pose and the segment endpoints in the global frame, as well as the

covariance matrix Pxs
, that expresses robot uncertainty in the global frame and

feature uncertainty in the M-Space. Notice that if one is interested in expressing

the uncertainty of the map in the feature space, the matrix Pxs
can be projected

to the feature space by resorting to the relationship (3), as it will be shown in

Section 4.2.

3.1. Matching

A key issue for SLAM algorithms to be successful is the data association

mechanism. When a robot measures a feature, it must first decide whether the

measurements originate from a newly discovered item or they refer to a feature

already present in the map. In the latter case, a method for selecting which

12



feature matches the measurements taken from the sensors is needed. Several

matching techniques have been proposed in the literature, with different levels

of trade-off between effectiveness and complexity [27]. One of the most pop-

ular approach is the Nearest Neighbor (NN) algorithm, that associates to the

measured feature the map feature with the smallest Mahalanobis distance. In

this work, a modified NN algorithm, specifically tailored to linear features, has

been adopted [8]. First, three validation gates on the distance, orientation and

overlapping of the features are employed to determine beforehand the candidate

pairings. Then, the NN algorithm is run among all the feature associations that

have passed the validation gates.

Let mi be the i-th measurement taken by an agent (expressed in the robot

local reference frame), defined as in (8). Consider the estimate x̂fj of the j-th

feature present in the map, containing the endpoints of the estimated segment

in feature space. In order to associate a measurement to a feature, the Maha-

lanobis distance Mij is evaluated, between the actual measurement mi and the

predicted measurement m̂j from the j-th feature estimate x̂fj . The measure-

ment prediction can be easily computed from the current robot estimate x̂R

as

m̂j = h(x̂R, x̂fj ). (13)

If eij = mi − m̂j is the prediction error, then Mij takes on the form Mij =

eTij(ΛSijΛ
T )−1eij where Sij = E[eije

T
ij ] can be computed from the sensor noise

covariance Rmi
and the estimation error covariance Pxs

, by linearizing the

relationship (13). The matrix Λ = [Λα Λρ]
T , where Λα = [1 0 0 0]T and

Λρ = [0 1 0 0]T , removes from the computation of the error eij the segment

endpoints dA and dB possibly present in the measurement mi. Hence, the Ma-

halanobis distance Mij takes care only of the ρ and α parameters of the line.

On the contrary, the segment endpoints are used to compute the overlapping

rate τij between the extracted segment i and the one associated to the i-th

feature, normalized between 0 and 1. The latter quantity allows the matching

module to discriminate between different features lying on the same line (e.g.,
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two walls separated by a door). The features in the map which are candidate to

be associated to the given measurement are selected by evaluating the following

indicators:

• line orientation error: Mα,ij =
(ΛT

αeij)
2

ΛT
αSijΛα

;

• line distance error: Mρ,ij =
(ΛT

ρ eij)
2

ΛT
ρ SijΛρ

;

• overlapping rate: τij .

At this point, the data association mechanism can be summarized as follows.

Given a measurement mi, a feature x̂fj present in the map is a candidate to

the matching if and only if Mα,ij < Tα, Mρ,ij < Tρ and τij > Tτ , where the

thresholds Tα, Tρ and Tτ are tuning knobs of the algorithm. Then, among all

candidate features, the measurement is associated to the one with the smallest

Mahalanobis distance Mij . A measurement with zero candidate features is

considered taken with respect to a new feature. Hence a new item is inserted

into a tentative list of newly discovered features, waiting for to be promoted

into the state of the filter when deemed reliable enough.

4. Multi-robot SLAM

Suppose that there are two robots, R1 and R2, exploring an unknown area.

Initially, each agent runs a single-robot SLAM algorithm like that sketched in

Section 3. This way, the robots have maps of the environment in different

reference frames. When the robots meet, they exchange each other their lo-

cal maps to produce a single global map. In order to fuse maps created by

different robots, whose initial poses are unknown, the transformation between

their reference frames needs to be determined. This can be efficiently done if

robot-to-robot mutual measurements are available.

