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ABSTRACT

A class of dynamic threshold models is proposed, for describing the upset of collec-
tive actions in social networks. The agents of the network have to decide whether
to undertake a certain action or not. They make their decision by comparing the
activity level of their neighbours with a time-varying threshold, evolving according
to a time-invariant opinion dynamic model. Key features of the model are a pa-
rameter representing the degree of self-confidence of the agents, and the mechanism
adopted by the agents to evaluate the activity level of their neighbours. The case
in which a radical agent, initially eager to undertake the action, interacts with a
group of ordinary agents, is considered. The main contribution of the paper is the
complete characterisation of the asymptotic behaviours of the network, for three
different graph topologies. The asymptotic activity patterns are determined as a
function of the self-confidence parameter and of the initial threshold of the ordi-
nary agents. Numerical validation on a real ego network shows that the theoretical
results obtained for simple graph structures provide useful insights on the network
behaviour in more complex settings.
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1. Introduction

A key problem in social sciences is that of understanding the complex relationships
between the attitude of individuals and their collective behaviour. The main challenge
in this context is posed by modelling and analysing the way in which the evolution of
the individuals’ opinions affects their will of undertaking or not a certain action. In
fact, it is widely recognised that this underlying mechanism is at the basis of crucial
phenomena, such as the spread of behaviours and the arising of collective actions
within social networks (Centola, 2010; Montanari and Saberi, 2010; Siegel, 2009).

Opinion dynamics is a well established research topic in the social science research
field, which is receiving increasing attention in the dynamic systems literature (see, e.g.,
Friedkin, 2015). Starting from the celebrated DeGroot model (DeGroot, 1974) and the
numerous variations on it, a large body of contributions has been devoted to the widely
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investigated consensus problem, which has an impact also on other key problems in sev-
eral different fields (see Moreau, 2005; Olfati-Saber et al., 2007; Ren and Beard, 2005;
Xiao and Wang, 2006 and references therein). In recent years, researchers have concen-
trated their attention on models which present a richer variety of possible dynamic pat-
terns, in order to describe the multiplicity of phenomena observed in social networks.
Notable research lines along this path are the works on the Hegselmann-Krause model
(Blondel et al., 2009; Etesami and Basar, 2015; Jing et al., 2014; Yang et al., 2014),
the studies on the spread of misinformation (Acemoglu et al., 2010; Fardad et al.,
2012) and the analysis of networks with stubborn agents (Acemoglu et al., 2013;
Ghaderi and Srikant, 2014; Ravazzi et al., 2015).

Using opinion dynamics models to predict behaviours of groups of individuals is a
key problem in social psychology (Friedkin, 2010). The problem is that to link the
evolution of the individuals’ opinion to their inclination about undertaking a certain
action. In this respect, the simplest approach assumes the existence of a threshold, so
that the individual becomes “active” whenever its opinion exceeds the threshold. This
leads to the formulation of a so-called threshold model.

Threshold models have been first introduced in (Granovetter, 1978); since then, they
have been employed to explain the collective behaviour of a community of individuals
in many different contexts: typical examples are the spread of technological innova-
tions among large portions of the population; the attitude of masses towards new
trends in popular culture; political phenomena such as riots, strikes, and so on. In this
context, threshold models are well suited to predict the occurrence of cascade effects,
i.e. the possibility that a behaviour adopted by a small number of influential agents
will propagate to a large part of the network (Adam et al., 2012). In (Acemoglu et al.,
2011b), threshold models are adopted to analyse how innovations spread into a net-
work starting from a set of promoters. Such a model has been later generalised in
(Rosa and Giua, 2013) to account for the possibility for a member of the network to
abandon a previously adopted innovation. Moreover the effect of the presence of a
group of agents which maintain the innovation for a finite time despite the behaviour
of their neighbours is analysed.

