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Abstract—In this work, we study the problem of optimizing
energy bids for a photovoltaic (PV) power producer taking part
into a competitive electricity market characterized by financial
penalties for generation shortfall and surplus. The optimal
bidding strategy depends on the statistics of the PV power
generation and on the monetary penalties applied. We show
how to tune the bidding strategy on the basis of the weather
forecasts. To this purpose, an optimization procedure is devised
to mitigate the risk associated with the intermittent nature of
PV generation and maximize the expected profit of the producer.
We also investigate an approach to properly take into account
the seasonal variation and non stationary nature of PV power
generation statistics, by exploiting the knowledge of the amount
of energy that the plant can generate under clear-sky conditions.
The proposed bidding strategy is validated on a real data set
from an Italian PV plant.

Index Terms—Energy market, bidding strategy, photovoltaic
power generation, weather forecasts.

I. I NTRODUCTION

Energy generation from renewable energy sources (RES) is
one of the main targets for the development of the grid of the
future. Due to their intrinsic intermittent nature, integration
of RES in the grid causes serious problems to transmission
and distribution system operators, asking for procurementof
large quantities of reserve power. One possible way to mitigate
the uncertainty of RES generation is to require that producers
provide day-ahead generation profiles, and to apply penalties
if the actual generation profile differs from the schedule. On
the producers’ side, this calls for the development of suitable
bidding strategies to offer the right amount of energy and to
avoid penalties.

In this paper, we address the optimal bidding problem for a
photovoltaic (PV) power producer. Starting from a stochastic
model for PV power generation and a model for the electricity
market with financial penalties, we formulate and solve the
problem of finding the optimal bids maximizing the expected
profit of the producer. As for the case of wind power producers
(see, e.g., [1] and references therein), the optimal bidding strat-
egy turns out to depend on the PV power generation statistics
and the relative weight of imbalance penalties. Specifically, the
optimal offer at a certain time of the day is a suitable percentile
of the PV power probability distribution at the same time.

A peculiarity of the solar source is that power generation
is characterized by significant seasonal variations and its

statistics exhibits a non stationary behaviour. For instance, the
number of daylight hours, as well as the intensity of the solar
radiation and the average air temperature, change remarkably
over the year. As a consequence, PV power generation cannot
be modelled as a stationary stochastic process, its probability
distribution changing from day to day. Such a phenomenon has
a prominent role in PV power generation and may negatively
affect the optimal bidding strategy. A probability distribution
of PV power generation should be available for each day (or
some other coarser partition) of the year. Since such functions
are usually estimated from past data, a huge amount of record-
ings, spanning several years of plant operation, should be
collected for reliable probability distribution approximations.
To overcome the problem, this paper provides a technique
allowing one to modify the aforementioned bidding strategyto
properly take into account fluctuations of PV power generation
over the year, without having to resort to complex time-varying
stochastic models of PV power generation. The proposed
solution consists in normalizing the generated power with
respect to the power that the plant can generate under clear-sky
conditions.

Since the main source of uncertainty on PV generation is
related to the weather conditions of the day the bids refer
to (typically, the next day), the problem of obtaining accurate
forecasts of solar radiation at a given site has been deeply stud-
ied. Widely adopted approaches involve neural networks [2]
and classical linear models for time series forecasting [3].
A possible bidding strategy is to offer the power predicted
from the forecasts of solar radiation and the power curve
of the plant. Since this approach does not take into account
the pricing scheme for penalizing schedule deviations, it does
not handle properly the financial risk of incurring power
imbalance. For this reason, we also investigate a different
way to exploit the additional information contained in the
meteorological forecasts to improve the bidding strategies.
Similarly to what is done in [4] for a wind power plant,
assuming that day-ahead forecasts of solar radiation and air
temperature are available from a meteorological service, we
propose a two-stage bidding strategy. Given the meteorological
forecasts, each day is classified into one of several predefined
classes on the basis of the expected normalized daily energy.
Then, the bid profile for the next day is computed according
to the class the day is assigned to. The proposed bidding
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strategies are tested and validated on historical data froma
real PV plant.

The paper is structured as follows. In Section II, we for-
mulate the bidding problem and derive the optimal bidding
strategy. Section III describes how to include information
about generation under clear-sky conditions in the bid process
optimization. The use of weather forecasts and the related
classification strategy are addressed in Section IV. Section V
reports the experimental results obtained under differentpric-
ing scenarios using experimental data from a real Italian PV
plant. Finally, conclusions are drawn in Section VI.

