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Abstract—In this work, we study the problem of optimizing statistics exhibits a non stationary behaviour. For insathe
energy bids for a photovoltaic (PV) power producer taking pat  number of daylight hours, as well as the intensity of thersola
into a competitive electricity market characterized by financial radiation and the average air temperature, change remgrkab

penalties for generation shortfall and surplus. The optima th A PV ti t
bidding strategy depends on the statistics of the PV power over the year. AS a consequence, power generation canno

generation and on the monetary penalties applied. We show b€ modelled as a stationary stochastic process, its piigjpabi
how to tune the bidding strategy on the basis of the weather distribution changing from day to day. Such a phenomenon has
forecasts. To this purpose, an optimization procedure is désed g prominent role in PV power generation and may negatively
to m|t|gate_the risk ass_oqlated with the intermittent nature of affect the optimal bidding strategy. A probability distitipn
PV generation and maximize the expected profit of the produae . .
We also investigate an approach to properly take into accoun of PV power generatlon_§h0uld be ava|lablg for each day.(or
the seasonal variation and non stationary nature of PV power SOme other coarser partition) of the year. Since such fonsti
generation statistics, by exploiting the knowledge of thermount are usually estimated from past data, a huge amount of record
of energy that the plant can generate under clear-sky condibns. jngs, spanning several years of plant operation, should be
The proposed bidding strategy is validated on a real data set oq|ected for reliable probability distribution approxations.
from an ltalian PV plant. : - .
To overcome the problem, this paper provides a technique
Index Terms—Energy market, bidding strategy, photovoltaic  g|lowing one to modify the aforementioned bidding strategy
power generation, weather forecasts. properly take into account fluctuations of PV power generati
over the year, without having to resort to complex time-uagy
|. INTRODUCTION stochastic models of PV power generation. The proposed
Energy generation from renewable energy sources (RESp@ution consists in normalizing the generated power with
one of the main targets for the development of the grid of thiespect to the power that the plant can generate undersigar-
future. Due to their intrinsic intermittent nature, intaggon conditions.
of RES in the grid causes serious problems to transmissiorSince the main source of uncertainty on PV generation is
and distribution system operators, asking for procureroéntrelated to the weather conditions of the day the bids refer
large quantities of reserve power. One possible way to atitig to (typically, the next day), the problem of obtaining aater
the uncertainty of RES generation is to require that producdorecasts of solar radiation at a given site has been detply s
provide day-ahead generation profiles, and to apply pesaltied. Widely adopted approaches involve neural networks [2]
if the actual generation profile differs from the schedule. Cand classical linear models for time series forecasting [3]
the producers’ side, this calls for the development of &léta A possible bidding strategy is to offer the power predicted
bidding strategies to offer the right amount of energy and foom the forecasts of solar radiation and the power curve
avoid penalties. of the plant. Since this approach does not take into account
In this paper, we address the optimal bidding problem forthe pricing scheme for penalizing schedule deviationspésd
photovoltaic (PV) power producer. Starting from a stocicastnot handle properly the financial risk of incurring power
model for PV power generation and a model for the electricitynbalance. For this reason, we also investigate a different
market with financial penalties, we formulate and solve thgay to exploit the additional information contained in the
problem of finding the optimal bids maximizing the expectetheteorological forecasts to improve the bidding strategie
profit of the producer. As for the case of wind power produce&milarly to what is done in [4] for a wind power plant,
(see, e.g., [1] and references therein), the optimal biglgirat- assuming that day-ahead forecasts of solar radiation and ai
egy turns out to depend on the PV power generation statisttesnperature are available from a meteorological serviee, w
and the relative weight of imbalance penalties. Specificdle propose a two-stage bidding strategy. Given the meteoigzbg
optimal offer at a certain time of the day is a suitable pefiten forecasts, each day is classified into one of several prestifin
of the PV power probability distribution at the same time. classes on the basis of the expected normalized daily energy
A peculiarity of the solar source is that power generatiofhen, the bid profile for the next day is computed according
is characterized by significant seasonal variations and fts the class the day is assigned to. The proposed bidding



