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In this paper, a new parametrization of the relative motion between two satellites
orbiting a central body is presented. The parametrization § based on the nodal
elements: a set of angles describing the orbit geometry wittespect to the relative
line of nodes. These are combined with classical orbital eleents to yield a nonsin-
gular relative motion description. The exact nonlinear, peturbed dynamic model
resulting from the new parametrization is established. Theroposed parameter set
captures the fundamental Keplerian invariants, while retaning a simple relation-
ship with local orbital coordinates. An angles-only relatve navigation filter and a
collision avoidance scheme are devised by exploiting thefeatures. The navigation
solution is validated on a case study of an asteroid flyby migm. It is shown that
a collision can be detected early on in the estimation proceswhich allows one to

issue a timely evasive maneuver.

. Introduction

Relative motion modeling has been widely investigatedesthe early space eré43]. Nowadays
it is receiving renewed attention, due to its pivotal roleaimumber of emerging multi-satellite
applications. Examples include the Mars Sample Retdjrafd the Proba-35 missions, as
well as comet/asteroid rendezvous missions like Roséfitélfyabusa 27] and OSIRIS-REX§].

Broadly speaking, existing modeling approaches can bsifilesd according to the state represen-
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tation they use: relative inertial position and velocitycél relative position and velocity; relative
orbital elements (the reader is referred9ol1[0] for a comprehensive overview). These parameter-
izations lead to different dynamic models. Each has its @idgges and limitations, that must be
carefully evaluated against the specific application nesments. For instance, in relative naviga-
tion it is desirable to suitably trade-off the complexitytbé dynamic model and that of the output
mapping, while for control purposes simple dynamic modetsgeenerally more convenient, see,
e.g., [L1-14].

Orbital element errors (OEE), either orbital element ddfeces (OED 15, 16]) or relative
orbital elements (ROEL[/-19]), offer a clear description of the orbit geometry through funda-
mental Keplerian invariants. Taking advantage of thisuegtanalytical solutions for the relative
motion problem have been developed ip,[16, 20]. References7, 18] present impulsive ma-
neuvering strategies able to minimize collision risk foasgcraft in close formation. Feedback
solutions to the continuous-thrust orbital transfer amatlezvous control problems have been pro-
posed in P1-24]. State estimation with ROE has been investigated46]. In most of these
works, the relative motion is linearized about a circulaanrelliptical reference orbit.

In spite of their advantages, it has been noticed that OE&npatrizations provide an indirect
representation of the relative motion probledd][ Specifically, their definition relies on the basic
understanding that both the reference and the actual toaijes are expressed in an inertial coordi-
nate system. This leads to a non-minimal description ofé¢lative motion geometry. Indeed, one
can show that a minimal parametrization of the relativerdagon of two orbits requires to adopt
a satellite-based reference system which is, in genema;tiarying p8, Sec. 1.4]. Very few meth-
ods have been proposed in the literature to address this, isdlile retaining the key geometrical
properties of OEE. Ing7], a set of epicyclic elements is derived by exploiting loaddital coordi-
nates. The approach is valid for small deviations aboutaular orbit. In 9] and [30, Sec. 7.2],

a combination of Euler parameters and local translaticiadéés is used to tackle the full nonlinear
problem. In the resulting parametrization, informationsmme of the Keplerian invariants is lost.

In this paper, the relative motion between two satellitesrbitrary elliptical orbits is described

by introducing a new set of relative states. These are adairom a suitable combination of
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the orbit shape parameters (eccentricity, semi-axis)heficlination angle between the orbital
planes, and of four angles describing the satellite inateadus position and periapsis location
with respect to the relative line of nodes, which we calldal elements Such an element set
allows one to remove redundant orbital parameters from tbdetimg problem and provides a
straightforward characterization of intersecting orbit$e resulting parametrization overcomes
the singularity of the relative elements described2d [ for circular and coplanar orbits. With re-
spect to the quaternion-based method3id|,[the proposed approach leads to a lower-dimensional
dynamic model. Moreover, it retains a direct relationshifhvooth the Keplerian invariants and
local translational states.

A collision detection technique and an angles-only retatigvigation scheme are devised by
exploiting these features. The collision detection proble tackled by suitably extending the
concept of passive safety introduced ir][to the case of elliptical orbits. An extended Kalman
filter (EKF) processing azimuth, elevation, and angulae sreasurements is employed for state
estimation (see, e.g.31, 32]). The filter design is streamlined by the availability of antpact
mapping between the new parameter set and the measuredsoutpu

The proposed techniques are validated on a case studyadspirthe Rosetta flyby of asteroid
Lutetia. The results of numerical simulations show thatEkd- is able to estimate the relative
motion with good accuracy. Moreover, it is shown that thevinfation provided by the filter
allows one to detect a potential collision well in advancen @ptimal single-impulse collision
avoidance maneuver based on this method is described.