In (Hassanpour, 2014), a dynamic threshold model has been adopted to describe
the mechanisms underlying the formation of a collective action taking place during
political unrest or social revolutions. In particular, the aim is to determine whether a
radical agent is able to eventually persuade all the individuals of a network to engage
in the demonstration: this occurs when the activity level of the individual’s neighbours
exceeds a certain threshold, which in turn evolves dynamically according to a classical
DeGroot opinion model. The author uses this approach to analyse the effect of media
interruption during the 2011 Egyptian revolution. Properties of this model have been
studied in (Liu et al., 2012).

In this paper, starting from the simple model proposed in (Hassanpour, 2014;
Liu et al., 2012), a more general class of dynamic threshold models is proposed and
analysed. The main novelty is the introduction of a parameter which represents the
relative confidence level that an agent has on her own opinion, with respect to that
of her neighbours. This provides a new degree of freedom, which allows one to char-
acterise the behaviour of conservative networks, with respect to groups of individuals
more inclined to change their attitude. Another feature of the proposed model is the
use of two different mechanisms for deciding whether an agent becomes active or not.
A non progressive model is adopted, meaning that each agent can change its actions
multiple times, by comparing her current opinion with an indicator of the average ac-
tivity level of her neighbours. In the proposed model, such an indicator can be either
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the fraction of active neighbours (as in Liu et al., 2012), or a weighted average of the
number of active neighbours which takes into account the self-confidence of each agent.
The considered model can be also seen as an extension of the framework adopted in
global games (Dahleh et al., 2013; Morris and Shin, 2003; Touri and Shamma, 2014),
in which the agents make a decision upon undertaking an action according to a sim-
ilar threshold-based mechanism, but once they have made their decision they do not
change anymore their activity status.

The main contribution of the paper is a detailed theoretical analysis of the asymp-
totic behaviour of the network for different graph topologies. In particular, the com-
plete analytic characterisation of the asymptotic activity pattern of the network is
determined for three topologies: the complete graph, the star graph and the ring
graph. A wide variety of collective limiting behaviours is observed. Moreover, the in-
fluence of the self-confidence parameter and of the chosen decision mechanism on the
emerging behaviours is highlighted. This is a relevant application of the considered
models, as it allows one to explain why certain behaviours become predominant while
others disappear or remain latent.

Although the considered structures are admittedly simple, the obtained results are
important because they provide a basis for the study of more complex networks, al-
lowing one to predict the arising of interesting phenomena even in settings for which
a theoretical analysis would be cumbersome or even impossible. To support this state-
ment, a simulation study on a real ego network is presented in the final part of the
paper, showing that the main features of the asymptotic behaviour can be inferred
from the theoretical analysis on a network with simpler topology. A preliminary ver-
sion of this work has been presented in (Garulli et al., 2015).

The paper is organised as follows. In Section 2, the considered class of threshold
models is introduced, together with the two different decision schemes. The analytic
results on the network asymptotic behaviours are presented in Sections 3, 4 and 5,
for the cases of complete, star and ring graph topologies, respectively. Results from
numerical simulations carried out for a real ego network are reported in Section 6.
Concluding remarks and future developments are provided in Section 7.

2. Problem formulation

A network of n agents is described by an undirected graph G = (V , E), where V denotes
the vertex set and E ⊆ V × V is the edge set. Two agents i and j are neighbours if
(i, j) ∈ E . Let Ni denote the set of neighbours of agent i and ni be its cardinality. In
this work, an agent is always considered a neighbour of itself, i.e. (i, i) ∈ E for all i,
and the network topology is assumed to be time-invariant.

In order to model the agents’ behaviour, two variables are associated to agent i: the
threshold θi(t) ∈ [0, 1] and the action ai(t) ∈ {0, 1}. The variable ai discriminates
whether the ith agent is undertaking a certain action at time t (ai(t) = 1) or not
(ai(t) = 0). The threshold θi(t) is used to model the attitude of the ith agent towards
the possibility of becoming active. Depending on the context, it may represent the
agent’s opinion on a certain topic, or its intention to participate in some collective
movement.

The agent behaviour is described by the time evolution of the threshold and the
action variables. At each time step, an agent updates its threshold to a weighted
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average of its neighbours’ threshold

θi(t+ 1) =
∑

j∈Ni

fijθj(t), i = 1, . . . , n, (1)

where the weights are such that 0 < fij < 1 and
∑

h fih = 1, ∀i, j. Notice that (1)
is the classic De Groot model, which has been widely employed in the literature on
consensus and opinion dynamics (DeGroot, 1974).