The overall map fusion procedure can be summarized in three steps. First,

the two maps are aligned according to the estimated roto-translation relating

the robot reference frames. Then, the covariance matrices of the estimation
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Figure 3: Robot-to-robot measurements.

error of the maps are updated according to the alignment transformation. Fi-

nally, duplicate features, due to partial overlapping between the local maps,

are sought. In such a case, this information is used to impose constraints that

improve the accuracy of the resulting map. The map fusion procedure is de-

scribed for a team composed of two robots, but can be applied to larger teams

by repeating the procedure for each pair of robots.

4.1. Map alignment

At the rendezvous, let 1x1 ∈ R
m1 and 2x2 ∈ R

m2 , where m1 = 3 + 4n1 and

m2 = 3+ 4n2, be the estimate of the state vector x, built by robot R1 and R2,

respectively. The integers n1 and n2 are the number of features present in each

map.

The map alignment problem consists in finding the roto-translation between

the reference frames 〈R1〉 and 〈R2〉, in order to express the map estimated by

a robot in the frame of the other one. Without loss of generality, suppose to

be interested in estimating the vector 1x2, i.e. the map of robot R2 expressed

in the frame 〈R1〉. This problem can be tackled by processing robot-to-robot

measurements. When the agents are within sensing distance, robot i measures

the range and the bearing to the vehicle j (see Figure 3):

iz̄j =


 η

iφj


+


 εiη

εiφj


 i, j = 1, 2, i 6= j,

where η is the distance between the two robots, iφj is the angle under which

robot Ri sees robot Rj . Measurement errors εiη and εiφj
are modeled as zero-

mean, white noise. A more accurate estimate of the distance between the two

15



Quantity M-Space Feature space

Segment coordinates xp xf

Single-robot state vector xs = [xT
R x

T
p1

. . . x
T
pn

]T x = [xT
R x

T
f1

. . . x
T
fn

]T

Multi-robot state vector Xs = [1xT
s1

2
x
T
s2
]T X = [1xT

1

2
x
T
2
]T

Estimation error covariance Ps = E[X̃sX̃
T
s ] P = E[X̃X̃

T ]

Aligned state vector X
a
s = [1xT

s1
1
x
T
s2
]T X

a = [1xT
1

1
x
T
2
]T

Estimation error covariance Pa
s = E[X̃a

s (X̃
a
s )

T ] Pa = E[X̃a(X̃a)T ]

Table 1: Correspondence of symbols in M-Space and in feature space.

robots can be computed as the weighted average of the two distance measure-

ments, thus obtaining the combined measurement vector

z̄ =




η

1φ2

2φ1


+




εη

ε1φ2

ε2φ1


 = z+ εz,

where z denotes the actual distance and relative bearings, and εz is a white

measurement noise with covariance matrix

Rz = E[εz εz
T ] = diag(σ2

η, σ
2
1φ2

, σ2
2φ1

). (14)

Geometrical considerations on the distance and angles η, 1φ2,
2φ1 allow one

to compute the exact roto-translation t between the reference frames 〈R1〉 and

〈R2〉 (see [19] for details):

1x2 = t(1x1,
2x2, z). (15)

Since the arguments of the function t(·) are not known exactly, the estimate 1x̂2

is computed by replacing them with the corresponding estimates:

1x̂2 = t(1x̂1,
2x̂2, z̄). (16)

Equation (16) is a compact notation describing the overall map alignment pro-

cedure. Basically, it means that the map of robot R2 in the reference frame 〈R1〉

is obtained by roto-translating all the features xfi present in the map according

to t(·).
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4.2. Updating map uncertainty

At the end of the map alignement procedure, each robot has a map of the

overall environment explored by the two robots, in its own reference frame.

However, in order for each robot to start over the navigation by running the

single-robot SLAM algorithm outlined in Section 3, it is necessary to update

the uncertainty associated to the aligned map. This must be done by taking

into account the fact that the feature uncertainties computed so far are related

to different reference frames. Hence, the covariance matrix of the aligned state

vector must be modified according to the transformation performed in the map

alignment stage. In the following, the map uncertainty update is described in

detail.