The rest of the paper is organized as follows. Sedtiantroduces the proposed parametrization
and illustrates its main geometrical features. In Sectibnthe parameter dynamics are derived.
The collision detection and EKF schemes are presented im8etv/ andV, respectively. They
are validated on the considered flyby scenario in SectiorThe main findings of this work are

summarized in Sectio¥ill .
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[I. Relative Motion Description

In this section, some preliminary definitions are given dreriew parametrization of the satellite

relative motion is presented.

A. Problem Setting

Let us denote the central (attracting) body aspghenary, and refer to two satellites orbiting the
primary as satellitg, ] = 1,2. We consider a primary-centered inertial (PCl), a sa¢ebased
perifocal (PQW), and a radial-transverse-normal (RTNjnea By convention, the fundamental
plane of the PCI frame is taken coincident with the equaltptane of the primary. The PCI frame
axes are denoted b, Y, andZ,. The PQW frame of satellite(denoted by PQW is a coordinate
system centered at the primary, who§eandZ; axes are aligned with the orbit periapsis and the
orbit normal of satellitg, respectively, while th&; axis completes a right handed triad. The PQW
frame is, in general, time-varying, because the orbitah@laaries in response to perturbations.
The RTN frame of satellitg (denoted by RTI is obtained by rotating the PQWrame by an
angle equal to the true anomaly of satelljtabout theZ; axis and translating the origin to the
satellite’s center of mass.

A standard representation of the orbit of the two satellitethe PCI frame is given by the
classical orbital elementsy, e;,1;, Qj, wj,Vj}, j = 1,2, namely the semimajor axis, eccentricity,
inclination, right ascension of the ascending node, argurogperigee, and true anomaly. The
elements;, e; andv; describe the motion of satellijen theX;Y;-plane. The Euler angles Q;, w;
describe the orientation of the PQ\vyame relative to the PCI frame. The direction cosine matrix

which transforms the PCI frame to the PQWame is given by 18]

PQW,

Teci = Tz(w)Tx(ij)Tz(Q)) 1)

whereT x(0) andT2(0) are elementary rotations of the coordinate basis vectioahlangled about
theX andZ axes, respectively. The geometry of the rotation sequerittestrated in Figl, which

depicts the intersections of the fundamental plane of theial frame, and of the two orbital planes

4 of 30

American Institute of Aeronautics and Astronautics



Periapsis 2
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Ascending node 1 Ascending node 2

X

Figure 1. Orbit geometry on the unit sphere, with respect to he PCI frame.

of satellites 1 and 2, with the unit sphere.

The relative orientation between the two satellite ortstsisually specified by the direction

PQW,

cosine matrlePQWZ,

which brings thex,, Y, andZ, axes to theX,, Y; andZ; axes. According to

(2), it can be expressed as
TPQW _  PQW (TPQWZ)T

PQW, PCI PCI

(2)

T2(w1) Tx(i1)Tz(Q1 = Q) Tx(=i2) Tz(~w>),

where the superscrift denotes the transpose operator. Notice that it is alwaysilgleso param-

ﬁgw; via a minimal sequence of three elementary rotations. Hewefe use of the PCI

eterizeT
frame as an intermediate frame in the right hand sid@)fgsults in a larger number of rotations,
due to the lack of commutativity of the rotation sequencer. this reason, modeling approaches
based on the PCI frame, such as OEE, cannot provide a minmnaingtrization of the relative
motion.

As outlined in R9], the above shortcoming can be amended by introducing af getative

orientation parameters describing the transformaﬁm;. In particular, let us define thelative
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Figure 2. Orbit geometry on the unit sphere, with respect to he relative node.

line of nodesas the intersection of the orbital planes of satellites 1 Ziisee Fig2). We refer

to therelative nodeas the projection on the unit sphere of the point at which epadt 2 crosses
the orbital plane of spacecraft 1, in the ascending diractlety be the angle between the two
orbital planes (relative inclination), any, j = 1, 2, be the angles made by the periapses of the two
satellites with respect to the relative line of nodes. Tlitgs,not difficult to see that

Toow = T2(A)Tx(=1)Tz(-1), (3)

and, in particular, that the rotation sequence parametby the Euler angles; andy is of min-
imal length. Despite achieving minimality, this represgiun raises two fundamental concerns.
First, ; is undefined when orbitis circular. As a consequence, the transformat&)ng singular
if &; = 0 for somej. Moreover, the relative line of nodes is undefined for coptambits ¢ = O, ).
The singularity aty = 0 is particularly annoying, since this configuration playegrole in several
applications (e.g., coplanar rendezvous).

In the following, a new modeling approach is presented taesklthe aforementioned mini-

mality and singularity issues. The main idea behind our @ggin is to extend3) so as to express
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the relative orientation between the RTahd RTN frames, according to the transformation

Tame = Tz(vi + ) Tx(=1)Tz(—12 — W), (4)

and to develop a nonsingular parametrization of the redatietion accounting for the rotations in

the right hand side of4).

