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. Introduction

Orbit phasing operations play an important role in many spacssions, being commonly per-
formed for station acquisition and station keeping of LoarB-Orbit and Geostationary satellites,
and in the initial part of rendezvous maneuvers. The clabpitasing approach consists of two-
impulse Hohmann transfer which takes a satellite away froththen back into its original orbit,
S0 as to steer the satellite to the correct orbital posities, e.g.,]]. This control method is flight-
proven, conceptually simple, and fuel-efficient in mostlaggpions, but suffers from two major
limitations: it is inherently open-loop, and requires ampirsive thrust approximation. Due to the
tight positioning accuracy requirements of next-generatipace missions and the availability of
new continuous-thrust propulsion technologig8yJ, there is a growing interest in the development
of feedback control systems able to overcome such limitatio

To this aim, the orbit phasing problem can be treated as eemods problem between two
satellites located at different angular positions withinogbit. As long as the satellite relative dis-
tance is small compared to the orbit radius, standard libedmodels such as the Hill-Clohessy-
Wiltshire (HCW) 4] and Tschauner-Hempel (THj][equations can be adopted for control design.
Along this line, reference${3] developed optimal and robust regulators solving the tarcten-

dezvous problem. Model Predictive Control has been ingattd in p—11] to deal with state and
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input constraints. References?-17] extended these results to the case of elliptical orbits.

The design of feedback regulators able to handle largesatillite separations, such as those
typically encountered during phasing operations, hasivedecomparatively less attention.
Lyapunov-based nonlinear stabilization methods have beastigated in [8-21]. These meth-
ods provide analytical control laws, but, in general, domatimize a predefined maneuver cost.
Optimal solutions based on nonlinear model predictive rmbrand receding-horizon strategies,
see, e.g.,42-24)], have also been considered. These techniques are usoalfyutationally inten-
sive, as they require to solve a nonlinear optimization jenobat each time step.

As suggested inZ5], the above difficulties can be alleviated by casting thespigproblem in
a curvilinear coordinate system, and performing linedigzain such coordinates. Nevertheless,
this approach is still limited by the assumption of a smdktree radius, which is generally not
met for elliptical formations. In this note, we relax thissamption by introducing a specific
orbital-element-based parametrization of the relativeadhyics, inspired by that ii2p-28]. In
particular, the formulation inZ8] is suitably modified to include the effect of a nonconsaweat
control acceleration. Moreover, the adopted parametoizatilows one to streamline the control
design problem. The resulting linearized model accountarfoitrarily large relative phase errors
and orbital eccentricities and, in this respect, extendsltassical derivations.

The proposed formulation is exploited for the synthesisnaf state-feedback controllers: a
time-invariant Linear Quadratic Regulator (LQR) for cil@muphasing maneuvers and a periodic
LQR for elliptical ones. The performance of these contrslls evaluated through numerical
simulations on the full nonlinear model describing the tadbmotion. It is observed that the control
objective can be achieved successfully despite the presd#raciarge initial phase error. Moreover,
the simulations show that, by applying the standard LQR oukitogy to the proposed model, one
can suitably trade off the control effort and the tracking@enance. This is particularly relevant
for space missions involving low-thrust propulsion.

The note is organized as follows. In Sectibbnthe equinoctial form of Gauss’ Variational
Equations is recalled. Sectidh introduces the key coordinate change which leads to theaderi

tion of the linearized model describing the relative motidbhe LQR design problem is formulated
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by using these new model in Sectibn. The applicability of the proposed design is investigated

through numerical simulations in Sectighand some final considerations are drawn in Sedtilon

[I. Mathematical Background

Let S andR" denote the unit circle and thedimensional Euclidean space, respectively. In this
note, the motion of a satellite in a closed orbit is descrilmetérms of the equinoctial variables

X =[% ... X]"eS*x R, defined as follows

X1 = Q+w+6
X = yu/a
X3 = ecosQ+ w)

1)
X4 = esin@ + w)

Xs = tan(/2)cosfl)