Let us stack together the two M-Space state vectors as Xs = [1xT
s1

2xT
s2
]T

and let

Ps = E[X̃sX̃
T
s ] = blkdiag(Pxs1

, Pxs2
) (17)

be the covariance matrix of the estimation error (see Table 1 for a summary of

symbols used in this Section). Notice that Ps refers to the estimation errors of

the two maps before the fusion, hence expressed in two different reference frames.

In order to properly update the uncertainty of the merged map, the covariance

matrix of the filter state after the map alignment has to be computed. Again,

without loss of generality, let us consider the map merged by robot R1. Define

the M-Space aligned state vector Xa
s = [1xT

s1
1xT

s2
]T , and let

P a
s = E[X̃a

s(X̃
a
s)

T ] (18)

be the covariance matrix of the corresponding estimation error X̃a
s . The ob-

jective is to show how the matrix P a
s can be computed from the map transfor-

mation t(·) in (15) and the covariance matrix Ps in equation (17). Since the

roto-translation t(·) relates quantities expressed in the feature space, the map

uncertainty update will be performed in the same space. To this purpose, let
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us introduce two auxiliary covariance matrices

P = E[X̃X̃T ], (19)

P a = E[X̃a(X̃a)T ], (20)

where X̃ is the estimation error of vector X = [1xT
1

2xT
2 ]

T , and X̃a is the

estimation error of vector Xa = [1xT
1

1xT
2 ]

T , both expressed in feature space.

Matrices P and P a represent the feature space counterpart of matrices (17) and

(18), respectively. The covariance matrix update can be broken down into three

steps:

1. project the covariance matrix Ps in the M-Space to the covariance matrix

P in the feature space ;

2. update the covariance matrix P in the feature space according to the map

alignment, thus obtaining P a;

3. project the covariance matrix P a back to its counterpart P a
s in the M-

Space.

The first task can be accomplished by resorting to the projection equa-

tions (3), which relate the estimation error in the M-Space X̃s and the estima-

tion error in the feature space X̃. In fact, let 1xfi,1 be a feature in the map of

robot R1 expressed in the frame 〈R1〉, and let 2xfj ,2 be a feature in the map of

R2 expressed in 〈R2〉. The estimation errors can be projected from the M-Space

to the feature space according to (3) as

1x̃fi,1 = B̃(1x̂fi,1)
1x̃pi,1, (21)

2x̃fj ,2 = B̃(2x̂fj ,2)
2x̃pj ,2. (22)

By stacking all the features, equations (21)-(22) can be rewritten as

X̃ = D̃X̃s, (23)

where D̃ is a block diagonal matrix, defined as

D̃ = blkdiag(1D̃1,
2D̃2),

1D̃1 = blkdiag(I3, B̃(1x̂f1,1), . . . , B̃(1x̂fn1
,1)),

2D̃2 = blkdiag(I3, B̃(2x̂f1,2), . . . , B̃(2x̂fn2
,2)).
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From (23) and the definitions (17) and (19), it follows that the feature space

covariance matrix P corresponding to the M-Space covariance matrix Ps is given

by

P = D̃PsD̃
T .

The second step consists in computing the covariance matrix P a of the esti-

mation error of the aligned maps, in the feature space. By recalling the definition

of the aligned state vector

Xa =



1x1

1x2


 =




1x1

t(1x1,
2x2, z)


 ,

the estimation error X̃a can be derived as a function of the estimation error X̃.

By linearizing equation (15), one gets

X̃a =


Im1

0m1×m2

T1 T2


 X̃+


0m1×3

Γ2


 εz, (24)

where the matrices T1, T2 and Γ2 are the Jacobians of the transformation t(·)

with respect to 1x1,
2x2 and z, respectively, computed at the estimates 1x̂1,

2x̂2 and at the measurement z̄. The interested reader is referred to [28] for the

analytical expression of matrices T1, T2 and Γ2. From (19), (20) and (24), the

covariance of the aligned augmented vector is given by

P a = TPTT + ΓRzΓ
T , (25)

where

T =


Im1

0m1×m2

T1 T2


 , Γ =


0m1×3

Γ2


 ,

and the matrix Rz is defined in (14).

