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Abstract—The electricity market clearing process can be af-
fected to varying degrees by norms set by regulators. One possible
rule is the Uniform Purchase Price, which is implemented, for
example, in the Italian day-ahead market with the name of Prezzo

Unico Nazionale, which literally means unique national price.
This rule requires that all the consumers pay the same price
in all the market zones. On the contrary, producers receive the
zonal prices, which may differ from one zone to another. As a
consequence, traditional market clearing techniques cannot be
employed because of this difference in the paid and received
price, and current state-of-the-art methods still rely on heuristic
search procedures. Starting from a non-linear mixed integer
bilevel formulation of the clearing process in presence of uniform
purchase price, this paper shows how to obtain a mixed integer
linear programming model, which is computationally tractable
and able to solve exactly the uniform purchase price problem.
Numerical results are reported by testing the algorithm using
real data from the Italian day-ahead market.

Index Terms—Bilevel programming, Italian electricity market,
market clearing, marginal pricing, uniform purchase price.

NOMENCLATURE

A. Sets and Indices

Zπ Set of UPP zones.

Zζ Set of non-UPP zones.

Z Set of all zones, Z = Zπ ∪ Zζ .

i Market zone index, i ∈ Z .

Kπ
i Set of UPP consumers in zone i ∈ Zπ , Kπ = ∪iK

π
i .

Kp
i Set of non-UPP consumers in zone i ∈ Zπ , Kp=∪iK

p
i .

Kζ
i Set of consumers in zone i ∈ Zζ , Kζ = ∪iK

ζ
i .

Ki Set of all consumers in zone i ∈ Z , K = ∪iKi.

Pi Set of all producers in zone i ∈ Z , P = ∪iPi.

I. INTRODUCTION

The Uniform Purchase Price (UPP) is a market rule that

affects deeply the market clearing process. In a multi-zone

market, this rule requires that all the consumers (with few

exeptions) pay the same price in all the market zones. On the

contrary, the producers receive the zonal prices, which may

differ from one zone to another. The Italian day-ahead market

[1] is based on the UPP pricing method and the unique price

paid is termed Prezzo Unico Nazionale (PUN), i.e. unique

national price.

B. Constants

pdk Price submitted by consumer k in e/MWh, which

represents the maximum price he/she is willing to pay

in order to buy the quantity dk.

psp Price submitted by producer p in e/MWh, which

represents the minimum price he/she is willing to

receive in order to sell the quantity sp.

dmax
k Maximum quantity demanded by consumer k, in

MWh.

mk Economic merit order for consumer k, lower values

mean higher priority. If pdh > pdk then mh < mk, with

k, h ∈ Zπ . If pdh = pdk the merit order is assigned by

the market operator.

B Number of bits used in the binary conversion.

c Number of significant digits in the binary conversion.

ε Arbitrarily small positive parameter.

C. Variables

Dπ
i Total demand quantity executed in zone i ∈ Zπ and

pertaining to consumers k ∈ Kπ
i , in MWh.

dk Allocated/executed demand quantity for consumer k,

in MWh.

sp Allocated/executed supply quantity for producer p, in

MWh.

π Uniform purchase price, in e/MWh.

ζi Zonal price in zone i, in e/MWh.

u
g
k Binary variable, if u

g
k = 1 then pdk > π.

ue
k Binary variable, if ue

k = 1 then pdk = π.

bji Binary variable, used to convert an integer in binary

form.

Fij Flow from zone i to j, in MWh.

The UPP π is defined implicitly by the following condition:

π
∑

i∈Zπ

Dπ
i =

∑

i∈Zπ

Dπ
i ζi , (1)

where Dπ
i is the total demand quantity executed in zone

i ∈ Zπ and pertaining to consumers k ∈ Kπ
i , and ζi is the

zonal price in zone i. Therefore, the UPP π is the common

value paid by all the consumers such that the total monetary

amount collected by the market operator (MO) is the same



as if the consumers paid the zonal prices ζi. This allows to

collect exactly the amount needed to pay both the transmission

system operator and the producers [2]. Notice that, however,

all consumers are forced to pay a common price, hence, the

market clearing solution is not the same as if the consumers

had actually to pay the zonal prices.