strategies are tested and validated on historical data fron

real PV plant. !
The paper is structured as follows. In Section II, we foi
mulate the bidding problem and derive the optimal biddin 08l i

strategy. Section Il describes how to include informatio
about generation under clear-sky conditions in the bid ggsc
optimization. The use of weather forecasts and the relat 0o
classification strategy are addressed in Section IV. Sedtio
reports the experimental results obtained under diffepeit
ing scenarios using experimental data from a real Italian F
plant. Finally, conclusions are drawn in Section VI.
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IIl. OPTIMAL BIDDING STRATEGY

In this section the problem of finding the optimal PV energ 0
bids for an electricity market featuring financial penatfer ® m
energy imbalance is formulated. The optimal solution isithe
derived, in terms of the PV power statistics and the imbaangig. 1. Example of empiricatdf of w,y, (solid line). The optimal hourly
penalties. contract Cy, is the value ofw such that thecdf is equal to the market

Let w,,, m = 1,...,M, be a set of random variablesParametery = M(A +q).
representing the average active power generated by a PV

ower plant over then-th sampling interval of the day and let_ . .
gm derl?ote the correspondingpbidgof active power fo); the sameo o hour with respect to the power generated by the plant

. : . : . under clear-sky conditions.

interval. Typically the sampling time is one hour, therefor F loud| kv th | diati t d levelsak
M = 24. It is assumed that the PV producer is remunerated ora coul €ss s g ée?o acrj rall & 'Ol? a ?round_ ?;/e axe
with unitary pricep > 0 for the actual generated energymaxImum values and is defined clear-sky solar radiatior) (

whereas penalties are applied whenever the generated po‘\l;\%? g_ene_ratlon profile of a PV plan_t hit by_ clear-sky solar
adiation is called clear-sky generation profite.{). It can

deviates from the bid. In particulag, > 0 and A > 0 are L imated b ) | K | diati dth
the unitary penalties applied for energy shortfall and kusp € estimated by using clear-sky solar radiation and the powe

respectively. Throughout the paper the prigeg and X are curve of PV modules. A general form of the power curve of

assumed to be constant and known beforehand. Hence, thel:)n\étmOleles is provided by the PVUSA method [5], which

hourly profit for the PV producer amounts to expresses the generated power as a function of solar kadiati
and air temperature according to the equation:

L
600

O R

J(Cony Win) =pwy, — gmax{C, — Wy, 0} 1) ,
— Amax{w,, — Cy,,0}. w=al +0bI“+cIT, (4)

Since J(C,,, wy,) in (1) is a stochastic quantity due to thewhereP, I andT are respectively the generated power, solar
uncertainty on the generated powey,, the optimal bidding radiation and ambient temperature, amdb and ¢ are the
problem consists in determining the bigf, maximizing the model parameters (typically > 0, b < 0, ¢ < 0). Model (4)
expected profiE[J(Ch,, wy,)], i.€. is linear-in-the-parameters, so that parameter estimaao be
. carried out very efficiently via classical least-squareshods.

Crp = arg mff(E[J(Cm’ W)}, @) Unfortunately,)i/t is quite );requent that measurqements ddirso
iation and air temperature are not available at the sitent
euristic approach to estimate the parameters of the PVUSA
model in the partial information case is presented in [6]iclvh
relies on historical data of generated power, air tempegatu
forecasts and clear-sky solar radiation obtained througlt w
Hmown analitical models [7]. Given model (4), the clear-sky
generation profile can be computed by substituting in (4) the
clear-sky solar radiatioii., and air temperaturé’

where E[] denotes expectation with respect to the generat%sﬁg
power statistics.