The third step can be tackled similarly to what has been done in the first

step. By exploiting again equation (3), the estimation error of the aligned vector

in the M-Space can be written as

X̃a
s = DX̃a, (26)
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where

D = blkdiag(1D1,
1D2),

1D1 = blkdiag(I3, B(1x̂f1,1), . . . , B(1x̂fn1
,1)),

1D2 = blkdiag(I3, B(1x̂f1,2), . . . , B(1x̂fn2
,2)).

and 1x̂fi,2 have been obtained via (16). Finally, from (18) and (26) the covari-

ance matrix P a
s can be computed as

P a
s = DP aDT ,

where P a is given by (25). The overall covariance matrix update procedure is

summarized in Figure 4.

Common reference frame

Different reference frames

M-Space Feature space

Ps P = D̃PsD̃
T

Pa = TPTT + ΓRzΓTPa
s = DPaDT

1

2

3

Figure 4: Basic steps of the overall map uncertainty update procedure.

4.3. Map fusion

The matching algorithm described in Section 3.1 comes in handy for the

map fusion too. As a matter of fact, it is very likely that the areas covered by

the two robots before rendezvous share common regions (e.g., the neighborhood

of the meeting point). This implies that a number of features will appear as

duplicates in the new vectorXa after the map alignment. In this case, redundant

features must be removed from the map, and the state of the filter, as well

as the corresponding covariance matrix, properly reduced. In order to detect

duplicate features, for each x̂fi,1 coming from the map of robot R1, the feature

x̂fj ,2 coming from the map of R2 with smallest Mahalanobis distance is searched
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for. If the two segments are close enough, and overlap significantly, then they

are considered the same feature.

It is important to notice that removing duplicate features can actually im-

prove the alignment and the accuracy of the final map. To illustrate how this

can be done, suppose that in the map merged by robot R1 the features x̂fi,1

and x̂fj ,2 match. The one imported in the map during the fusion, i.e. x̂fj ,2, is

used as a pseudo-measurement of the corresponding feature x̂fi,1. The estimate

x̂fj ,2 is treated like a measurement of the state component x̂fi,1. In order to

fuse the information contained in both estimates, a correction step of the EKF

is performed by processing the pseudo-measurement x̂fj ,2. Finally, the feature

x̂fj ,2 is removed from the vector Xa. This procedure is repeated for all matching

features between the two aligned maps. It is interesting to note that processing

the pseudo-measurement has a twofold effect. Clearly, the uncertainty of the

estimate resulting from the fusion of x̂fi,1 and x̂fj ,2 is smaller than the uncer-

tainty of both original estimates. Less obvious is the improvement of the map

alignment that is observed after the EKF correction step. Even just few features

present in both maps before the rendezvous can significantly enhance the map

registration and reduce the overall uncertainty of the final map. This is due to

the correlation existing among the feature estimates in both maps before the

fusion, and it is a well-known phenomenon occurring in the SLAM problem [29].

As a result, updating the estimate of a duplicate feature affects the estimates

of the entire imported map, which undergoes a sort of rigid roto-translation.

Analogously, the uncertainty reduction of the fused feature estimates results

in an improvement of the accuracy of the overall map. An example of such a

behavior is illustrated in the next section (see Figure 6).

5. Results

The multi-robot SLAM algorithm has been extensively tested both in sim-

ulations and in real-world experiments. The former allow one to quantify the

performance of the estimation algorithm, in terms of map accuracy, robot lo-
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calization and consistency of the estimates. The latter are used to assess the

viability of the proposed approach in presence of a number of uncertainty sources

and non modeled phenomena.