In this work, a producer is any unit who submits a sell

or offer order. By contrast, a consumer is any operator who

submits a buy or bid order, and the consumers k ∈ Kπ paying

the UPP are termed UPP consumers. Any bid order belonging

to the UPP zones Zπ , i.e. the zones where the UPP pricing

method is implemented, is classified as follows:

1) in-the-money, if the submitted price pdk is strictly greater

than the UPP;

2) at-the-money, if the submitted price pdk is exactly equal

to the UPP;

3) out-of-the-money, if the submitted price pdk is strictly

lower than the UPP.

Given the above definitions, we can state the UPP rule as

follows:

1) any in-the-money bid order must be fully accepted, i.e.

dk = dmax
k ;

2) any at-the-money bid order can be partially executed,

i.e. 0 ≤ dk ≤ dmax
k ;

3) any out-of-the-money bid order must be fully rejected,

i.e. dk = 0.

The UPP pricing scheme allows exceptions to the UPP rule,

as for example the pumping units of hydroelectric production

plants in the Italian day-ahead market. These operators belong

to the UPP zones but pay the zonal prices and not the UPP.

In our model, these consumers are represented by the set Kp.

Another peculiarity of the UPP pricing method is that the

market orders are ranked according to a value assigned by the

MO and called merit order. The MO uses these values to rank

the orders by price and for those at the same price, the ranking

is established by using a set of given conditions, as for example

the time-stamp of submission. The priority established by the

merit order has to be respected, unless it conflicts with the

problem constraints.

Traditionally, the clearing problem for day-ahead markets is

solved by using a social welfare maximization [3], [4], defined

as follows:

max
dk,sp

∑

k∈K

pdkdk −
∑

p∈P

pspsp , (2)

which is desirable because the solution is both Pareto-optimal

[5] and economic efficient, i.e. it maximizes both the consumer

and producer surplus [6] (Fig. 1). Despite this, the approach

in (2) cannot be used with the UPP pricing scheme, because

it implies that both the consumers and the producers have to

pay and receive the same price, i.e. the zonal price [3]. By

contrast, the UPP problem allows for different prices within

the same zone. This means that it is necessary to develop a

specific method to solve the UPP market clearing problem.

Indeed, the current state-of-the-art methods for solving the

UPP problem (as the Italian PUN) are based mostly on
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Fig. 1. In blue the demand curve. In red the supply curve. The intersection
gives the market price.

heuristic methods. In [2] the UPP is fixed iteratively according

to any possible price of the demand curve. Then, for each

fixed UPP the bid orders are accepted or rejected by applying

the UPP rule, and a social welfare problem is employed

to compute the remaining variables. Finally, the optimum is

chosen as the one which attains the greatest social welfare.

In Europe, the algorithm used for market clearing, named

EUPHEMIA, has to face a UPP problem since February

2015, when the Italian day-ahead market was coupled with

the European market. The method adopted is still based on a

heuristic approach [4]. In this case the whole aggregate market

demand curve is iteratively analyzed until a solution is found

that satisfies (1). The European market clearing problem has

to face all the possible types of European orders (e.g. block,

complex, flexible orders [4]), and the iterative technique used

for handling the Italian PUN stressed even further the whole

process.

To summarize, the fundamental issues when facing the UPP

clearing problem can be outlined as follows:

1) the traditional social welfare maximization method can-

not be used to solve the UPP problem, because it implies

a common price for both bid and offer orders;

2) the method employed should be heuristic-free and

tractable, in order to avoid computational issues.

The main contribution of the approach proposed in this

paper is to formulate a mixed integer linear program (MILP)

able to address the above two issues. That is, the UPP solution

obtained from our MILP model is heuristic-free, tractable and

exact (at least up to the level of resolution of the current

market data). The proposed model is based on the marginal

pricing framework [3], [7], i.e. the zonal price is defined as

the dual variable of the relevant power balance constraint, and

our approach ensures that these variables correctly represent

the zonal prices, overcoming the specific problem posed by

the possible difference in the price paid and received within

the same zone. The MILP model is developed starting from

a non-linear bilevel problem with both continuous and binary

variables. Then, the bilevel model is recast as an equivalent

single level problem exploiting the linear form of its lower

level part and the strong duality property. This allows us to

gain access to the dual variables of the power balance con-
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Fig. 2. Derivation of the optimization model for UPP market clearing. Step 1:
definition of the initial bilevel model. Step 2: reformulation as an equivalent
single level problem, exploiting the linear form of its lower level part and the
strong duality property. Step 3: linearization to obtain an equivalent MILP
model by using a binary expansion and other techniques.

straints, i.e. the zonal prices. Finally, appropriate linearizations

are introduced, leading to an equivalent MILP model, Fig. 2.