Besides updating the threshold, each agent computes the activity level of its neigh-
bours as

pi(t+ 1) =
∑

j∈Ni

gijaj(t), i = 1, . . . , n, (2)

where 0 < gij < 1 and
∑

h gih = 1, ∀i, j. The action value of each agent is obtained
by comparing the activity level pi(t) with the threshold θi(t), according to

ai(t) =

{

1 if pi(t) ≥ θi(t)

0 else
, i = 1, . . . , n. (3)

By setting fij = gij = 0 whenever j 6∈ Ni, equation (1) can be rewritten in matrix
form as θ(t+ 1) = Fθ(t) and (2) becomes

p(t+ 1) = Ga(t), (4)

where θ = [θ1, . . . , θn]
′, a = [ai, . . . , an]

′, p = [p1, . . . , pn]
′, and F and G are matrices

whose ij-th entries are fij and gij , respectively. By introducing the function

φ(x) =

{

1 if x ≥ 0,

0 else ,

and exploiting (3),(4), one gets

θ(t+ 1) = Fθ(t), (5)

a(t+ 1) = φ(Ga(t)− Fθ(t)), (6)

where the function φ(·) is to be intended componentwise.
In this work, the entries of matrix F are chosen as

fij =







β
β+ni−1 if i = j,

1
β+ni−1 if j ∈ Ni, j 6= i,

0 else ,

(7)

where β > 0 is the relative weight each agent assigns to its current threshold value
compared to that of its neighbours. In other words, β can be interpreted as the relative
confidence that each agent has on its own opinion, with respect to that of the other
members of the network. Two different ways of computing the neighbours’ activity
level are considered:
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a) Weighted Activity Level (WAL): in this setting G = F , i.e. the same relative
weight is adopted both for computing the activity level of the neighbours and
for weighting the neighbours’ threshold;

b) Uniform Activity Level (UAL): in this scenario

gij =

{
1
ni

if j ∈ Ni,

0 else ,

so that pi(t+ 1) in (2) represents the fraction of neighbours of agent i that are
active at time t.

Notice that in the UAL scenario each agent decides whether to become active or not by
just “counting” the number of active neighbours. Conversely, in the WAL scenario an
agent weights in a different way the fact that its neighbours are active with respect to
its own activity status. This is consistent with the idea that a self-confident individual,
weighting its own opinion β times that of its neighbours, will also consider in a different
way its own behaviour with respect to that of its neighbours.

Remark 2.1. If β = 1, one has fij = gij = 1
ni

, ∀i, ∀j ∈ Ni, and hence there is no
difference between the two considered scenarios. The threshold update rule (5) consists
in computing the average of the neighbours’ thresholds, and the activity level (4) is
equal to the fraction of active neighbours. Notice that in this special case, the setting
considered in (Liu et al., 2012) is recovered.

The objective of this this work is to study the asymptotic behaviour of the nonlinear
system (5),(6), when the network initially contains one radical agent (hereafter labelled
with index 1) and n− 1 ordinary agents. The radical agent is keen on undertaking an
action and would like to convince the other agents to do the same: to this aim, at time
t = 0 its threshold is equal to zero and its activity variable is equal to 1. The ordinary
agents are initially inactive and their threshold is equal to τ , with 0 < τ < 1. This
corresponds to the initial condition

θ(0) = [0, τ, . . . , τ ]′, a(0) = [1, 0, . . . , 0]′. (8)

Loosely speaking, τ represents the initial reluctance of the ordinary agents towards
the action put forth by the radical one. The problem addressed in the paper is to
determine the asymptotic value of the action vector

a∞ = lim
t→+∞

a(t)

under the initial condition (8), as a function of the initial reluctance of ordinary agents
τ and of the relative confidence parameter β. It is easy to check that ae = 0 and ae = 1

(where 1 denotes a vector whose entries are all equal to 1) are always equilibria for
system (6), irrespective of the weighting matrices F and G1. However, several other
equilibria may arise, which do depend on the topology of the interconnection network
and on the values of β and τ . In the next sections, three different topologies will be
analysed in detail.