II. OPTIMAL BIDDING STRATEGY

In this section the problem of finding the optimal PV energy
bids for an electricity market featuring financial penalties for
energy imbalance is formulated. The optimal solution is then
derived, in terms of the PV power statistics and the imbalance
penalties.

Let wm, m = 1, . . . ,M , be a set of random variables
representing the average active power generated by a PV
power plant over them-th sampling interval of the day and let
Cm denote the corresponding bid of active power for the same
interval. Typically the sampling time is one hour, therefore
M = 24. It is assumed that the PV producer is remunerated
with unitary price p > 0 for the actual generated energy,
whereas penalties are applied whenever the generated power
deviates from the bid. In particular,̄q ≥ 0 and λ̄ ≥ 0 are
the unitary penalties applied for energy shortfall and surplus,
respectively. Throughout the paper the pricesp, q̄ and λ̄ are
assumed to be constant and known beforehand. Hence, the net
hourly profit for the PV producer amounts to

J(Cm, wm) =pwm − q̄max{Cm − wm, 0}

− λ̄max{wm − Cm, 0}.
(1)

SinceJ(Cm, wm) in (1) is a stochastic quantity due to the
uncertainty on the generated powerwm, the optimal bidding
problem consists in determining the bidC∗

m maximizing the
expected profitE[J(Cm, wm)], i.e.

C∗

m = argmax
Cm

E[J(Cm, wm)], (2)

whereE[·] denotes expectation with respect to the generated
power statistics.

Let Fm(ω) denote the cumulative distribution function (cdf)
of the random variablewm, i.e. Fm(ω) = Pr(wm ≤ ω).
Moreover, letF−1

m (ν) = inf{ω : Fm(ω) ≥ ν}, ν ∈ [0, 1],
be the corresponding quantile function. It turns out that the
optimal solution to (2) is as follows [1]:

C∗

m = F−1
m

(

λ̄

λ̄+ q̄

)

, m = 1, . . . ,M. (3)

Computation ofC∗

m is illustrated in Figure 1.

III. E XPLOITING CLEAR-SKY GENERATION PROFILES

The effectiveness of the bidding strategy described above
might be hindered in practice by the non stationary behaviour
of the PV power statistics (see Figure 2). For this reason, we
propose to normalize both the generated power and the bid at
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Fig. 1. Example of empiricalcdf of wm (solid line). The optimal hourly
contract C∗

m
is the value ofω such that thecdf is equal to the market

parameterγ = λ̄/(λ̄+ q̄).

a given hour with respect to the power generated by the plant
under clear-sky conditions.

For a cloudless sky, the solar radiation at ground level takes
maximum values and is defined clear-sky solar radiation (Ics).
The generation profile of a PV plant hit by clear-sky solar
radiation is called clear-sky generation profile (wcs). It can
be estimated by using clear-sky solar radiation and the power
curve of PV modules. A general form of the power curve of
PV modules is provided by the PVUSA method [5], which
expresses the generated power as a function of solar radiation
and air temperature according to the equation:

w = aI + bI2 + cIT, (4)

whereP , I andT are respectively the generated power, solar
radiation and ambient temperature, anda, b and c are the
model parameters (typicallya > 0, b < 0, c < 0). Model (4)
is linear-in-the-parameters, so that parameter estimation can be
carried out very efficiently via classical least-squares methods.
Unfortunately, it is quite frequent that measurements of solar
radiation and air temperature are not available at the plantsite.
A heuristic approach to estimate the parameters of the PVUSA
model in the partial information case is presented in [6], which
relies on historical data of generated power, air temperature
forecasts and clear-sky solar radiation obtained through well-
known analitical models [7]. Given model (4), the clear-sky
generation profile can be computed by substituting in (4) the
clear-sky solar radiationIcs and air temperatureT :

wcs = aIcs + bI2cs + cIcsT. (5)

Denotewcs,m the average clear-sky PV power over them-th
hour of the day (to simplify notation, we omit the dependence
of wcs,m on the day of the year), and letwm = αmwcs,m.
It turns out thatαm ∈ [0, 1], sincewcs,m, being obtained
under the best irradiation conditions, represents an upper
bound onwm (see Figure 3). Moreover, parameterize the
bid Cm as Cm = βmwcs,m, βm ∈ [0, 1]. By substituting
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Fig. 2. Example of two different clear-sky generation profileswcs. The solid
line refers to a generic summer day, while the dashed line refers to a generic
winter day. Note the differences between the two curves bothin the number
of daylight hours and peak values.