This paper is organized as follows. Section II describes how

the MILP is derived. In Section III we compare both the real

PUN and the Italian zonal prices with the results obtained by

using our model. Section IV reports conclusions and ongoing

work.

II. THE MODEL

The proposed model is built starting from a bilevel opti-

mization problem. In general, a bilevel optimization problem

is structured as follows [8]:

max
x∈X

F (x, y∗) (3)

s.t. y∗ = max
y∈Y

f(x, y) , (4)

where (3) is the upper optimization problem and (4) is the

lower optimization problem, F , f are their respective objec-

tive functions, and X , Y are constraint sets. A fundamental

characteristic of a bilevel model is that the decision variables

x of the upper level problem are fixed parameters inside the

lower level problem. In the proposed method, the upper level

is used to compute the UPP and to manage all the integer

variables. By contrast, the lower level is used to compute the

zonal prices.

The upper optimization problem is specified as follows:

max
u
g

k
,ue

k
,π

∑

k∈Kπ

u
g
kp

d
kd

max
k +

∑

k∈Kπ

ue
kp

d
kdk

∗ (5)

s.t. π
∑

i∈Zπ

(

∑

k∈Kπ
i

u
g
kd

max
k +

∑

k∈Kπ
i

ue
kdk

∗
)

=

∑

i∈Zπ

ζ∗i

(

∑

k∈Kπ
i

u
g
kd

max
k +

∑

k∈Kπ
i

ue
kdk

∗
)

(6)

u
g
k

(

pdk − π − ε
)

≥ 0 ∀k ∈ Kπ (7)

ue
k

(

pdk − π
)

= 0 ∀k ∈ Kπ (8)

u
g
h ≥ u

g
k ∀h, k ∈ Kπ : mh < mk (9)

u
g
h ≥ ue

k ∀h, k ∈ Kπ : pdh > pdk (10)

u
g
k ∈ {0, 1} , ue

k ∈ {0, 1} ∀k ∈ Kπ, (11)

where dk
∗ and ζi

∗ are solutions of the lower level problem,

and ε is an arbitrarily small positive parameter.
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Fig. 3. Aggregate demand curve, π = 20 e/MWh. The part A is the (net)
consumer surplus. The amount actually paid by consumers is the rectangular
part B. The area A+B is the gross consumer surplus.

Assuming piecewise-constant market curves, the aggregate

demand curve can be graphically represented as in Fig. 3. The

key property is that any demand curve is always downward-

sloping (excluding the case of degenerate goods). This feature

is actively exploited by the objective function (5). Indeed, (5)

maximizes the area under the aggregate demand curve, labeled

by both A and B in Fig. 3, where A is the aggregate consumer

surplus. Relying on the downward-shape of the market demand

curve, the maximization of the area under the curve implies the

maximization of the consumer surplus, which is the objective

of any rational consumers. The condition (7) ensures that the

variable u
g
k can be equal to one only if the price pdk is strictly

greater than the UPP. Similarly, (8) requires that ue
k can be

equal to one only if the price pdk is exactly equal to the UPP.

This means that u
g
k and ue

k cannot be both equal to one.

Equation (6) is the UPP definition (1) reformulated by using

both the UPP rule and the binary variables u
g
k and ue

k, where

we use the following identity:

Dπ
i =

∑

k∈Kπ
i

u
g
kd

max
k +

∑

k∈Kπ
i

ue
kdk . (12)

The conditions (9)-(10) ensure the consecutive execution of

the bid orders, with a significant reduction in the search space

of the binary variables and a substantial improvement in the

computation time.

The objective function of the lower level problem is defined

as follows :

(

d∗k, s
∗
p, F

∗
ij , [ζ

∗
i ]
)

= arg max
dk,sp,Fij

∑

k∈Kζ

pdkdk +
∑

k∈Kp

pdkdk

+
∑

k∈Kπ

ue
kp

d
kdk −

∑

p∈P

pspsp . (13)

The objective function (13) acts as a social welfare maxi-

mization for all the operators present in the market with the

exception of both the in-the-money and the out-of-the-money

bid orders for the UPP consumers Kπ within the UPP zones

Zπ . In the first case, the demand quantities have to be fully

executed, i.e. dk = dmax
k , and dispatched. In the second case,

the orders must be fully rejected, i.e. dk = 0. By contrast,

if ue
k = 1, with k ∈ Kπ , then the bid orders can be partially



executed, i.e. 0 ≤ dk ≤ dmax
k , and the volumes are determined

by the lower level problem.