1With a slight abuse of notation, we assume that when p = 0, then a = 0, even if θ = 0. We do not modify

the definition of φ in this sense, to keep notation simple.
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3. Complete graph

Let the graph G be complete, i.e., (i, j) ∈ E , for all i, j. The threshold evolution is
characterised by the following results.

Lemma 3.1. Consider the dynamic model (5), with F chosen as in (7). If the inter-
connection graph is complete and θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

θ1(t) =
n− 1

n
τ
(
1− λt

c

)
, (9)

θi(t) =
n− 1

n
τ

(

1 +
1

n− 1
λt
c

)

, i = 2, . . . , n, (10)

where λc =
β − 1

β + n− 1
.

Proof. When the graph is complete, from (7) one gets

F =
β

β + n− 1
In +

1

β + n− 1
(11

′ − In)

=
β − 1

β + n− 1
In +

n

β + n− 1

11
′

n

=
11

′

n
+

β − 1

β + n− 1

(

In − 11
′

n

)

.

Then, it is easy to check that, for every t ≥ 0, one has

F t =
11

′

n
+

(
β − 1

β + n− 1

)t(

In − 11
′

n

)

.

For the initial condition θ(0) = [0, τ, . . . , τ ]′ one gets

θ(t) = F tθ(0)

=
n− 1

n
τ 1 +

(
β − 1

β + n− 1

)t(

θ(0)− n− 1

n
τ1

)

from which (9)-(10) immediately follow.

Corollary 3.1. Consider the dynamic model (5), with the weights chosen as in (7).
If the interconnection graph is complete and θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

lim
t→∞

θ(t) =
n− 1

n
τ1. (11)

Moreover, if β > 1, then

θ1(t+ 1) > θ1(t), (12)

θi(t+ 1) < θi(t), i = 2, . . . , n, (13)

for all t ≥ 0.
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3.1. Weighted activity level

Let us consider the WAL setting first, i.e.,

G = F =
β

β + n− 1
In +

1

β + n− 1
(11

′ − In). (14)

Define the functions of β:

γ1(β) =
n

n− 1

1

β + n− 1
, (15)

γ2(β) =
n

n− 1

β

β + n− 1
, (16)

γ3(β) =
1

β + n− 2
. (17)

Such functions are shown in Figures 1-2 for n = 5 and n = 20, respectively. The
following result holds.

Theorem 3.1. System (5),(6), with G = F given by (14) and initial condition (8),
exhibits the following asymptotic behaviours.

i) For β > 1,
- if τ < γ1(β), then a∞ = 1;

- if τ > γ2(β), then a∞ = 0;

- if γ1(β) ≤ τ ≤ γ2(β), then a(t) = a(0), ∀t ≥ 1.
ii) For β ≤ 1, if τ ≤ γ3(β), then a∞ = 1; otherwise a∞ = 0.

Proof. According to Lemma 3.1, one has θ2(t) = θ3(t) = · · · = θn(t), ∀t ≥ 0. Since
from (8) it also holds a2(0) = a3(0) = · · · = an(0), this clearly implies a2(t) = a3(t) =
· · · = an(t), ∀t ≥ 0. Hence, in the sequel we will refer only to θ2(t) and a2(t).
i) Given the initial condition (8), from Lemma 3.1 one has

θ1(1) =
n− 1

β + n− 1
τ, (18)

θ2(1) =
β + n− 2

β + n− 1
τ. (19)

Being p(1) = Ga(0), one gets

p1(1) =
β

β + n− 1
,

p2(1) =
1

β + n− 1
,

and hence a(1) = 1 if and only if the following conditions are satisfied

β ≥ (n− 1)τ, (20)

1 ≥ (β + n− 2) τ. (21)
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Similarly, when both conditions (20)-(21) are violated, one has a(1) = 0. When
1