the expressions ofwm and Cm into (1), we obtain that
J(Cm, wm) = wcs,mJ(βm, αm), where

J(βm, αm) =pαm − q̄max{βm − αm, 0}

− λ̄max{αm − βm, 0}.
(6)

The considered bidding problem can thus be reformulated as

β∗

m = argmax
βm

E[J(βm, αm)]. (7)

Let Fcs,m(α) denote thecdf of the random variableαm.
Similarly to the previous case the optimal solution to (7) isas
follows:

β∗

m = F−1
cs,m

(

λ̄

λ̄+ q̄

)

, m = 1, . . . ,M. (8)

The optimal bid is finally computed as

C∗

m = β∗

mwcs,m, m = 1, . . . ,M. (9)

The main advantage of the proposed bidding strategy is that
the seasonal variations of PV power generation are capturedby
the clear-sky PV power profilewcs,m. As a consequence, the
resulting normalized powerαm can be regarded as a stationary
process, thus limiting the adverse effect of seasonality onthe
bidding strategy. Note that strategy (9) does not use weather
forecasts to compute optimal bids.

IV. EXPLOITING WEATHER FORECASTS

In the previous section, contracts were determined assuming
to know only the prior PV power statistics, and clear-sky PV
power. Since the generated power is highly dependent on the
real solar radiation, meteorological forecasts for the daythe
bids refer to can help guess the generated power, and hence
refine and improve the reliability of the amount of bidden
energy. In this section, we assume that additional information
is available, namely the forecasts of solar radiationÎm and air
temperaturêTm, m = 1, . . . ,M , provided by a meteorological
service, and investigate how to exploit these forecasts in the
bidding strategy.
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Fig. 3. Clear-sky generation profilewcs (solid) and measured generation
profile w (dashed) in a day of October. Note thatw never exceedswcs.

A. Bidding power forecasts

Assuming that the power curve of the PV plant is available,
the most intuitive approach would be to offer the forecast PV
power profile computed by substituting the solar radiation and
air temperature forecasts into the equation of the power curve
(4):

Cm = aÎm + bÎ2m + cÎmT̂m, m = 1, . . . ,M. (10)

However, such a naive approach may lead to unsatisfactory
performance for the PV producers. First, inaccurate weather
forecasts may lead to unacceptable errors when predicting PV
power. Second, and more importantly, forecasts of generated
power do not take into account the pricep and the penalties
q̄ and λ̄. This implies that bidding these forecasts may be far
from optimal. For instance, consider the limit caseq̄ = 0, i.e.
power shortfalls are not penalized. Clearly, under this assump-
tion the optimal strategy is to offerCm = P̄ , m = 1, . . . ,M ,
where P̄ is an upper bound on the PV power, thus having
all the generated power remunerated at pricep. Similarly, if
λ̄ = 0, i.e. power surplus is not penalized, then the optimal
strategy is to offerCm = 0, m = 1, . . . ,M .

B. Weather forecast based classification

Motivated by the above discussion, in this paper we propose
a different approach to mitigate the effects of inaccurate
weather forecasts, while accounting for imbalance penalties.
The idea is to combine the optimal bidding strategy de-
scribed in Section III with a suitable classification strategy
based on power forecasts. Roughly speaking, the proposed
approach consists in training a classifier which maps a day
(represented by the corresponding power forecasts) to one of
several possible classes associated to different levels ofdaily
generated energy. Then, the bid made for that day is the
optimal contract computed as in equation (9), but using the
conditional normalized PV powercdf of the corresponding
class.