Let F,,,(w) denote the cumulative distribution functiocdf)
of the random variablew,,, i.e. F,,(w) = Prlw, <w).
Moreover, letF t(v) = inf{w : F,(w) > v}, v € [0,1],
be the corresponding quantile function. It turns out that t
optimal solution to (2) is as follows [1]:

A
* —1 o
C,, =F, <—5\+q> ; m=1,..., M. (3) Wes = alps 4+ bI2, + ¢l T. (5)

Computation ofC7, is illustrated in Figure 1. Denotew,, ., the average clear-sky PV power over theth
hour of the day (to simplify notation, we omit the dependence

I1l. EXPLOITING CLEAR-SKY GENERATION PROFILES of wes.m ON the day of the year), and let,, = o, wes m-

The effectiveness of the bidding strategy described abolteturns out thata,, € [0,1], since w.s,, being obtained
might be hindered in practice by the non stationary behaviounder the best irradiation conditions, represents an upper
of the PV power statistics (see Figure 2). For this reason, weund onw,, (see Figure 3). Moreover, parameterize the
propose to normalize both the generated power and the bicbat C,,, as C,, = Binwes,m, Bm € [0,1]. By substituting
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Fig. 2. Example of two different clear-sky generation pesfib.s. The solid Fig. 3. Clear-sky generation profile.s (solid) and measured generation
line refers to a generic summer day, while the dashed lirerseb a generic profile w (dashed) in a day of October. Note thatnever exceeds.s.

winter day. Note the differences between the two curves bothe number

of daylight hours and peak values.

A. Bidding power forecasts

the expressions ofv,, and Cy, into (1), we obtain that  aAssuming that the power curve of the PV plant is available,

J(Cry W) = Wes,m (Bm, o), Where the most intuitive approach would be to offer the forecast PV
J (B, 0tm) =patm — qmax{Bm — tm, 0} power profile computed by substituting the solar radiatiod a
— Amax{am — B, 0} (6)  air temperature forecasts into the equation of the powerecur

):
The considered bidding problem can thus be reformulated as

— 7 72 T _
B = argmax BLI (B, )] (@ Cm =0ttt el m =

,...,M. (10)
However, such a naive approach may lead to unsatisfactory

performance for the PV producers. First, inaccurate weathe

forecasts may lead to unacceptable errors when prediciihg P

Let Fes . (a) denote thecdf of the random variabley,,.
Similarly to the previous case the optimal solution to (7ass

follows: _ power. Second, and more importantly, forecasts of gergtrate
g — p! (L) 7 m=1,..., M. (8) Power do not take into account the pripeand the penalties
AN+ g and \. This implies that bidding these forecasts may be far
The optimal bid is finally computed as from optimal. For instance, consider the limit cage- 0, i.e.
. . power shortfalls are not penalized. Clearly, under thisiegs
Cr, = BrWes.m, m=1,..., M. (9) 3

tion the optimal strategy is to offet,,, = P,m=1,..., M,
The main advantage of the proposed bidding strategy is thetere P is an upper bound on the PV power, thus having
the seasonal variations of PV power generation are caphyredall the generated power remunerated at ppc&imilarly, if
the clear-sky PV power profile,, ,,,. As a consequence, thel = 0, i.e. power surplus is not penalized, then the optimal
resulting normalized power,, can be regarded as a stationargtrategy is to offelC,, =0, m=1,..., M.
process, thus limiting the adverse effect of seasonalityhen
bidding strategy. Note that strategy (9) does not use weathe L
forecasts to compute optimal bids. B. Weather forecast based classification
Motivated by the above discussion, in this paper we propose
IV. EXPLOITING WEATHER FORECASTS a different approach to mitigate the effects of inaccurate
In the previous section, contracts were determined asgumimeather forecasts, while accounting for imbalance perslti
to know only the prior PV power statistics, and clear-sky P¥he idea is to combine the optimal bidding strategy de-
power. Since the generated power is highly dependent on #egibed in Section Il with a suitable classification stepte
real solar radiation, meteorological forecasts for the ttey based on power forecasts. Roughly speaking, the proposed
bids refer to can help guess the generated power, and heapproach consists in training a classifier which maps a day
refine and improve the reliability of the amount of biddeirepresented by the corresponding power forecasts) to bne o
energy. In this section, we assume that additional infoionat several possible classes associated to different levedsitf
is available, namely the forecasts of solar radiatignand air generated energy. Then, the bid made for that day is the
temperaturd’,, m = 1,..., M, provided by a meteorological optimal contract computed as in equation (9), but using the
service, and investigate how to exploit these forecastfién tconditional normalized PV powerdf of the corresponding
bidding strategy. class.