Xe = tan(/2)sinQ),

wherex; is the true longitudey, is the mean motion,xg, x4) are the components of the eccen-
tricity vector, and Xs, Xs) are the components of the inclination vector, beieg, i, Q, w, 6 the
classical orbital elements (semi-major axis, eccenysigitclination, longitude of the ascending
node, argument of periapsis, true anomaly) aikde gravitational parameter. The parametrization
(1) describes the satellite motion with respect to a giventsiginded inertial coordinate franfe

centered at the Earth. For the sake of clarity, we introdeddllowing auxiliary quantities

w = J1-X%-x
[ ] = YO % % 1 2
[ & & 1" = Yl Xs Xo I,

where¥(x,) denotes the reflection matrix

¥(x,) = cos,) sin(x;) . 3

sin(xy) —cos)
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The satellite dynamics can be modeled by the input-affindimear system

x = f(X) + g(X)u, (4)

where the vector field§(x) and g(x) are specified by the Gauss’ Variational Equationg9],[

Chapter 10), as follows
T

1 2
f(x) = ( J\jvfe’) Xo Ois | » %)
s
0 0 144,
3 3(1
—%Xz — ( V;/|_2§3) X2 0
: X3 + (2 + {3) cosf) l6
w sin(x.) 1+ —mﬁ .
90 = (ux)3| cost) Xq + (2 + £3) Sin(Xy) ix ’ ©
1 1+§3 1+§3 3
1+ XE + X2
0 0 20i0) cosxi)
1+ X2+ %2
0 0 m S|n(X1) |

andu = [u; Uy Us]". The inputsuy, U, andus denote the radial, tangential and normal components
of a perturbing acceleration, expressed in the RadialsMaise-Normal (RTN) frame centered at
the satellite.

For the purpose of our work, it is worth introducing the meanditudeL = L(Xy, X3, X4),

defined by the equinoctial form of Kepler’'s equation

L =T - xgsin({’) + x4 cos(), (7)

wherel’ = I'(Xy, X3, X4) is the so-called eccentric longitude. The time derivat¥€7) can be

expressed a2

L = % + h(x)u, (8)
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where

w —{3 . —2W (2+ 3)la l6
(Wux)Bl+w 1+ (@A+wW(1+&4) 1+

h(x) = 9)

It is well-known thatx; in (1) can be uniquely computed as a functionLofxs, andx,, although
not in closed form. Hereatfter, this implicit function wileldenoted by, = y(L, X3, Xs).
In the next section, a new dynamic model is developed, daagrihe relative motion between

two satellites in terms of the considered equinoctial \deis.

[ll.  Relative Motion Dynamics

In this section, we consider a controlled chaser satellittan uncontrolled target satellite. The
chaser dynamics are given b§)(whereu is treated as a control input. The trajectory of the target

satellite is described by the reference vector

() =[x % X3 % % Xl (10)

wherex;, .. ., X5 are constant parameters, arit) satisfies the orbital equation

x* = f(x"), (11)

corresponding to4) with u = 0.
We find it convenient to parameterize the motion of the chesdative to the target in terms of

the error vecto€ = [&;...&]"e Stx R®, defined as follows

& =L-L7

X2

-2

752— X |
Sl weg| T (12)
3 | Xa =X |
s = Y(x1) T ,
| &6 | | X6 — X5
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whereL" = L(X;, X3, X;), and¥(x,) is defined in 8). Notice that = 0 if and only if x = x".

Consider the following time and input scalings

di = % dt (13)
w*

V = W u, (14)

wherew* = \/1— (x3)?— (x3)? andv = [vy, V5, v5]". The variablet will play the role of the integra-
tion variable in the error dynamics derived hereafter. Biedentiating the smooth mapping4),
taking into account equationg)¢(6), (8)-(9), (11), and applying the scalingd.§)-(14), one has

that the dynamics of the error is described by

® _Fge oLV, (15)
where
01 0 0 0 0
00 0 0 0 0
2
“WRX,
F(L,¢) = 00 1+ &B)*e 0 0 0 (16)
WX,
—W3X§
2
00 0 o dr&%
WX,
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| G 2w (24 5) RO
1+w 1+4 A+wW(A+4) 1+43
3% 31+ )% 0
W2 W2X;,
({4 — E4)¢
o8 = 0D ’ i T . an
’ W (Xp) 13 1 s (€3 — 3)6
l+{3 ) 1 +2§3
1+ (8 + (§ — 2665
0 0 2(+09
&5 s
0 0 144

Remark 1. In the matriceg16)-(17), the quantities x w, ands, . . ., s can be expressed in terms
of the error variablest, the target mean longitude’land the constant parameters, x. ., x5, by
using(2), (12) and the fact that x= y(L, X3, X4). For notational simplicity, the dependence on the

constant parameters;x . ., x; is not made explicit in the argument of F and G.