B. Proposed Parametrization

In addition to the orbital parameters described above defomsider the angley, | = 1,2, made
by the two satellite position vectors with respect to thatreé line of nodes (see Fig). Notice
that these are fast periodic variables, whose period isléqule orbital period of each satellite.
Contrary to the true anomalies, they are nonsingular for circular orbits. We call the pagtars
{1;, 6;} nodal elementsighlighting the fact that they all refer to the relativedeo Similarly to the
relative inclination angle, nodal elements are determined uniquely by the mutual corfigpn of
the two orbits, and hence they do not require the definitiom BCI frame. This feature, together
with their simple geometrical interpretation, makes theongsing candidates to parameterize the

relative motion. The relation between nodal and classieahents is given by

0]

Vi + /lj
(5)
/11' = Wj—Qaj
beinge; the angle between the relative node and the ascending jnodee first equation in)
allows one to rewrite4) as

Tame = T2(00)Tx(=7)T2(~62). (6)

RTN>

The anglesy; andy in (5)-(6) can be expressed in terms of classical elements trougal&meity
(see Figl)

Tz(—a1)Tx(=y)Tz(a2) = Tx(i1) Tz(Q1 — Q2) Tx(=i2). (7)

By suitably combining the classical elemefds, g}, the relative inclination angle, and the
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nodal element$4;, 0;}, the orbital motion of satellite 2 relative to a referenceebitge 1 can be

described by the following parameters

00 = 6,—-6,

op = (P2-pP)/p1

0éx = €C0SP1 — 1) — e cosP — A1)
06y = esin@y— 1) — e sinr — A1)
ohy = tan(y/2)cosv,

(8)

ohy = tan(y/2)sinbs,

wherep; = a,-(l—eJ?) is the semiparameter of orljit The parametrizatior8j provides a physically
meaningful measure of the relative motion error. In féétencodes the phase errép describes
the semiparameter errai, andoé, are both identically zero only &, = e; andA, = A3, while
ohy andshy are both identically zero only if = 0. Moreover,66, éhy andéh, embed a minimal
representation of g;!, since the right hand side of)can be expressed in terms of these parame-
ters. When all the relative state®, 5p, 6¢x, 6y, ohy, oh,} are zero, the two satellites are guaranteed
to follow exactly the same path. Together with the referguaxameters$p,, e; cosf), e; sinfvy)}
appearing on the right hand side 8j (recall from £) thatd, — 1, = v;), these relative states allow
one to fully characterize the orbit geometry. In particulihe complete element s, €;, v, 4;, 6;}
can be recovered.

Concerning the domain of definition of the proposed paramston, it is worth noticing that
(8) is nonsingular for all closed orbit pairs (i.e;,< 1), except for purely retrograde ongs= ).

More specifically, Fig2 reveals that ag tends to zerajd must converge to the anglebetween the

position vectors of the two satellites. Formally, this cashown by using the Haversine formula
havy = havéd + sing; sind, havy, (9)

where haw = sir’(x/2), which confirms thalsg| = || aty = 0. Moreover, one can verify that,

andoé, are well-defined a¢; = 0, since the trigonometric terms containifig- 1, = vV, — 66 and
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01 — A1 = vy in (8) are multiplied bye, andey, respectively. A singularity ag = x still remains
due to the presence of the term ta(f) in the definition obsh, andshy. However, such an orbital
configuration rarely occurs in practice.

The proposed parametrization allows one to remove the diegpee on the PCI frame, while
avoiding singularities af = 0 ande; = 0. The price to pay is that the relative stafés;, 6¢,} and
{ohy, ohy}, encoding the eccentricity and inclination errors, aré ¥asiables. Due to the particular
structure of the parametrization, this represents onlyrromirawback. In fact, the two vectors
[6&x 6&,]T and Bhy 6hy]" retain a direct relationship with the so-called relativeestricity vector
[6e« 6]" and relative inclination vectowiy si,]". Within the proposed framework, these are

defined as

€y _ € COSA, — €, COSA, , Oly _ tan(y/2) ' (10)

og, & Sind, — e, Sind; Siy 0
Both vectors are expressed in a planar coordinate systerseiaaxis is aligned with the relative
line of nodes. From&) and (L0), it follows that

6§X 5eX 5hx 5|X
= R(61) ; = R(61) (11)

being

R() = cosP1) —sin.) (12)
sin(,) cosp,)

a standard rotation matrix iR2. Hence, one has the identities

5& = \/5§§ +og2 = \/5e§ + 6€2

(13)
oh = \[6h + 6hZ = \J6iZ + 612,

wheresé andsh denote the magnitude of the relative eccentricity and mation vectors, respec-

tively. The phase angl& between these vectors reads

o¢ = atan(ohy, ohy) — atan(6éy, 6éx), 14
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where atag(y, X) denotes the four-quadrant extension of agax) In SectionlV, it will be shown
that the scalar parametei&:, 6h, 6¢} given by (L3)-(14) provide relevant information about the

safety of the satellite relative motion.