Partition the interval0, 1) into s contiguous, non overlap- which combines the use of weather forecasts for classificati
ping intervalss; = [¢;—1,¢€;), i = 1,...,s, such that and normalization, will be denoted by WF+OB+N.
The following data about a real 825 KWp PV power plant

O=e <er < - <e1<e =1 (11)  are available:

d
The normalized PV energy generated over dag computed ¢ generated DOW@'Ur(n) (4
as « solar radiation forecasts(p)
@ SM wd . air temperature forecasi\?,
EY = ZM w7 (12) wherem = 1,...,24, d = 1,...,366. The number of days
m=1 "7¢s,m

spanned by the data set corresponds to one year of recordings
where wgg) denotes the average PV power generated ov8r2012. The data set is split into a training set composed of
the m-th sampling interval of dayl, and w'?,, denotes the the data of the first 240 days (about 8 months of recordings)

corresponding clear-sky PV power. Then, the classificati@d a validation set containing the data of the remaining 126

rule is defined as: days (about 4 months of recordings).
4 For the bidding strategies OB and OB+N, the training set is
deC & EWeg, i=1,...,s, (13) used to compute the relevant empiricef F,,,(-) of F.q ., (-).

_ . Then, for fixed penaltieg and A, the bidsC,, are computed
where(C; represents théth class. Clearly, the actual normal using (3) or (9), depending on the strategy adopted.

. . (d) . .
:-legcgagnizetrﬁgEbi dSC?nnugebzomggf?nogg\/:ng:sgr lorl. Concerning the bidding strategy WF+PC, data points
’ , 8 @ 1l Tﬁ{i)) in the training set are used to estimate the

classified a priori on the basis of the corresponding PV pow Sfrm > fes,mo . .
forecastsw,(,f) m — 1. M. To this aim. we train an POWer curve (4) of the PV plant by adopting the approach in

automatic classifier which takes as inouts the PV pow 6(]. The estimated power curve, the forecasts of solar tadia
' P b 4 and air temperatur’ﬁ,(f) are used to compute the bids,

forecasts and returns the class the day will likely belong tt rough (10) on the validation set
Training is performed by creating a training set from pasada With reference to the bidding strategy WF+OB+N, the

of gengrgted power an_d forecast power. First, e_:ach(blaf/ normalized energy rande, 1) is partitioned into two intervals
the training set is assigned to the corresponding true class . . :
¢ e ¢ = {Ci,...,C,} according to (13). Then, features choosings = 2, &, = 0.60G8. In this way each day is

represented by the predicted normalized PV enefi@y for classified as a “sunny” day, when the no_rmallzed generated
energy exceeds; (about 60% of the maximum amount of
day d are computed as

producible energy), or a “cloudy” day, when the normalized

@ _ ng:l WP generated energy i; less than For eqch dayl in the_ training _
7= S, (14)  set, the featurg© is computed as in (14). Training data is
m=1 Wes;m then used to estimate a classifiérand to determine the bids

where w,, is computed as in equation (10) starting front’,, for each of the two class&$, and (., as described in
forecasts of solar radiation and air temperature. The paBsction IV-B. The resulting classifier has the form:
(€@, D), d =1,..., Dy, where Dy is the cardinality of C if f<
the training set, are used to train a classifierwhich, given H(f)= { C; it f > [+ (15)
a featuref, returns a clas#/(f) € C. Several approaches can ] - o
be adopted to estimate the functiéh([8]. In this paper, since Where f* = 0.8009 is a threshold computed by training
the featuresf(? are scalar, we adopt the approach based ¢ RLP classifier [9]. Note thaf* differs from ¢; mainly
pairwise separation and Robust Linear Programming (Rkaye to the errors in the forecasts of solar radiation and air
9. temperature. o _

Having the classifier] available, the last step is to de- 1nhe performance of the bidding strategies OB, OB+N,

termine the optimal bidding strategy for each of the class¥¢F*PC and WF+OB+N has been evaluated using the data
C; € C. This boils down to substituting thedf .. (-) in contained in the validation data set under two scenarios.