For any scalap, the statef = [¢ 0...0]" is an equilibrium for the nonlinear time-varying

system {5) with v = 0. Linearizing (L5) abouté = £ andv = 0, one obtains the linearized

YETE [F(L", £)¢] [G(L", V]
. o[F(L", )¢ 0[G(L", &)v
R B R
= (P + [5% ‘”é;’f)f]}gzz £+ C(L 4y o

= F(L*, &) + G(L*, &)V = F(L*+ ¢, 0)& + G(L* + ¢, O)v.

In the derivation of {8), the relationship&(L*, £)¢ = 0, LFL f)f]g 0 and &L f)f 0 have been
exploited. Moreover, we used the fact thatandé; enter in (6)-(17) asL = &; + L*, see Remark
1, so thatF(L*, &) and G(L*, €) can be equivalently replaced BL* + ¢,0) and G(L* + ¢, 0),
respectively.

Let the fundamental plane of franfe be coplanar with the target orbital plane (see Appendix
A), and observe that, = x5 = 0 with respect toF. Moreover, notice that, being' = x; from (8)
and¢ = 0, one can set

=L"+¢, (29)
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which is consistent with1(3). By using these arguments, we can finally rewrit8) @s

dg _
— = AWE + BV, (20)
where )
01 0 0 0 0
00 0 0 0 0
00 o Gxu 0
A =| ey (21)
00d+¥a) 0 0
W) o
00 0 0 o Q+ve)
@y O
3
00 0 0 ry 0
-3 . —2wW* (2+ Y3)Ya 0
1+w 1+y3 (1+wW)(1+ys)
=z _3(1+ ) 0
(wr)? (wr)?
0 2 0
B(1) = , (22)
Y
1 1+l,03 0
1
0 0 21+ 1)
0 0 0

Y3 = X5C0Sf* (1)) + X; sin(*(4))
W = X3 sin(* (1) — X; cosf* (1)),

(23)

andx*(-) = x(., X5, x;) denotes the mapping from the mean longitude to the correspg true
longitude, along the target orbit. The entries 21)¢(22) are obtained from2) and (L6)-(17) by
enforcingx; = y*(1) andx; = X;, j=2,...,6,withx; = x5 = 0.

For the special case of circular reference orbits, feaguyin= 4 = 0 andw* = 1, systemZ20)
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reduces to the linear time-invariant (LTI) system

ds _
dxl_AerBV’ (24)
where ) )
010 00O -2 0 O
000 O OO 0 -3 0
000-100 0O 2 0
A= , B= (25)
001 0 0O 1 0 0
000 0 0-1 0 0 12
(000 0 10 0 0 0

Note that the left multiplication b¥¥(x;) in (12) is instrumental to make the control input matrix

B in (25) independent oft (and hence independent ®y.

Remark 2. Classical linearized models assume the chaser to lie in allnoeighborhood of the
target (this impliesp = 0in (18)). The use of the parametrizatigh?) relaxes this assumption, by
allowing one to consider a generic nonzefpi.e., an arbitrary phase error along the reference

orbit. This is the key feature that will be exploited for cohtesign.

In the following, we investigate the application of lineantrol design techniques to systems
(20) and @4). To this purpose, the domain of definition of the angularalae &, is restricted to
(-, 7] € R.

V. Control Synthesis

In this section, the linearized models derived in the presisection are used to design state-
feedback controllers tailored to orbit phasing appligagidn these applications, the chaser satellite
moves along an orbit similar to the one of the target (pogsiith a very large initial phase
offset), and must be steered towards the target positionte Mpecifically, we aim at finding a
state-feedback control law

v=-K¢ (26)
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such that

lim £ =0 @7

for a set of initial conditions in a local neighborhood of tta&get orbit. Two solutions to this
problem are presented below, for circular and ellipticalitst The proposed solutions are based
on classical LQR techniques in order to suitably trade{udf ¢ontrol effort and the tracking per-

formance.