β+n−2 < τ ≤ β
n−1 , one has a(1) = a(0). If β > 1, due to Corollary 3.1 one has

that θ1(t) is increasing, while θ2(t) is decreasing. Therefore, one will have a(t) = a(0)
and p(t) = p(0) until either p1(t) < θ1(t) or p2(t) ≥ θ2(t). From (11), both conditions
will never occur if the following inequalities hold

β

β + n− 1
≥ n− 1

n
τ, (22)

1

β + n− 1
≤ n− 1

n
τ, (23)

which correspond to γ1(β) ≤ τ ≤ γ2(β). If τ > γ2(β), (22) does not hold: therefore,
p1(t) < θ1(t) for some t and hence a∞ = 0. Similarly, if τ < γ1(β), (23) does not hold,
thus leading to a∞ = 1.

ii) From (20)-(21) we have that a(1) = 1 if and only if τ ≤ min
{

β
n−1 ,

1
β+n−2

}

, while

a(1) = 0 if and only if τ > max
{

β
n−1 ,

1
β+n−2

}

. Since β ≤ 1 implies β
n−1 ≤ 1

β+n−2 it

remains to discuss the case in which

β

n− 1
< τ ≤ 1

β + n− 2
, (24)

which, according to the above discussion, leads to a(1) = [0, 1, . . . , 1]′. Hence p(2) =
Ga(1) is such that

p1(2) =
n− 1

β + n− 1
,

p2(2) =
β + n− 2

β + n− 1
.

Being from Lemma 3.1

θ1(2) =
n− 1

n
τ
(
1− λ2

c

)
,

θ2(2) =
n− 1

n
τ

(

1 +
1

n− 1
λ2
c

)

,

through long but straightforward calculations it is possible to verify that, under the
assumptions (24), one has

p1(2) ≥ θ1(2), p2(2) ≥ θ2(2).

Therefore, a(2) = 1 and one can conclude that a∞ = 1 for every τ ≤ 1
β+n−2 =

γ3(β).

A byproduct of the proof of Theorem 3.1 is the characterisation of the cases for
which the asymptotic behaviour is reached in one step.

Corollary 3.2. System (5),(6), with G = F given by (14) and initial condition (8).
satisfies
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Figure 1. Complete graph, WAL setting, n = 5.

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

β
n−1 , γ3(β)

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

β
n−1 , γ3(β)

}

.

Theorem 3.1 gives the complete characterisation of the asymptotic behaviour of sys-
tem (5),(6), with initial condition (8). Notice that there are three possible asymptotic
activity profiles: i) all the agents become active; ii) all the agents become inactive; iii)
the situation remains always the same as in the initial condition (i.e., agent 1 is active
and all the others are inactive). From the proof of Theorem 3.1 it is apparent that the
asymptotic value a∞ is always reached in a finite number of steps. However, it is not
possible to give an a priori upper bound to such a number, which can be arbitrarily
high. For example, if n = 5, τ = 0.99 and β = 15, one has that a(t) = 0 only for
t ≥ 19. Similarly, if n = 5, τ = 0.01 and β = 118, one has that a(t) = 1 only for
t ≥ 56.

Figures 1 and 2 show the asymptotic behaviours achieved for different values of β
(relative confidence parameter) and τ (initial threshold of the ordinary agents), in the
cases of 5 and 20 agents, respectively. The different regions correspond to: a∞ = 1

(red); a∞ = 0 (green); a(t) = a(0), ∀t (light blue). The dashed curves represent the
functions γi(β) defined in (15)-(17). Notice that these curves intersect at β = 1. It can
be observed that for n = 20 the curves γ1(τ) and γ3(τ) are almost indistinguishable.
As expected, the area in which all the agents end up to be inactive grows with n, while
the region in which all the agents become active tends to shrink, as well as that in
which the initial condition a(0) is maintained indefinitely.
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Figure 2. Complete graph, WAL setting, n = 20.

3.2. Uniform activity level

Now, let us consider setting UAL. When the interconnection graph is complete, this
means that

G =
11

′

n
, (25)

and F is given by (14). Let us define the function

η(β) =
β + n− 1

n(β + n− 2)
.