4

Partition the interval[0, 1) into s contiguous, non overlap-
ping intervalsEi = [ǫi−1, ǫi), i = 1, . . . , s, such that

0 = ǫ0 < ǫ1 < · · · < ǫs−1 < ǫs = 1. (11)

The normalized PV energy generated over dayd is computed
as

E(d) =

∑M

m=1 w
(d)
m

∑M

m=1 w
(d)
cs,m

, (12)

where w
(d)
m denotes the average PV power generated over

the m-th sampling interval of dayd, andw
(d)
cs,m denotes the

corresponding clear-sky PV power. Then, the classification
rule is defined as:

d ∈ Ci ⇔ E(d) ∈ Ei, i = 1, . . . , s, (13)

whereCi represents thei-th class. Clearly, the actual normal-
ized daily energyE(d) can be computed only a posteriori.
Hence, since the bids must be made in advance, dayd is
classified a priori on the basis of the corresponding PV power
forecastsŵ(d)

m , m = 1, . . . ,M . To this aim, we train an
automatic classifier, which takes as inputs the PV power
forecasts and returns the class the day will likely belong to.
Training is performed by creating a training set from past data
of generated power and forecast power. First, each dayd of
the training set is assigned to the corresponding true class
C(d) ∈ C = {C1, . . . , Cs} according to (13). Then, features
represented by the predicted normalized PV energyf (d) for
day d are computed as

f (d) =

∑M

m=1 ŵ
(d)
m

∑M

m=1 w
(d)
cs,m

, (14)

where ŵm is computed as in equation (10) starting from
forecasts of solar radiation and air temperature. The pairs
(

C(d), f (d)
)

, d = 1, . . . , DT , whereDT is the cardinality of
the training set, are used to train a classifierH which, given
a featuref , returns a classH(f) ∈ C. Several approaches can
be adopted to estimate the functionH [8]. In this paper, since
the featuresf (d) are scalar, we adopt the approach based on
pairwise separation and Robust Linear Programming (RLP)
[9].

Having the classifierH available, the last step is to de-
termine the optimal bidding strategy for each of the classes
Ci ∈ C. This boils down to substituting thecdf Fcs,m(·) in
(8) with the conditionalcdf Fcs,m(α | Ci) = Pr(αm ≤ α | Ci)
for each classCi, where Pr(· | Ci) means that the statistics is
restricted only to days belonging to the classCi.

V. EXPERIMENTAL RESULTS

In this section, the proposed bidding strategies are validated
on experimental data taken from a real Italian PV plant. The
bidding strategies introduced in Section II and III, without any
information about weather forecasts, will be denoted by OB
and OB+N respectively. The bidding strategy described in Sec-
tion IV-A, which uses weather forecasts and PV power curve
to compute (and offer) PV power forecasts will be denoted
by WF+PC. The bidding strategy proposed in Section IV-B,

which combines the use of weather forecasts for classification
and normalization, will be denoted by WF+OB+N.

The following data about a real 825 KWp PV power plant
are available:

• generated powerw(d)
m

• solar radiation forecastŝI(d)m

• air temperature forecastŝT (d)
m ,

wherem = 1, . . . , 24, d = 1, . . . , 366. The number of days
spanned by the data set corresponds to one year of recordings
in 2012. The data set is split into a training set composed of
the data of the first 240 days (about 8 months of recordings)
and a validation set containing the data of the remaining 126
days (about 4 months of recordings).

For the bidding strategies OB and OB+N, the training set is
used to compute the relevant empiricalcdf Fm(·) or Fcs,m(·).
Then, for fixed penalties̄q and λ̄, the bidsCm are computed
using (3) or (9), depending on the strategy adopted.

Concerning the bidding strategy WF+PC, data points
(w

(d)
m , I

(d)
cs,m, T̂

(d)
m ) in the training set are used to estimate the

power curve (4) of the PV plant by adopting the approach in
[6]. The estimated power curve, the forecasts of solar radiation
Î
(d)
m and air temperaturêT (d)

m are used to compute the bidsCm

through (10) on the validation set.
With reference to the bidding strategy WF+OB+N, the

normalized energy range[0, 1) is partitioned into two intervals
by choosings = 2, ǫ1 = 0.6068. In this way each day is
classified as a “sunny” day, when the normalized generated
energy exceedsǫ1 (about 60% of the maximum amount of
producible energy), or a “cloudy” day, when the normalized
generated energy is less thanǫ1. For each dayd in the training
set, the featuref (d) is computed as in (14). Training data is
then used to estimate a classifierH and to determine the bids
Cm for each of the two classesC1 and C2, as described in
Section IV-B. The resulting classifier has the form:

H(f) =

{

C1 if f < f∗

C2 iff ≥ f∗,
(15)

where f∗ = 0.8009 is a threshold computed by training
the RLP classifier [9]. Note thatf∗ differs from ǫ1 mainly
due to the errors in the forecasts of solar radiation and air
temperature.