5.1. Simulations

Initially, the proposed technique has been tested in a simulated scenario,

with the aid of a custom MATLAB simulator developed on purpose. Robots

are modeled as unicycles, and they are supposed to be equipped with a laser

rangefinder. In this case, the robot motion model (4) takes on the form

xR(k + 1) = xR(k) + ∆T (v(k) + ǫv(k)) cos(θR(k)), (27)

yR(k + 1) = yR(k) + ∆T (v(k) + ǫv(k)) sin(θR(k)), (28)

θR(k + 1) = θR(k) + ∆T (ω(k) + ǫω(k)), (29)

where ∆T is the sampling time and ǫv(k) and ǫω(k) model the noise affecting the

linear and angular speed. Raw laser data, consisting of range and bearing mea-

surements taken from planar scans of the robot surroundings, are synthetically

generated by a ray tracing algorithm applied to a CAD map of the environ-

ment. The laser field of view is limited to 180◦, with an angular resolution of

1◦ and a maximum measurable distance of 8 m. The simulations are carried

out in a simplified map resembling the “S. Niccolò” building (see gray thin line

in Figure 5), which hosts the Department of Information Engineering of the

University of Siena (about 3000 m2). All the noise covariances have been tuned

according to the mobile robot Pioneer 3AT and its sensory equipment. The

covariance matrix Q of the robot motion noise is diagonal, and the standard

deviations of the velocity errors are set to be proportional to the absolute value

of the speed, i.e. Q(k) = diag(σ2
v(k), σ

2
ω(k)), where

σv(k) = 0.03|v(k)| (m/s),

σω(k) = 0.05|ω(k)|+ 0.0017 (rad/s).

The covariance matrix of the measurement noise associated to each raw range

and bearing laser reading is Rl = diag
(
σ2
r , σ2

b

)
, where σr = 0.003 (m) and
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σb = 0.003 (rad). The measurements m(k) in (8) are extracted from the raw

laser data, together with the associated error covariance matrix Rm(k), through

a segmentation procedure [8]. In order to determine whether a measurement

m(k) refers to a line already present in the map or it is a newly detected feature,

the data-association algorithm described in Section 3.1 is employed. Moreover,

to avoid including spurious features in the map, new lines are first inserted

in a tentative list until they are deemed reliable enough. The entries of the

robot-to-robot measurement noise covariance matrix Rz in (14), are set to ση =

0.02 (m), σ1φ2
= 0.07 (rad) and σ2φ1

= 0.07 (rad). Notice that the robot-to-

robot observations are much less accurate than the laser raw readings, as it

actually occurs in real-world experiments.

Figures 5-7 report the results of a typical run. The robots first explore the

area around two different courtyards (named A and B in Figure 5), and then

meet to fuse the two maps somewhere in the middle between the two courtyards.

Then, the experiment goes on with each robot exploring the area covered before

by the other robot. The information gained during the map fusion allows each

robot to stay localized quite well along the entire path.

The overall map fusion procedure is summarized in Figure 6. Figure 6(a)

shows the map of robot R1 (bottom, blue) and that of robot R2 transformed

in the frame 〈R1〉 (top, red) at the rendezvous. Notice that the imported map

is misaligned due to the uncertainty affecting the robot-to-robot measurements.

This reflects in large confidence ellipses of the segment endpoints present in the

map of R2, extracted from matrix P a in (20). Common features present in both

maps before the fusion, and corresponding to areas explored by both agents,

may result in duplicate features in the merged map (see segments between the

two courtyards in Figure 6). As described in Section 4.3, possible duplicate

features that are detected in the merged map after the alignment can be used

as constraints to improve the map fusion. The resulting map after removing

duplicate features is shown in Figure 6(b). Notice how the two courtyards appear

now more aligned (as they really are), and the uncertainty of the whole map is

significantly reduced as shown by the smaller size of the confidence ellipses. In
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Figure 5: Simulation of the multi-robot SLAM algorithm: CAD map of the environment (thin

gray line), path traveled by robot R1 (true: dash-dotted; estimated: solid), final map built by