C. Mapping to Translational States

The mapping between the considered parameter set and atigeglosition in local orbital coor-
dinates is obtained by observing that the position vefitaf satellite 2 relative to satellite 1, seen

from the RTN frame, is given by

) r
or=Tg| 0 [-] 0| (15)

0 0

where
P1

= 16
E 1+ e cosv; (16)
" p1(1+6p) (17)

- 1+(6&x+€1C08V1) COFH — (6, +€1Sinvy) Sindl”
By using @) and (L6)-(17), the mapping15) can be expressed as an explicit function of the relative

states §), according to

b, 1
or
r
bs 0
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where the vectortf; b, bs]™ has unitary norm and

q - 2 _ (1+6p)(1+ e, cosvy)

ri  1+(0éx+€1cosv;) CoPO — (6 +€1Sinvy) Sinvé

(1 + 6hZ — 6h?) coss6 — 26h,shy sinée
o= 1+ 6h2 + 6h2

(1 - 6hZ + 6h7) sinsd — 26h,shy cosso (19)
bz = 1+6hZ +6hZ
by - 26hy, coss + 26h, sinéd

1+6hg +6hg

When the reference orbit is circular, i.e;, = 0, (19) is determined uniquely by the six relative
states ). The satellite relative velocity can be obtained by ddfarating (L8)-(19) with respect
to time, as it will be shown in Sectiolfi .

Compared to existing orbital-element-based descriptithresparametrizatior8f enjoys a sim-

pler nonlinear mapping to local translational states. Inipalar, the mapping1(8)-(19) does not

require the absolute (inertial) orientation of the refeenrbit to be known. This feature is espe
cially relevant for relative navigation applications, imieh the satellite motion is typically mea-
sured in terms of RTN coordinates. Compared to translatistates, the parameterg) (provide

a deeper insight of the orbital geometry, thanks to themurctelationship with the relative motion
invariants. On the other hand, it should be noticed frag),(18)-(19) that, in order to recover the
relative position and velocity vectors, the paramefarse; andv; of the reference orbit must be
known/estimated . In state estimation problems, this doésapresent a limiting feature. In fact,
in the general elliptical case, the relative position andeigy dynamics do themselves depend on

such reference parameters.

lll. Relative Motion Dynamics

In this section, the exact nonlinear motion equations guwegr(8) are derived and their solution
is briefly discussed. First, we restrict our attention toitteal Keplerian dynamics. The perturbed

case is addressed in SectidnB.
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A. Unperturbed dynamics

Let us collect the relative state®)(n the vector
e=[00 Sp o6&« 0& ohy shy]" (20)
and define the reference parameter vector

n=[p. ecosv; e sinvy’. (21)

By adopting the shorthand notatiégn= dx/dt, the unperturbed dynamics df@ can be ex-
pressed as
ce= f(og ) (22)

where ) ,
(1+ (6€, + €1 cOSV1) COSSY — (&, + € Sinvy) singo )

(1 + e; cosvy)?4y/(1 + 5p)3

0

-1

floam) =w — 68y (23)
0¢x
— 6h,
shy

v = /%(1 + € cosvy)? (24)
1

andy is the gravitational parameter. The nonlinear systegy-(24) is time-varying for elliptical

reference orbitsg; # 0). It becomes autonomous for circular ones= 0).
The first equation of systen2?) lacks a closed-form solution. On the other hand, the state

is constant and the last four equationsig@)(can be solved in terms @f(t) to give

56 X (tO)
6&,(to)

l ) 5)

6&y(t)

= R(v1(t) — va(to)) l
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ohy(t) dhy(to)
=R - i) | (26)
ohy(t) dhy(to)
wherev,(tp) indicates the value of; at the initial timety. Notice thatv,(t) — vi(tg) = 61(t) — 041(to)
for the unperturbed motion. Moreover(t) — vi(to) = (t - to)/u/& for circular reference orbits.

The unperturbed dynamics of the parameter vegtare obtained fromA1) and @4) as

n =f,(n) (27)
where
0
f0) = \/g(l +e,005v)?| — ey singy) |- (28)
1
€ cosf/1)

The satellite relative velocity, expressed in the RTidme, can be found fromig)-(24) and €7)-

(28), according to

. 9(or)
=——f
or e en)+

a(or)
0 f,(m). (29)

B. Perturbed dynamics

Let u; andu, be the perturbing accelerations acting on satellite 1 amelspectively, expressed in

their own RTN frame. In order to ease the derivation of theysbed dynamics, define

ri

Uz
o V’rlzpl (30)
[Urp Urp Ono]T = Us.

VHP2

[Ury Trg Ona]”

c
=
Il

c
N
|

Differentiating both sides of7]) with respect to time, substituting the Gauss’ variaticaglations

(GVEs [39)) for i, Q;, taking into account30), and solving the resulting expression &ar, @, and

v gives
) sing, . ) . A
ay = < Unz — [Sin6, coty + sin(E; + a1) cotiq] Uy (31)
Y
) ) ) o siné, .
a» = [Sin6, coty — sin(@, + a») cotiy] Uno — o Unt (32)
Y
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v = €0SH; Uiy — COSHq Uys.