A. Circular Case

We consider the circular orbit case first. By using the lineae-invariant modelZ4), the control

design problem is cast as
min f (§TQ§ +V'R v) da
v 0

ag
s.t. d/l_AerBv’

whereQ > 0 andR > 0. The structure of) is specified af) = diag(u, 02, 0z, G4, Os, Ge), With

(28)

Os = s andgs = g, SO as to appropriately weight the equinoctial variablerstr Indeed, this

results in
O3 &5 + Qu &5 = Gal(Xs — X5) + (Xa — X})?] 29)
Os£2 + s €2 = Os[(Xs — %)% + (X6 — X5)?].
The solution to 28) is the standard LQR state feedback
v=-K¢, (30)

whereK = R™BTP, and the positive definite matriR is obtained by solving the continuous
time algebraic Riccati equatioh’ P+PA — PBR™BTP + Q = 0. Note that radial thrusting can be
excluded, if needed, by removing the first columiBah (28), since systenmd) is still controllable

whenv; = 0. In particular, it is known that enforcing = 0 can actually result in an improved fuel

efficiency, as discussed if,[30, 31].
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B. Elliptical Case

In the elliptical orbit case, the control design procedgrenbre involved due to the time-varying

nature of the linearized modeR@). In order to obtain a closed-form solution, systebd)(is

approximated by a discrete-time model and a periodic LQRIpro is cast as explained below.
Let { pc}ken be the sequence of equally spaced samples

_ 2n(k-1)

- (31)

Px

of the true longitude, along the target orbit, whetie the number of samples per orbital revolution.
The sequencpglken cOrresponds to a sequence of mean longitydggs.n, where is obtained
by computingL according to ) with x; = px, X3 = X; andxs = X, i.e., & = L(px, X5, X))
Moreover, let us set

Akt — A = Ay, (32)

and observe that, > 0 is a non-uniform sampling interval in tlkedomain.

By choosing a sufficiently large number of samptes (31), one can achievdy < 2r in
(32). Under such condition, matricég1) andB(1) in (21)-(22) are approximately constant over
one sampling intervahy. Hence, a discretized version of syster)(can be obtained using the

following zero-order hold equivalent
&1 = Ak + B (33)

where
Ak - eA(/lk) Ak

Ag
( f el sds) B( ).
0

SinceAy = Ax.n andBy = By, for all k € N, system 83) is periodic with perioch in the discrete

Bk

time indexk.
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The considered LQR problem is formulated as follows

[ee]
- T T
T/'P § & Q€ + ViR
k
k=1

(34)
St &1 = Ak + BiVi,

whereQy = QAx, Rk = R Ay, and the performance index approximates the continuoudrgtia

costin £8). The solution to §4) is [32]
Vi = —Kk fk, (35)

where

Kk = (Bj Prs1Bk + Re) By Pri1Ag, (36)

Kk = Kin, and the positive definite matric®g = Py, are found by solving the periodic algebraic

Riccati equation
Pk = AcPri1Ak — AL PiiaBi(Ri + By Piy1Bi) "By Pi 1Ak + Qk (37)

withk =1,...,nandP,,; = P;. Note that 87) can be rewritten in compact form as follows

P=ATPA -ATPB(R + B'PB) 'B"PA + Q, (38)
where .
0 An B, ... ... 0
_ A; O 0 _ 0 B; 0
A = ) B = ’
0 ... A.1 O 0 ... ... Bn-1

P = blockdiagPs, . .., P,), Q = blockdiagQ, . .., Qn), andR = blockdiagRn, R; . . ., Rn_1).

To accommodate for variations @fandé during the inter-sample period, a continuous control

12 of 24

American Institute of Aeronautics and Astronautics



law of the form

v=-KQ)é (39)
can be reconstructed frori%) through linear interpolation, with

Amod 2r — A

KQ) =K
(1) k + A

(K1 = Ky, A < Amod 2t < Agy1.

Equation 89) describes a family of periodic controllers indexed dysee (9)). By enforcing
¢ = &1 1in (19 and @9), i.e., by using the actual mean longitude erfoto select the controller

within the family 39), a nonlinear regulator of the form

v=-K(L+&)& (40)

can be finally derived. Such a solution typically requiresphrametep to vary slowly B3] (recall
thatg is kept frozen in the linearization process). In our cagg¢dd = d¢;/dA and this requirement
is met as long as the error tegmand the control input are small (see20)-(22)).

The following remarks are in order:

(i) The use of a non-uniform sampling interval 182 allows one to reduce the number of

samplesh required for an accurate discretization of systeg).(

(i) Forasufficiently largenin (31), the control law 89) approaches the infinite-horizon solution

to the continuous-time, periodic LQR problem.

(i) Since (39) is still solvable when the first column & is removed, radial thrusting can be

excluded.