R1 at the end of the simulation (blue segments), 99% confidence ellipses of the the identified

segment endpoints (pink ellipses).

this regard, it is worth remarking that the estimates of the features present only

in the imported map (in this case, the features of the map of robot R2) are still

affected by larger uncertainty, due to the noisy robot mutual measurements. As

a consequence, the merged map will be made up of estimates whose average

uncertainty can be larger than that of the original single robot map. In a sense,

this is the price to pay for acquiring information about unvisited regions of the

environment, and hence to shorten the exploration completion time. The x, y

and θ localization errors of robot R1 are shown in Figure 7, along with the 3σ
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Figure 6: Incorporating the map built by robot R2 (red) into the map of robot R1 (blue): (a)

the resulting map after the alignment procedure (Section 4.1- 4.2) and (b) the merged map

after removing duplicate features (Section 4.3).
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Figure 7: The robots x̃R, ỹR and θ̃R localization errors, along with the correspondent 3σ

confidence intervals (robot R1).
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confidence intervals. It can be observed that most of the times the estimates

are consistent.

A campaign of simulations has been carried out to evaluate the performance

of the proposed multi-robot SLAM algorithm. The environment is the same de-

picted in Figure 5. In Tables 2-3 the results of 100 simulation runs are reported.

Columns S1 and S2 refer to single-robot SLAM performed by robot R1 and R2,

respectively. Columns M1 and M2 correspond to multi-robot SLAM by R1 and

R2, respectively. Columns MH1 and MH2 in Table 3 refer to the map available

to robot R1 and R2 at half time of the experiment (after the rendezvous and

map fusion). The tables report the average absolute errors of the robot and

feature estimates.

Robot pose errors

S1 S2 M1 M2

Position error (m) 0.24 0.19 0.24 0.23

Orientation error (deg) 0.50 0.37 0.50 0.45

Table 2: Robot pose estimation error: average value over 100 simulation runs.

Map errors

S1 S2 M1 M2 MH1 MH2

Line parameter α error (deg) 0.48 0.36 0.45 0.43 0.42 0.38

Line parameter ρ error (m) 0.09 0.07 0.11 0.09 0.10 0.08

Endpoint error (m) 0.25 0.17 0.25 0.22 0.25 0.19

Number of features 182 183 205 201 178 179

Number of endpoints 84 92 131 122 121 121

Table 3: Map estimation error and number of features: average value over 100 simulation

runs.

It can be observed that the estimation errors in the single- and multi-robot

case are comparable, the robot pose estimates being slightly better in the single-

robot case. In particular, the map cooperatively built by the multi-robot SLAM

approach shows at half time of the experiments the same level of accuracy of

the map provided by the single-robot SLAM at the end of the experiment.

This confirms the viability of the proposed multi-robot approach. Notice that
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the absolute values of the errors are significantly small if compared to the size

and the complexity of the environment. Table 3 also shows that the multi-robot

approach is able to detect a larger number of features (and in particular a larger

number of segment endpoints), which results in a more detailed map, without

worsening the average accuracy of the map itself.

The results shown in the previous tables refer to experiments in which the

number of duplicate features is usually very small and the estimated map is in

good agreement with the true map of the environment. This is due to the fact

that no incorrect line feature matching has occurred, both in the single-robot

and in the multi-robot case. However, in the simulation campaign several odd

runs have been experienced, showing a much larger map estimation error in

the single-robot SLAM. It has been checked that this behavior is due to wrong

feature associations, which eventually lead to large map errors. An example is

shown in Figure 8(a), where the remarkable misalignment in the map produced

by robot R1 is due to the fact that a newly detected feature has been wrongly

associated to a different feature already present in the map. This does not

occur in the multi-robot case (see Figure 8(b)) because the same feature had

been already detected by robot R2 before the rendezvous and hence has been

inherited by robot R1 during the map fusion. It is well known that correct data

association is crucial for a successful map construction in feature-based SLAM.

In this respect, one may claim that using multiple robots helps the matching

mechanism to avoid wrong associations, thus preserving a good quality of the

overall map.