(33)

By using ), (30)-(32) and the GVEs for the arguments of latitude and of the peisap& get

i upr . . sing, _
91 = 2 + SInHl COt’y UNt — — Un2
re Siny
: N/ . sing;
6, = >~ Sind, coty Unz + — Unz1
rs Siny
) +r; . L . ) . sing, _
A1 = Pty SINVq Ut — & cosv; Ugrg + SING; COt’)/ UNn1 — — 2 Un2
re ri€ SIn
) +ry . . , . siné;
Ao = P21 SINVs Uto — & COSV; Ury — SING, coty Unp + — : Un1.
r,e Sin

1)

(34)

(35)

(36)

(37)

The expressions3@)-(37) provide a convenient set of variational equations for giative inclina-

tion angle and the four nodal elements.

By differentiating @) with respect to time and using(),(33)-(37) together with the GVEs for

pj ande;, one can express the perturbed relative motion dynamics as

ce= f(og ) + G(0g i) U, — Ga(0g 1) U, (38)
wheref (ce n) is specified by Z3)-(24),
0 0 ohy
0 2(1+6p) 0
P2 sinoo @ COSo0 + € Sindld (6 + e sinvy) dhy
Goloan) = —2=| 2 5 (39)
5 =
VHP2 % COS66 —% sSins6 + e,cossl  —(6&x + €, cosvy) shy
2 2
1+ 6hZ + 6h;
0 0 — C0So0
1+6hZ+ohf
0 0 - sinéé
2 !
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0 2(1+6p) 0
@n fy 0 2p1/r1 —(6&y + ey sinvy) ohy “0)
Gi(en) = — , 40
HPs P1/r1  esinvy (6 + e cosvy) dhy
0 0 (1+ 6hZ — 6hg)/2
0 0 shydhy
ry, Iz, P2 can be expressed in termsaefandn via (8),(16)-(17), and
dhy = 6hysingé + ohy, cosso,
(41)

& = (0éx + € Cosvy) SiNG6 + (64, + €, Sinvy) CoSssh.

The perturbed dynamics of the parameter vecay are obtained from the GVEs foi, p; ande;

as
1 = f,(n) + G, (n) uy, (42)
wheref, (i) is given by ¢8), and
0 2 O]
r
G = . 43
77(’7) \//J_pl 0 2p1/r1 0 ( )
| Pi/r1 ersinvg O |

The 9-dimensional nonlinear mode&ld)-(43) can be used to account for both conservative and
nonconservative perturbations affecting the two sagsliffor a detailed description of such contri-
butions see, e.g.3f]). The model is valid for arbitrary elliptical orbits sudhete; < 1, except for

purely (relatively) retrograde ones.
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Figure 3. The relative position trajectories obtained withthe the proposed model (solid) and with Cowell’'s
formulation (dotted) show an exact matching.

C. Model Validation

Model (38)-(43) has been validated against the standard Cowell’s formonlat a Matlab simula-
tion environment. Simulation results are reported for tammple orbits about the Earth, defined in

terms of the initial orbital elements

{1.13-10°km, 0.4, 10°, 60°, 0°, 10°},

{al? €1, il? Ql’ ws, Vl}

{7.17-10°km, 0.08, 40, 9C°, 3C°, 70°}.

{a, €, iz, Qp, W), Vo}

The initial conditions for the propagation d3§)-(40) are obtained from the above parameters by
using 6)-(7) and ). The input vectoral; andu, are set equal to the perturbing accelerations
due to Earth’s asphericity (EGM-96>99 model) and atmospheric drag (NRLMSISE-00 model,
assuming a cross sectional area of 5and a mass of 200 kg for both satellites). The output of
(39)-(43) is transformed into relative position states, expresed¢te RTN frame, by using18)-

(19). The resulting trajectory is depicted together with thatamed from Cowell’s formulation in
Fig. 3, on a time interval of 2- 10* s. As expected, there is an exact matching between the two

solutions.
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IV. Collision Detection

As outlined in Sectionl, the parameters2()-(21) allow one to fully characterize the relative
motion geometry. In particular, the new parametrizatioovfates a general characterization of
colliding orbits. In this section, in order to present anlaggtion of the proposed framework, this
feature is exploited to derive a simple and computatioreffigient collision detection technique.
This will be validated on an asteroid flyby case study in Sectil .

In order for two satellite to collide, the following conditis (denoted by C1 and C2) must be
verified: (C1) their orbits intersect and (C2) the satdllppass through the intersection at the same
time. For the purpose of collision detection, it is of intre determine in advance whether these
conditions could be met. While C1 is fully specified by theghand the relative orientation of
the two satellite orbits (i.e., by the Keplerian invarigntssaluating C2 generally requires a time-
consuming numerical propagation of the relative motion. o5gble way to mitigate this issue
is to first determine if C1 is satisfied, and then check C2 ohtyeeded. In collision avoidance
applications, it is convenient to falsify C1, which alletga the need for evaluating C2. The orbits
for which C1 is falsified are commonly referred to@assively safeFor close formations in near
circular orbits, it has been shown ihd] that passive safety is strongly related to the phase separa
tion between the relative eccentricity and inclinationtees. Hereafter, this concept is specialised
for collision detection in elliptical orbits.