The power balance constraints in the lower level problem

are defined as follows:
∑

k∈K
p

i

dk +
∑

k∈Kπ
i

ue
kdk −

∑

p∈Pi

sp +
∑

j∈Z

Fij =

−
∑

k∈Kπ
i

u
g
kd

max
k [ζi ∈ R] ∀i ∈ Zπ (14)

∑

k∈K
ζ

i

dk −
∑

p∈Pi

sp +
∑

j∈Z

Fij = 0 [ζi ∈ R] ∀i ∈ Zζ , (15)

where (14) is the power balance for a UPP zone, and (15) is

the power balance for a non-UPP zone. Notice that the dual

variables, i.e. the zonal prices ζi, are represented in square

brackets. The fundamental difference in these two constraints

is that (14) has to manage separately the in-the-money and

the at-the-money bid orders. That is, all the in-the-money bid

orders have to be fully dispatched, i.e. dk = dmax
k , while the

at-the-money bid orders can be partially executed.

Notice that the bilevel approach precisely reflects the con-

sequence of the UPP rule, which requires to fully dispatch all

the in-the-money bid orders, and implies the full knowledge

of the zonal prices to compute properly the UPP.

Notice also that the lower level is a linear model because

the binary variables u
g
k and ue

k are fixed parameters inside

the lower level. Additional linear constraints can be added to

describe the network topology and to enforce bounds on the

lower level decision variables.

To compute the UPP π in (6) it is necessary to gain access to

the dual variables ζi. For this reason, the bilevel model has to

be recast as a single level problem. In the single level problem,

the objective function is that of the upper level problem, and

the constraints are the same of the upper level with the addition

of a set of necessary and sufficient conditions to embed the

lower level into the single level problem, represented by:

1) the constraints of the lower level (the primal problem);

2) the constraints of its dual problem;

3) the strong duality property, i.e. the requirement that the

values of the objective functions of both the primal and

the dual problem have to be equal.

Notice that this approach relies on the linearity of the lower

level, the interested reader is referred to [9, Sec. III], [10, Ch.

6]. In the single level problem there is no difference between

upper and lower level variables, and all these variables become

decision variables. Notice also that in (13), the variables dk
with k ∈ Kπ are meaningful, i.e. they represent the executed

volumes for the UPP consumers, only if ue
k = 1 (at-the-money

bid orders). When ue
k = 0, the executed quantity is dmax

k

if u
g
k = 1 (in-the-money bid orders), and zero otherwise, as

exploited in (12).

The single level model is a non-linear mixed integer prob-

lem. In particular, there are two types of non-linearities:

1) the product between a binary and a continuous variable,

as in (5)-(8), (13)-(14);

2) the product of two continuous variables with a binary

variable in (6), i.e., after rearranging:

∑

i∈Zπ

(

(π − ζi)
∑

k∈Kπ
i

ue
kdk

)

. (16)

The non-linearity of the first type, i.e. the product of a binary

with a continuous variable, can be removed by introducing an

auxiliary continuous variable, as is standard practice (see [11,

Ch. 2.8]).

The critical part is to linearize (16) without introducing any

approximation. Firstly, notice that the term
∑

k∈Kπ
i
ue
kdk is

most of the times zero. Indeed, it can differ from zero only

when pdk = π (we exploit strongly this property). Then, the

crucial step is to implement a binary expansion as in [12].

That is, to convert a positive integer number in binary form

using binary variables. Usually, this method is computationally

expensive because it requires a large number of additional

binary variables. However, we rely on the key feature that

most of the times the term under conversion is simply zero.

The binary conversion is implemented as follows:

10c
∑

k∈Kπ
i

ue
kdk =

B−1
∑

j=0

2jbji ∀i ∈ Zπ (17)

bji ∈ {0, 1} ∀j ∈ H, ∀i ∈ Zπ , (18)

where c is the number of significant digits in dk,

B = ⌊log
2
(U)⌋+ 1, U is the upper bound of the left-

hand side (LHS) in (17), ⌊·⌋ is the floor operator, and

H = {0, . . . , B − 1}. Notice that the upper bound U can be

computed in advance from the market data. In (17), the term

on the LHS is multiplied by 10c in order to obtain an integer

number. This is a fundamental step because it leads to an exact

discretization. Hence, (16) is replaced by:

∑

i∈Zπ

B−1
∑

j=0

2j(π − ζi)bji
10c

. (19)

After removing the remaining non-linearities, i.e. the prod-

ucts between binary and continuous variables, the final model

results in a MILP.