(8) with the conditionakcdf F.,,(a|C;) = Pllam < a|C;) In Scenario |, theﬁenergy surplus i; supposed to be not re-
for each clas€;, where P(-|C;) means that the statistics isunerated at all, i.e = p. The following market parameters
restricted only to days belonging to the clags are assumed = 0.1027 €/Kwh andg = 0.0150 €/Kwh.

Differently, in Scenario Il, we set = 0.1027 €/KWh, and
assume that the power exceeding the upper bound is penalized
but nevertheless remunerateddip, i.e. A = 0.5p. Moreover,

In this section, the proposed bidding strategies are alilawe setg = 0.0150 €/KWh as in the first scenario.
on experimental data taken from a real Italian PV plant. The The average daily profits achieved by the proposed bidding
bidding strategies introduced in Section Il and Ill, withamy strategies in both scenarios are reported in Table |. By @mp
information about weather forecasts, will be denoted by OBg the first with other rows, it is clear that, in both sceoayi
and OB+N respectively. The bidding strategy described oy SeNF+PC performs significantly worse than the other bidding
tion IV-A, which uses weather forecasts and PV power curgtrategies. As stated previously, this is due to the fact tha
to compute (and offer) PV power forecasts will be denotemzailable solar radiation forecasts are typically veryrseand
by WF+PC. The bidding strategy proposed in Section IV-Bpaccurate.

V. EXPERIMENTAL RESULTS



With reference to Scenario |, choosing WF+PC as a redflows for using the PV power conditional probability dis-
erence profit, we obtain an increase of the average net daifpution function in place of the unconditional distrin in
profit of 8.6% through OB, 10.1% through OB+N and 11.1%he optimization problem. The approach improves condisten
through WF+OB+N. the quality of the bidding strategy, both with respect to the

In Scenario Il, the benefits introduced by normalization arichconditional case and to the case in which the bidding plan
classification are less evident than before (comparing tke fiis computed simply by offering the PV power corresponding
column with the second one of Table 1). This outcome is due the solar radiation and air temperature forecasts.
to the fact that the power surplus is now remunerated to somelhe devised algorithms have been tested on historical
extent and consequently, the PV producer incurs penatigss Ireal data of generated power, and solar radiation and air
frequently. temperature forecasts gathered in a PV plant over a period

For comparison purposes, we consider the ideal strateggvering one year. The obtained quantitative results aonfir
denoted by R, assuming that the generation profile of thee effectiveness of the proposed procedure, showing tes ro
next day is known in advance. Sin€g, = w,, in this case, of normalization and classification in different scenarios
the producer never incurs penalties, and therefore thetjisofi Future research will be devoted to extend the proposed
maximal. This makes it possible to evaluate the performaficeapproach to the case where a storage device is available and
the proposed bidding strategies with respect to the maximdhe market price is a stochastic variable. An additionaless
achievable. With strategy R, the average daily profit wowdd tsieserving investigation regards different cost functitmbe
244.98€ (last row of Table ). This implies that applyingoptimized in scenarios where the PV plant is exploited by
WF+OB+N allows one to fill 47.62% of the gap betweem@ transmission/distribution system operator as an additio
WF+PC and R in Scenario I, and 24.13% in Scenario II. ldegree of freedom to improve power dispatching and grid
the first scenario, the improvement obtained by WF+OB+N @peration reliability.
remarkable. In the second scenario, the improvement idesmal
for the reasons described above, but still significant. REFERENCES
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TABLE |
AVERAGE DAILY PROFITS(€) IN SCENARIO| AND || WITH DIFFERENT
BIDDING STRATEGIES

A=p A =0.5p
WF+PC 198.59 213.49
OB 215.68 218.57
OB+N 218.75 220.92
WF+0OB+N 220.68 221.09

R 244.98 244.98