5.2. Experiments

A set of experiments with real robots has also been performed, to validate

the multi-robot SLAM algorithm in a real-world setup. To this purpose, two mo-

bile robots Pioneer 3AT equipped with a laser rangefinder have been used [30].

All the experiments have been carried out in the second floor of the S. Niccolo’

building, whose simplified CAD map is shown in Figure 5. The robot motion

model adopted in the EKF is given by equations (27)-(29), and all the param-

27



−40

−30

−20

−10

0

10

20

30

40

−20 −10 0 10 20

−40

−30

−20

−10

0

10

20

30

40

−20 −10 0 10 20

(a) (b)

Figure 8: Effect of incorrect feature matching: (a) single-robot map, (b) multi-robot map.

eters of the filter are set to the same value used in the simulations described

before. Also the path followed by each vehicle is similar to that chosen for the

simulations, i.e. each robot explores a different courtyard and then merges its

map with that of the other agent in proximity of the middle of the building.

Figure 9 shows a comparison of the multi-robot algorithm with respect to the

single-robot case, in terms of quality of the final map built. Specifically, the map

depicted in Figure 9(a) results from the single-robot SLAM performed by robot

R1, whereas in Figure 9(b) the final map yielded by the multi-robot SLAM al-

gorithm is shown. Although a detailed quantitative comparison is not possible

since the ground truth of the robots and an accurate map of the building are not

available, a look at Figure 9 suggests that the multi-robot algorithm is actually

able to provide an improvement to the built map, also in real environments and

with real robots. In fact, in spite of a number of uncertainty sources present in

reality and often neglected in simulations, the employment of two coordinated
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robots results in a more reliable map, as is testified by the better alignment of

the two courtyards. The experimental results obtained are in good agreement

with the simulations previously performed. In the multi-vehicle case, the aver-

age area of the 99% confidence ellipses of the estimates of the segment endpoints

is smaller than 5 cm2. At the end of the experiment, the uncertainty affecting

the estimate of the robot pose is smaller than 10 cm and 0.5 deg for the x, y

and θ coordinates, respectively.

Besides the advantage provided by the multi-robot SLAM algorithm of being

able to build a map of the environment much faster than its single-robot coun-

terpart, an additional benefit has been observed during the tests. As is well

known, closing large loops is a challenging task when it comes to SLAM. As

matter of fact, in several experiments the single-robot SLAM algorithm proved

to be unable to close the largest loop around the two courtyards, a rectangu-

lar path about 200 m long. In this respect, the multi-robot SLAM technique

can benefit from the information on unexplored areas shared during the map

fusion stage. When the two robots start exploring different courtyards and then

merge their maps at rendezvous, the map fusion has the effect of “shortening

the length of the loop”, since the imported map conveys information about the

remaining part of the loop. This behavior observed in the experiments is actu-

ally in agreement with what has been experienced in simulation runs like the

one depicted in Figure 8.

5.3. Statistics of repeated experiments

A multi-robot experiment like that described before has been repeated 10

times to extract some statistics on the performance in a real-world setup. Both

the robot localization capability and the map accuracy have been taken into

account. Concerning the robot localization, the standard deviation of the esti-

mates of the robot pose have been computed, averaged over the whole path and

over all the 10 runs. Concerning the map, the following quantities have been

computed: the standard deviation of the estimates of the line parameters α and

ρ (see Figure 1); the area of the 3σ confidence ellipses of the estimates of the
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Figure 9: Final map at the end of an experiment in the S. Niccolò building: (a) single-robot

SLAM, (b) multi-robot SLAM.

segment endpoints; the number of features present in the map. All the quanti-

ties have been averaged over all the features present in the final map and over

all the 10 runs. The results are summarized in Tables 4 and 5. There, for each

parameter two different scenarios are considered: single-robot SLAM (columns

S1 and S2 corresponding to robot R1 and R2, respectively), and multi-robot

SLAM (columns M1 and M2 corresponding to robot R1 and R2, respectively).