(iv) For any nonzero target eccentriciy, one can specify the reference frafigsee Appendix
A) as the perifocal frame of the target. In this way, the cdrgein in (40) can be made

independent ok; (it depends on this parameter vizg).

The applicability of the proposed design is investigatethanext section.
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V. Application to Orbit Phasing

In this section, the performance of the state-feedbackalbets (30) and @0) is evaluated through
numerical simulations on two representative orbit phasmageuvers, featuring a circular and an
elliptical orbit, respectively. The simulations are cadiout by adopting a nonlinear truth model
based on Cowell’s formulation, accounting for perturbasidue to the first nine harmonics of the
Earth’s geopotential, and for the control accelerationlt is assumed that both the chaser and
the target are affected by gravitational perturbationse $hort-periodic oscillations due to the
J2 harmonic are removed from the tracking error by using Brexsmransformation34]. This
corresponds to feeding back mean orbital elements, ingttadculating ones. The differential
effect of secular gravitational perturbations is treateca exogenous disturbance to be rejected
by the control system. The control acceleratiors recovered from the input signalby using

(14).

A. Circular Orbit

Let us consider a circular coplanar rendezvous missionifitial conditions of the chaser and the
target spacecraft are reported in Tabjen terms of mean orbital elements. These correspond to
an orbital altitude of 800 km, and to a large initial intetesbie separation (approximately 14000
km). To rendezvous, the chaser must perform an orbit phaseageuver using only tangential
thrust (this is feasible in the considered scenario). T® &, the first and the third column Bf

as well as the state compone#itsés, are removed from28), and the problem is solved by using
the control inpuw, alone. The LQR matrices are setQo= diag(Q01, 50, 20, 20) andR = 5- 10".

The settling time for the maneuver is defined as the time reduor the mean longitude erréy

Table 1. Initial conditions (circular orbit)

Equinoctial variable Chaser Target
True longitude x1(0) = 150 deg x;(0)= 0 deg
Mean motion X>(0) = 0.001rad/s| X, = 0.001 rad/s
. x3(0)=0 x;=0
Eccentricity vector %:(0) = 0 X, = 0
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American Institute of Aeronautics and Astronautics



150

100

&1 (deg)

50

0 50 100 150 200

Time (hours)
Figure 1. Mean longitude error profile and +4.5 deg error band (circular orbit)

6 ><1O_3 T T T T

——&

Tracking error
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Time (hours)

Figure 2. Error variables & and /&5 + £ (circular orbit).

to reach and stay within 3% of its initial value (i.e.54leg).
The maneuver is simulated for 200 hours, corresponding @ootBital revolutions. The re-

sulting mean longitude error is reported in Figand converges to zero asymptotically, incurring a
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Figure 3. Control input u, (circular orbit).
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Figure 4. Mean longitude error profiles obtained with the proposed design (solid) and with an HCW-based
LQR using curvilinear coordinates (dashed): the two profiles are almost undistinguishable.

minor overshoot. The settling time is about 100 hours. Thedutn of the error variables, and
\JEE + &2, see (12) and Q9), is depicted in Fig2. It can be seen that the rendezvous objective is

achieved satisfactorily, despite the large initial seppana The control acceleratiom, is reported
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in Fig. 3 and is compatible with the thrust per unit mass delivered bgenn low-thrust engines
(which is in the order of 1 m/<? [3]). The delta-v required by the maneuver amounts to approx-
imately 52 m/s. A two-impulse phasing maneuver lasting 160r& would require a delta-v of
approximately 35 m/s, which is 30% lower than that of our gesiThis is explained by the fact
that the cost function in28) weights the control energy rather than the total delta-v.

It is worth noticing that the LTI systen?{)-(25) takes on a form similar to that of the HCW
equations, expressed in a curvilinear coordinate sys#énlp view of this analogy, it is expected
for the design in SeclV.A to match the performance of an LQR control scheme based on the
curvilinear HCW model. This is confirmed by Fig, where the mean longitude error profiles

obtained with the two controllers are displayed, for theecstsdy considered above.

B. Elliptical Orbit

Consider now a controlled spacecraft flown in an elliptidtshmilar to a Geostationary-Transfer-
Orbit or a Molniya orbit, with a semi-major axis equal to 2630n and an eccentricity of 0.7. The
orbital inclination must be corrected by 3 degrees and theesgraft must by re-phased by 160 deg
in the mean longitude. By denoting the controlled spaceasathe chaser and assuming a virtual
leader, the maneuvering problem can be cast into the carsidendezvous setting. The initial
conditions of the two satellites are reported in TableThe number of samples i81) is set to
n = 100.