Then, the following result holds.

Theorem 3.2. System (5),(6), with F defined as in (14), G given by (25) and initial
condition (8), has the following asymptotic behaviours:

i) For β > 1,
- if τ < 1

n−1 , then a∞ = 1;

- if τ > 1
n−1 , then a∞ = 0;

- if τ = 1
n−1 , then a(t) = a(0), ∀t ≥ 1.

ii) For β ≤ 1, if τ ≤ η(β), then a∞ = 1; otherwise a∞ = 0.

Proof. i) By following the same reasoning as in the proof of Theorem 3.1, one gets
(18)-(19) and, being G given by (25), p1(1) = p2(1) =

1
n
. Hence, a(1) = 1 if and only
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if the following conditions are satisfied

1

n
≥ n− 1

β + n− 1
τ,

1

n
≥ β + n− 2

β + n− 1
τ,

while a(1) = 0 if and only if both conditions are violated. When β+n−1
n(β+n−2) < τ ≤ β+n−1

n(n−1) ,

one has a(1) = a(0). Notice that this can occur only if β > 1, which means that (12)-
(13) in Corollary 3.1 hold. Hence, a(t) = a(0) until either p1(t) < θ1(t) or p2(t) ≥ θ2(t),
are verified. Since p(t+ 1) = Ga(t) = 1

n
1, these conditions correspond respectively to

1

n
<

n− 1

n
τ
(
1− λt

c

)
, (26)

1

n
≥ n− 1

n
τ

(

1 +
1

n− 1
λt
c

)

, (27)

where λc =
β−1

β+n−1 as in Lemma 3.1. Being 0 < λc < 1, (26)-(27) lead respectively to

λt
c < 1− 1

(n− 1)τ
,

λt
c ≤

1

τ
− n+ 1 .

Hence, one eventually gets a(t) = 0, for some t, whenever

1− 1

(n− 1)τ
>

1

τ
− n+ 1,

which corresponds to τ > 1
n−1 . Conversely, if τ < 1

n−1 , (27) will occur before (26), thus

leading to a(t) = 1. Finally, for τ = 1
n−1 , (26)-(27) are never satisfied and therefore

a(t) = a(0) indefinitely.
ii) Let β ≤ 1. Similarly to the proof of item ii) in Theorem 3.1, it is possible to show
that if

β + n− 1

n(n− 1)
< τ ≤ β + n− 1

n(β + n− 2)

one gets a(1) = [0, 1, . . . , 1]′ and, after long but straightforward manipulations,

p1(2) ≥ θ1(2), p2(2) ≥ θ2(2).

Therefore, a(2) = 1 and hence a∞ = 1 for every τ ≤ β+n−1
n(β+n−2) = η(β).

Corollary 3.3. System (5),(6), with F defined as in (14), G given by (25) and initial
condition (8), satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

β+n−1
n(n−1) , η(β)

}

;
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Figure 3. Complete graph, UAL setting, n = 5.

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

β+n−1
n(n−1) , η(β)

}

.

Figures 3 and 4 show the curve η(β) in the τ − β plane (dashed), along with the
horizontal line τ = 1

n−1 (solid), for n = 5 and n = 20 respectively. Notice that in the
latter case, the two lines are almost coincident. Also in this setting, the area in which
all the agents end up to be inactive grows with n (notice the scale on τ), while the
region in which all the agents become active tends to shrink.

It is worth observing that when β = 1, matrix G is the same in both the WAL and
the UAL setting, so that conditions in Theorems 3.1 and 3.2 coincide. In this case, the
scenario addressed in (Liu et al., 2012) is recovered. In particular, from Corollaries 3.2
and 3.3 it turns out that only two situations occur: either a(1) = 1 if τ ≤ 1

n−1 , or
a(1) = 0 otherwise. Hence, the steady state behaviour is always achieved in one step.
The introduction of the parameter β, accounting for the relative confidence of each
agent on its own opinion, has significantly enriched the picture of possible asymptotic
behaviours of the system. For β > 1, three new different situations appear in the WAL
setting: all the agents eventually become active; all the agents eventually become inac-
tive; the initial situation is maintained indefinitely. As β increases, the latter situation
occurs for a larger range of values of the initial threshold τ . This corresponds to the
fact that in a network whose agents are more self-confident, it is more difficult to per-
suade them to change their status. Conversely, for β < 1, this behaviour disappears
and either 1 is reached (in one or two steps) or all the agents become inactive in one
step.