III. NUMERICAL RESULTS

In this section, we compare actual Italian market data [1]

with the results obtained from our model. We recall that the

Italian day-ahead market implements the UPP pricing method,

and the unique price paid by all the consumers is termed PUN.

The market data refer to May 5th, 2010. Notice that the PUN

is an hourly price, this means that there are up to 24 different

PUN each day. Fig. 4 shows the actual zonal prices and the

Italian PUN on the 8th hour. On average, for the considered

day, each hourly problem involves, 483 bid orders, 1268 offer

orders and 578 binary variables. The average time employed

to find the hourly solution is 3.036 seconds. In Fig. 5 are

reported the Cplex time needed to find the hourly solution and

the number of binary variables actually used in the problem.

The MILP model was run for each of the 24 hours and the
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Fig. 4. Real PUN and zonal prices in the Italian day-ahead market on the
8th hour of May 5th, 2010. The Italian UPP zones are: North, Centre-North,
Centre-South, South, Sicily and Sardinia.

TABLE I
MAY 5TH, 2010

Hour PUN (Real) PUN (Model) # Bida # Offerb

1 49.200000 49.200000 483 1194

2 44.333458 44.333458 492 1176

3 47.696949 47.696949 491 1174

4 44.391946 44.391946 490 1173

5 44.233295 44.233295 485 1178

6 36.529486 36.529486 489 1185

7 47.692413 47.692413 488 1200

8 68.133882 68.133882 481 1258

9 87.487872 87.487872 482 1297

10 88.087935 88.087935 482 1318

11 95.113566 95.113566 481 1327

12 94.086209 94.086209 480 1312

13 76.133796 76.133796 481 1307

14 72.139688 72.139688 481 1308

15 76.122751 76.122751 481 1311

16 82.873750 82.873750 480 1306

17 77.270914 77.270914 481 1315

18 74.044218 74.044218 485 1312

19 59.569805 59.569805 481 1301

20 59.789623 59.789623 481 1307

21 82.141510 82.141510 482 1322

22 77.172780 77.172780 483 1322

23 61.561795 61.561795 480 1293

24 55.877169 55.877169 475 1251

a Number of bid orders involved.
b Number of offer orders involved.

results compared with the actual data. The only assumption

made is that π < 3000 e/MWh. Notice that 3000 e/MWh is

the maximum price allowed in the Italian day-ahead market.

This assumption is used to set both ue
k = 0 and u

g
k = 1

if pdk = 3000. The model was implemented in GAMS 24.7.3

[13] and solved with Cplex 12.6.3.0 [14] on the NEOS-7 server

[15]. In Cplex, the relative gap was set to zero, i.e. the results

are proven optimal solutions. The values of the parameters in
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Fig. 5. Number of binary variables actually used in each hourly problem (bar
chart, left scale), and Cplex time needed to find the solution in seconds (line
chart, right scale)

(7) and (17) are ε=10−6, c=3, B=24.

For each of the 24 hours involved, the PUN, the real zonal

prices and the volumes executed at each submitted price,

exactly match the results of our model. Table I reports for

each hour the numerical values for the Italian PUN, the PUN

obtained from our model, the number of bid orders and the

number of offer orders involved.

The hours from the 1st to the 7th, and the 24th include

bid orders belonging to pumping units. We recall that these

orders are excluded from the UPP rule in the Italian market.

The proposed model correctly processes these orders, yielding

the correct PUN value (see the corresponding rows in Table

I).

IV. CONCLUSION

The Italian PUN regulation of the internal electricity market

has generated a considerable increase of the computational

complexity of the European market clearing process. In fact,

the European algorithm for market coupling (EUPHEMIA) ex-

ploits a heuristic iterative technique to solve the Italian market

subproblem. The proposed approach shows how to obtain a

MILP model computationally tractable and able to solve the

UPP problem without introducing any approximation, at least

as long as the model parameters are properly tailored to fit

the market data. The proposed MILP model can be solved

by using standard solvers. Ongoing research activities focus

on introducing block and complex orders in our framework

in order to solve the European market clearing problem as a

whole.
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