The maneuver is simulated numerically by using the conte 1(40) tuned with

Q = diag(Q0055,5,5,1,1) andR = diag(1®, 1%, 10°). The tracking error signals resulting

Table 2. Initial conditions (elliptical orbit)

Equinoctial variable Chaser Target
True longitude x1(0) = 175 deg x;(0)=0deg
Mean motion X(0) = 0.00015rad/s  x; = 0.00015 rad/s
- x3(0) = 0.7 x5 =0.7
Eccentricity vector %(0) = 0 X, =0
Inclination vector x(0) = 0.0262 X5 =0
X6(0) = 0 x;=0
17 of 24
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Figure 5. True longitude error x; — x; and mean longitude error¢; (elliptical orbit).
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Figure 6. Error variables &, \/§§ + &2 and \/gg + &2 (elliptical orbit).

from the simulation are reported in Figsand6. Similarly to what observed for the circular case,
the control objective is achieved satisfactorily, desghitelarge initial inter-satellite separation (ap-

proximately 65230 km). The oscillations of the true londgerrorx; — x; in Fig. 5 are due to the
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Figure 7. Control input u (elliptical orbit).
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Figure 8. Profile of |[Ky1(1)].
natural dynamics of the formation, which moves along a lyigliptical orbit. In particular, the

positive peaks observed frotr= 200 hours onwards occur when the two spacecraft pass close to

the periapsis, whene, — X can be large even for a small mean longitude (i.e., phasa)&trThis
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Figure 9. Maneuver delta-v: controller (30) (dashed), and controller(40) (solid).

is precisely the reason why the mean longitude efras used instead of the true longitude error,
in the feedback scheme proposed in this work.

The control acceleratiom, resulting from the simulation, is reported in Fig.It can be noticed
that its magnitude is compatible with low-thrust proputsgystems. The spikes in the control
signals are due to the time-varying gain makigt), which promotes corrections of specific orbital
elements at specific points of the orbit (note that the sitrariacovers 30 orbital periods). In
particular, it is interesting to analyze the profile of the@®d entry in the first column df (1),
which represents the control gain from the mean longituder &; to the control inputv,. The
absolute value of this gain, reported in Fiyis maximal at the chaser periapsis= 0, see 89)-
(40) and Table2). This is in line with physical intuition, since the time detive of the mean
motion erroré, is more sensitive t@, at this point (seed2)-(23)), andé; can be controlled by
suitably varyings, (see £1)).

The performance of the controllet®) has been compared to that of the LQR feedback &y (
designed on the time-invariant moda#j. It is observed that30) can still stabilize the nonlinear
plant. As expected4() provides a higher fuel efficiency (see F&ggwhich reports the total delta-v

for the maneuver). Finally, it is worth remarking that the Wdased LQR presented in Section
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V.A fails to stabilize the considered elliptical reference.

VI. Conclusions

By using equinoctial variables, we derived a family of linead models describing the relative
motion between two satellites located at different angptsitions, within a given orbit. These
models have been exploited to design two linear quadragialagors solving the phasing control
problem. The results of numerical simulations indicate tha controller performance is adequate

for space missions involving low-thrust maneuvers, in lmtoular and elliptical orbits.

Appendix

A. Reference framefF

The inertial reference fram& adopted in this paper coincides with the equinoctial cowtd
system (EQW, see€l]) defined by the (unperturbed) target orbit, as illustratedrig. 10. Let

the vectorsz(t) € R® andz*(t) € R® describe the position and velocity of the chaser and the
target, respectively, in the Earth-Centered-Inertial [jE@me. Moreover, leC(-) be the direction
cosine matrix which transforms the ECI frame to the EQW frameé®(-) be the mapping from

cartesian coordinates to the orbital elemefjs The orbital elements of the chaser and the target,

w

\ Line of

\

\\Nodes

Equatorial
Plane

Target ‘ /
Q*

E

Figure 10. EQW frame.
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expressed with respect 1, are given byx(t) = ® (Az(t)) andx*(t) = ® (Az*(t)), respectively,

whereA = blockdiagC(z*(0)), C(z*(0))). Notice that in frame&F the nominal value of the target

inclination is 0 by definition.
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