By using (L8) and the fact thab? + b3 + b3 = 1, the inter-satellite distance can be expressed as

llorll = rivl+o? — 2qby. (44)
In the event of a collision|or|| = 0. By enforcing this constraint intf), one gets
1+g*-2qb, = 0. (45)

Equation ¢5) corresponds to both conditions C1 and C2. In order to isdlHt, we will exploit
the key geometrical features of the proposed parametizaGoplanar and noncoplanar orbits are

treated separately.
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In the coplanar case, one héis, = 6hy, = 0 and the collision conditiond = 0 (see §) and

Fig. 2). Then, according tol@©), b; = 1 and ¢5) becomes

q=1 (46)

which is expected, sinag= r,/r;. By usingéd = 0 in (19) and substituting the expression fipin
(46), one gets
Op(1 + e, cosvy) = 6&y. 47

For o6 = 0, the parameteié, takes on the form

0&x = € COoSf/y — 61) — €, CoSVy, (48)

where the Keplerian invariangs andsA = 1, — A; can be expressed in terms @b§-(21) as

& = \/652 + € + 2, (64 CoSVy + 6, Sinvy) (49)

oA = atan (5§X Sinvy — 0€, COSVy, 0&x COSVy + O&y Sinvy + el) ) (50)

Substituting 48) into (47) and simplifying the resulting expression gives

op+ Socos(vy +¢c) =0 (51)

where
50 = (1 +5p)€ + & — (L + Sp)ese, cosp) (52)
¢c = atari(ez sin@A), (L+d6p)er — & cos@l)). (53)

In order for C1 to hold, there must exisvasuch that §1) is satisfied. This occurs if and only if
op? — 60% < 0. This reduces tép? — 6£% < 0 whene, = 0 (see ¢9) and £2)).
For noncoplanar orbits, one has the collision conditians 6, = 0 (see Fig2) andd, = 6, = n

(at the opposite relative line of nodes crossing), whichragaply (46). By observing, from %)
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and (L1), thatv; = —2; andoé, = dec at6; = 0, and using these identities id7), one gets
op(1 + e cosAy) — 66 = 0. Similarly, forg; = n, one getsip(1 — e; cosd;) + 6e, = 0, where

06, = o6& cospg) according to {0)-(14). Summarizing, condition C1 can be expressed as

op? - 60°> <0 if sh=0
Cl: { 6p(1+ e costy) —décospp) =0  if oh# 0 (ascending) (54)
6p(1— e cosiy) + 6écospgp) =0 if 6h # 0 (descending)

The relationships in54) provide a quick test to rule out potential collisions, pblsoccurring at
later times. For circular reference orbits84) is fully specified by the invariant®p, ¢, sh, 6¢}
which, in turn, depend only on the relative state vecl).( For noncoplanar orbits with equal
semiparameterst # 0, 6p = 0), the collision safety margin turns out to be proporticiwathe
magnitude of the termi¢ cos@¢), and thus it is maximized for parallel eccentricity andimation
vector configurationss¢ = 0, 7). Conversely, two orbits such thétt # 0 andép = 0 are unsafe if
66| = 7/2.

In order to check if a collision actually occurs within a @@nttimet; (condition C2), one can
propagate the relative motion to determingoif(t)|| = O (within a given tolerance) fdre [to, t:],

by using the motion dynamics derived in Sectldn

V. Relative Navigation Scheme

The following angles-only relative navigation problem @sidered, as a benchmark for the pro-
posed modeling approach. Let satellite 1 be able to meabarazimut and elevation angles of
vectorér in the RTN, frame, as well as the apparent angular gizd satellite 2. For simplicity,

satellite 2 is modeled as a sphere with diametei’he measurement model fpg,, ve andpg is

given by B2]
Yaz = atan (orr,org) + Waz
@i = asin(orn/|lor|l) + Wej (55)
B = d/llor|l + wp,
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wheresr = [org orr orn]" andw,,, We, W; are discrete-time white noise processes modeling the

measurement error. The measurement model can be exprassets of 0)-(21) as

y =y(oan) +w, (56)

wherey = [gaz e BT, W = [Waz We Wg]", and the functiory(ce n) is obtained from 16),
(18)-(19) and 65). Our objective is to estimate the relative state vec6y {rom a set of angular
measurements of the forra%). It is assumed that the parameter veejpthe diameted, and the
gravitational parameter are known, and that both satellites are uncontrolled.

An extended Kalman filtering approach is adopted for retatimvigation. The estimated state
is denoted byée Environmental perturbations are treated as processriétoes. This approx-
imation is reasonable as long as the relative motion is @idtenainly by spherical gravity. The

disturbance-free dynamics of the filter estimates are thaeamdy

ce=f(Ga ). (57)

The EKF propagation and update steps are performed as pelastia see, e.g.3p]. Notice that
in the propagation step one can exploit the analytic satgtip(t) = 6p(ty) and @5)-(26).
In the next section, the performance of the EKF scheme isuated on an asteroid flyby

application.