The performance of the bidding strategies OB, OB+N,
WF+PC and WF+OB+N has been evaluated using the data
contained in the validation data set under two scenarios.

In Scenario I, the energy surplus is supposed to be not re-
munerated at all, i.e.̄λ = p. The following market parameters
are assumed:p = 0.1027 e/Kwh and q̄ = 0.0150 e/Kwh.

Differently, in Scenario II, we setp = 0.1027 e/KWh, and
assume that the power exceeding the upper bound is penalized,
but nevertheless remunerated at0.5p, i.e. λ̄ = 0.5p. Moreover,
we setq̄ = 0.0150 e/KWh as in the first scenario.

The average daily profits achieved by the proposed bidding
strategies in both scenarios are reported in Table I. By compar-
ing the first with other rows, it is clear that, in both scenarios,
WF+PC performs significantly worse than the other bidding
strategies. As stated previously, this is due to the fact that
available solar radiation forecasts are typically very coarse and
inaccurate.



5

With reference to Scenario I, choosing WF+PC as a ref-
erence profit, we obtain an increase of the average net daily
profit of 8.6% through OB, 10.1% through OB+N and 11.1%
through WF+OB+N.

In Scenario II, the benefits introduced by normalization and
classification are less evident than before (comparing the first
column with the second one of Table I). This outcome is due
to the fact that the power surplus is now remunerated to some
extent and consequently, the PV producer incurs penalties less
frequently.

For comparison purposes, we consider the ideal strategy,
denoted by R, assuming that the generation profile of the
next day is known in advance. SinceCm = wm in this case,
the producer never incurs penalties, and therefore the profit is
maximal. This makes it possible to evaluate the performanceof
the proposed bidding strategies with respect to the maximum
achievable. With strategy R, the average daily profit would be
244.98e (last row of Table I). This implies that applying
WF+OB+N allows one to fill 47.62% of the gap between
WF+PC and R in Scenario I, and 24.13% in Scenario II. In
the first scenario, the improvement obtained by WF+OB+N is
remarkable. In the second scenario, the improvement is smaller
for the reasons described above, but still significant.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of optimizing energy bids for a
PV power producer on a competitive electricity market has
been addressed. Since electricity market regulations provide
penalties for shortfall and surplus of the energy actually
produced with respect to the contracted bids, an optimization
approach has been proposed in which the producer profit is
maximized as a function of the penalties and the generated
power statistics.

A first improvement of the basic bidding strategy is obtained
by normalizing the historical generated power data throughthe
theoretical clear-sky daily power profile of the PV plant. This
amendment allows one to get rid of non stationary components
of the PV power historical data due to several variables, such
as the number of daylight hours or the intensity of solar
radiation in different days of the year.

If forecasts of air temperature and solar radiation are
available at the plant site, the bidding strategy can still be
improved by suitably exploiting this additional information. To
this purpose a classification step has been added to the overall
optimization procedure. Information in historical PV power
data and weather forecasts is used to train a classifier which

TABLE I
AVERAGE DAILY PROFITS(e) IN SCENARIO I AND II WITH DIFFERENT

BIDDING STRATEGIES

λ̄ = p λ̄ = 0.5p

WF+PC 198.59 213.49
OB 215.68 218.57
OB+N 218.75 220.92
WF+OB+N 220.68 221.09
R 244.98 244.98

allows for using the PV power conditional probability dis-
tribution function in place of the unconditional distribution in
the optimization problem. The approach improves consistently
the quality of the bidding strategy, both with respect to the
unconditional case and to the case in which the bidding plan
is computed simply by offering the PV power corresponding
to the solar radiation and air temperature forecasts.

The devised algorithms have been tested on historical
real data of generated power, and solar radiation and air
temperature forecasts gathered in a PV plant over a period
covering one year. The obtained quantitative results confirm
the effectiveness of the proposed procedure, showing the roles
of normalization and classification in different scenarios.

Future research will be devoted to extend the proposed
approach to the case where a storage device is available and
the market price is a stochastic variable. An additional issue
deserving investigation regards different cost functionsto be
optimized in scenarios where the PV plant is exploited by
a transmission/distribution system operator as an additional
degree of freedom to improve power dispatching and grid
operation reliability.
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