Column S and M reports the average values for the single-robot case and the

multi-robot case, respectively.

Robot pose uncertainty

S1 S2 M1 M2 S M

xR standard deviation (m) 0.20 0.13 0.22 0.18 0.17 0.20

yR standard deviation (m) 0.18 0.16 0.20 0.18 0.17 0.19

θR standard deviation (deg) 0.55 0.51 0.70 0.64 0.53 0.67

Table 4: Robot pose uncertainty: sample statistics from real experiments (10 runs).

30



Map uncertainty

S1 S2 M1 M2 S M

Line parameter α STD: σα (deg) 0.54 0.52 0.53 0.51 0.53 0.52

Line parameter ρ STD: σρ (m) 0.29 0.24 0.28 0.25 0.27 0.27

Endpoint 3σ confidence ellipses (cm2) 4.31 2.84 3.32 5.28 3.58 4.30

Average number of features 139 132 171 178 136 174

Table 5: Map uncertainty: sample statistics from real experiments (10 runs).

By inspecting the table entries, a rough comparison between the single-robot

and the multi-robot SLAM algorithm can be made. As far as the robot local-

ization is concerned (Table 4), the two algorithms seem to perform basically the

same, with the single-robot being slightly better. Again, this is in good agree-

ment with the simulation campaign reported in Section 5.1. More interesting

is the comparison on the map building process. The expected quality of the

map in both cases seems to be very similar (compare the last two columns of

Table 5), with a small increment of the confidence ellipses in the multi-robot

case. Nonetheless, in light of the considerations made in Sections 5.1 and 5.2,

this means that the many advantages brought in by the multi-robot framework

are paid at little or almost no cost. Despite the absence of information on the

relative initial robot poses, the map fusion technique based on robot mutual

measurements is able to effectively share the whole information available at the

time of rendezvous among the two robots. The effectiveness of the map fusion

is also confirmed by the number of features present in the final map (fourth row

of Table 5). The increase in the multi-robot scenario (174 vs. 136) is due to the

fact that in general, at the end of an experiment, the total area covered with

two robots is larger than that explored with a single one. At the same time, the

number of features in the multi-robot case is small enough to conclude that the

map imported at the rendezvous is correctly exploited when the robot reach the

corresponding region of the environment, i.e. the region is recognized as already

visited and no redundant features are inserted in the map.
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6. Conclusions and future work

A multi-robot SLAM algorithm for linear features has been presented. The

proposed solution takes advantage of the M-Space framework for efficiently

parametrizing lines and segments, and exploits mutual robot measurements to

merge local maps during a rendezvous. Among the benefits of the adopted

representation, there is the possibility to early initialize feature estimates and

to exploit measurements of partially observed features. The map merging tech-

nique, which does not require any a priori knowledge on the initial relative robot

pose, has been suitably arranged to fit the specific needs of the chosen feature

representation. In particular, the uncertainty of the merged map has been an-

alytically computed in order to be used by the single-robot SLAM algorithm

later on. Simulations and experimental tests have shown that the proposed

approach enjoys the speed and robustness characteristics typical of multi-robot

architectures, while at the same time preserving the quality of the final map.

Several aspects are currently under investigation. To fully exploit the versa-

tility of the M-Space representation paradigm, the map description is going to

be enriched by including new kind of features, like corners or poles. Simulations

and experimental tests involving larger teams of robots are planned to evaluate

the behavior of the map merging scheme after multiple map fusions. In this re-

spect, an open issue is how to avoid multiple processing of the same information,

due to repeated map fusions between the same robots, which clearly affects the

consistency of the estimates. Finally, more sophisticated data association algo-

rithms, like the joint compatibility test, could bring in a significant improvement

of the merged map quality by identifying a larger number of duplicate features.
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[24] T. Vidal-Calleja, C. Berger, J. Solà, S. Lacroix, Large scale multiple robot

visual mapping with heterogeneous landmarks in semi-structured terrain,

Robotics and Autonomous Systems 59 (9) (2011) 654–674.
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