VI. Asteroid Flyby Application

On 10 July 2010, the ESA Rosetta spacecraft performed a fildseof asteroid Lutetia during
its journey to the target comet 67P/Churyumov-GerasimerfRosetta passed the asteroid at a
distance of 3170 km, with a relative velocity of 15 km/s. Abone month prior to the encounter,
an optical observation campaign was started to assist temabsorbit determination3g)].

In the following we consider a similar scenario and assuratttie spacecratft (satellite 1) and
the asteroid (satellite 2) will eventually collide, unless evasive maneuver is performed. The

geometry of the intercept problem is depicted in FigThis problem gives us the opportunity to
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—— Satellite 1 (Rosetta)
— — Satellite 2 (Lutetia)
¢ Flyby Location
67P /Churyumov-Gerasimenko

X [AU]

0 -1 D) 3 4
Y [AU] B

Figure 4. Asteroid intercept problem geometry.

highlight some of the salient features of the proposed niogl@lpproach, including the applicabil-
ity to elliptical orbits, and its suitability for collisiahavoidance applications. The EKF scheme in
SectionV is used to assess the performance of angles-only relativgateon for the considered
problem. Condition C1 ing4) is evaluated on the EKF estimates to check whether thesaoili
can be detected with sufficient notice.

The mission is simulated on a time interval ranging from 29sd@ 6 hours before impact.
During this time interval, the inter-satellite distancedgses from an initial value of 725 - 10’
km to a final value of 35- 10° km, and the spacecraft remains outside the sphere of influenc
of the asteroid (whose radius is approximatelyl® km). Hence, the asteroid’s gravity can be
neglected in the EKF design. The diamedend the standard deviation of the measurement noise
in (55) are set tad = 90 km ando,, = 0 = 03 = 0.001 deg. These values are consistent with
the size of Lutetia and with the specifications of the optilesiruments installed on-board Rosetta,
respectively. Measurements are collected once every 5 & EKF is initialized by adding a
random perturbation vector to the true initial stedf,). The standard deviation of each element

of the perturbation vector is set to51: 104, The resulting initial relative position uncertainty is
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Figure 5. Evolution of the EKF estimation error with 30~ confidence intervals.

in the order of 10km, and it is much larger than the uncertainty affecting tstemid ephemeris.
The initial value of the & 6 estimation error covariance matixs set accordingly. Hereafter, we
will first present the results of a single simulation to shawtlthe EKF estimates can be used for
collision avoidance and then a Monte Carlo analysis of therfderformance will be reported.
The components of the estimation error vedime Ge— ceare shown in Fig5 for a sample
simulation, together with the corresponding 8onfidence intervals (obtained from mati?}.
It can be seen that all estimates are consistent, althougke selative states are estimated with
less confidence than others. Notice that this problem isealatad to the specific parametrization
employed, but rather to the impossibility to extract rangerimation from the noisy measurements
(55) prior to the final approach phase (see F8). coupled with the relatively short period in
which the asteroid can be observed compared to the orbiteddoeThis affects the quality of

state reconstruction from angular measurements, andsesubbservability issues for some of

22 0of 30

American Institute of Aeronautics and Astronautics



x1q'3

101

2.5 2 1.5 1 0.5
Relative range (km) %107

Figure 6. Evolution of angular size measurements versus rative range: for relative range values greater than
5.10° km, the apparent angular size of satellite 2 is smaller thanlte pixel size, which is equal to the measurement
noise standard deviation.
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Figure 7. Evolution of the relative range estimation error with 30 confidence interval.

the relative states. In particular, the path followed by tive satellites within the observation
window is almost rectilinear, which makes it difficult to iesate the relative states describing the
orbit shape (semiparameter, eccentricity). However,dbes not prevent the filter from accurately
estimating the safety-critical parameters (relative egrogllision safety margin).

The relative range estimation erngif|| — ||6r|| and its 3 confidence interval are reported in
Fig. 7. After the initial transient, they settle to a steady stadadition in which basically no
correction is performed, until the satellites are closeugioand the angular size measurements
become effective (see Fif). The estimation error at the end of the simulation amown2y8 km.

Itis about 3 orders of magnitude smaller than both the liet#ion error and the final relative range
between the two satellites. Given the limitations of anglely measurements for the considered

intercept problem, this is a fairly good figure.
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Figure 8. Evolution of the 30 confidence interval centered at the estimaté(ée ) initial transient (left) and
convergence toward the steady state (right); notice the di¢érent y-axis scales.

Concerning the ability to detect collisions, the first and third condition in $4) are not
satisfied by construction (the two orbits are noncoplandrthe collision is set to occur & =

0, = 0). The second condition irb{) is rewritten ag’(ce i) = 0, where

{(am) = 6p(1+ e cosdy) - 5¢ cosEe)
_ op- Shy(5&x — 6p €1.cosvy) + ohy (€, — op esinvy) (58)
(6h2 + sh2)1/2

can be thought of as the collision safety margin. Thec8nfidence interval centered at the esti-
mate/ (e n) is adopted to characterize the parameter uncertaintpmedt is reported in Fig8,
and contains the valug = 0 over the entire simulation interval. Hence, a potentidlision is
successfully detected. The uncertainty region shrinksndimaa very small neighborhood of the
origin after a short transient, which indicates that théneste /(6 n) is unaffected by the above-
mentioned observability issues. This is not surprisingeesiestimating the intersection between
two almost-rectilinear orbital segments is consideralvhpger than estimating the curvature of the
orbits along which they lie.

The information provided by the EKF estimatée 7) allows one to plan a timely collision
avoidance maneuver. The maneuver consists of corregtinyga suitableAZ, so as to falsify C1.
The following impulsive maneuvering strategy can be adbfiiehis purpose. Lat, = 0 andu; =
Av é(tn), whereAv is an instantaneous velocity change applied to satellisnd¢(t,,) is a Dirac

delta function centered at the impulse titpe Taking the time derivative o6¢) @i] + 2= o
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Figure 9. Delta-v profile computed from(61) along the trajectories of(57).

substituting the above-defined inputs 88) and @2), and integrating the resulting expression at

tn, gives

24(e=3))]
ooe

4(e<y)))
on

G,(m) -

: :( Ga(ce n))AV _ g (@ AV, (59)

whereA/ is the instantaneous changezigorresponding tav, and all quantities are evaluated at

tm. TheAv required to satisfy49) has minimum norm for

N 18
A= AVIEI) = e P A ©9)
From ©0), it follows that
1AV (e )l = el (61)
llg(ce n)li

To assess the feasibility of the collision avoidance maagtutie impulse magnitud\v*(ce n)||

in (61) has been evaluated at different time instants along thmea&isd trajectory. The correction
term Al is specified as the sum of the estimatedBcertainty or?'(Ge ) and a constant offset.
The offset value is set to 1) which corresponds to a nominal displacement of approxipat
3000 km at the closest approach point. From day 1 (end o&lr@stimation transient) till day 7,
the resulting|Av*(Ge n)|| turns out to be smaller than 3 m/s, while it rapidly grows sajuently,
see Fig.9. Such a velocity change translates into a negligible fugleexiture and it is fully
compatible with a mission of the considered type.

The statistical results from 500 Monte Carlo runs of the fhdmulation are reported in
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Figure 10. Monte Carlo results for the EKF estimation error: true 3o confidence intervals (thick lines) and
trajectory samples (thin lines).

Figs. 10-12 for the navigation, relative range and collision detectorors (only a subset of the
trajectory samples is depicted). The 8onfidence intervals computed from the true covariance,
which are reported in Figd.0-11, agree nicely with that estimated by the EKF in Figsand?7.

The sample mean and standard deviation of the final estimeatror are reported in Tablefor the

relative state and the relative range parameters. Acaptdifrig.12, the potential collision is suc-

Table 1. Sample mean and standard deviation of the final estiation error

Parameters Mean Standard Deviation
56 1.7990- 1078 3.8717- 1077
5P ~6.9346-10°° 9.2460- 10°°
6&y ~3.9268-10°° 5.3305- 10°°
&, 8.3815- 10°® 1.1479- 104
shy ~3.2553- 1077 4.5036- 10°°
shy 2.7406- 10°° 6.0728-10°8

I6F]l = lI6r]l  —30.1009 km 648363 km
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Figure 11. Monte Carlo results for the relative range estimaion error: true 3o confidence interval (thick lines)
and trajectory samples (thin lines).
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Figure 12. Monte Carlo results for the confidence intervals entered at the estimate/(ée #) (thin lines).

cessfully detected in all realizations. From these resiltsan be concluded that the EKF scheme

provides a reliable estimate of the navigation states, allawing to safely avoid the collision.

VIl. Conclusions

A new parametrization of the relative motion problem hasnbeeesented, which combines the
benefits of relative orbital elements and local translatistates. The forward nonlinear mappings
from classical orbital elements to the proposed parameteid from these parameters to local
translational states, have been described. The Keplendritee perturbed parameter dynamics
have been derived. No simplifying approximations are madiné derivation and the resulting
model is valid for arbitrary elliptical orbits, except fougely (relatively) retrograde ones.

One of the main features of the new element set is that relatavigation problems can be
tackled without requiring knowledge of the absolute orioin of the reference orbit. Moreover,

the new element set leads to a lower-dimensional dynamichtminpared to other parameteri-
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zations. This occurs at the price of embedding the eccégtand inclination errors into suitably
defined fast variables. The particular structure of the ¥asables allows one to retain a direct
relationship with both the Keplerian invariants and locahslational states, which results in a
simple characterization of colliding orbits.

In this paper, the above mentioned features have been tegbloi design an angles-only nav-
igation filter and a collision avoidance scheme suitablerétative navigation. These have been
tested on an asteroid flyby application. Simulation resotigcate that a collision can be detected
early on in the estimation process, which allows one to isstimely and reasonably small-sized
evasive maneuver. It is believed that the proposed modefipgoach may also be useful in other

space applications such as, for instance, design and mamte of satellite formations.
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