Another interesting observation concerns the differences between the WAL and UAL
scenarios. The same five behaviours described above for the WAL setting, are present
also in setting UAL, but the condition in which a(t) = a(0), ∀t, occurs only if τ is
exactly equal to 1

n−1 , which is clearly a singular condition.
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Figure 4. Complete graph, UAL setting, n = 20.

4. Star graph

In this section we analyse the asymptotic behaviour of system (5),(6) when the graph
has a star structure, as depicted in Figure 5. In the star graph, the radical agent (i = 1)
is the center of the graph, while the remaining n − 1 ordinary agents are connected
only to the radical. This leads to a matrix F of the form

F =












β
β+n−1

1
β+n−1 . . . . . . 1

β+n−1
1

β+1
β

β+1 0 . . . 0
... 0

. . . 0
...

...
. . . 0

1
β+1 0 . . . . . . β

β+1












(28)

We consider scenarios WAL and UAL, defined as in Section 3. While in the former
G = F , in the latter one has

G =











1
n

1
n

. . . . . . 1
n

1
2

1
2 0 . . . 0

... 0
. . . 0

...
...

. . . 0
1
2 0 . . . . . . 1

2











(29)
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Figure 5. Star graph with radical agent in the center.

Let us define

r =
(n− 1)(β + 1)

β + n− 1
, (30)

λs =
β(2β + n)

(β + 1)(β + n− 1)
− 1. (31)

The following technical results are instrumental to the asymptotic analysis of the star
graph interconnection.

Lemma 4.1. Consider the dynamic model (5), with matrix F given by (28). If θ(0) =
[0, τ, . . . , τ ]′, 0 < τ < 1, then

θ1(t) =
r

1 + r
τ
(
1− λt

s

)
, (32)

θi(t) =
r

1 + r
τ

(

1 +
1

r
λt
s

)

, i = 2, . . . , n, (33)

where r and λs are given by (30) and (31), respectively.

Proof. Let us first observe that, due to the structure of F in (28), one has that system
(5) with the initial condition θ(0) = [0, τ, . . . , τ ]′ satisfies θ2(t) = θ3(t) = · · · = θn(t),
∀t ≥ 0. This implies that one can analyse the behaviour of θ(t) by considering the
two-dimensional system

θ1(t+ 1) =
β

β + n− 1
θ1(t) +

n− 1

β + n− 1
θ2(t)

θ2(t+ 1) =
1

β + 1
θ1(t) +

β

β + 1
θ2(t).

It is easy to check that the eigenvalues of such system are 1 and λs in (31). Moreover,
(32)-(33) readily follow from the system response to the initial condition θ(0).

14



Corollary 4.1. Consider the dynamic model (5), with matrix F given by (28). If
θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

lim
t→∞

θ(t) =
r

1 + r
τ 1. (34)

Moreover, if β >
√
n− 1, then λs > 0 and

θ1(t+ 1) > θ1(t),

θi(t+ 1) < θi(t), i = 2, . . . , n,

for all t ≥ 0.

4.1. Weighted activity level

Let us first, consider the WAL setting, i.e., G = F as in (28). Define the functions of
β:

δ1(β) =
nβ + 2(n− 1)

(n− 1)(β + 1)2
, (35)

δ2(β) =
β(β + 1)

(β + n− 1)
δ1(β), (36)

δ3(β) = β δ1(β). (37)

Such functions are shown in Figures 6-7 for n = 5 and n = 20, respectively. The
following result holds.

Theorem 4.1. System (5),(6), with G = F given by (28) and initial condition (8),
exhibits the following asymptotic behaviours.

i) For β >
√
n− 1,

- if τ < δ1(β), then a∞ = 1;

- if τ > δ2(β), then a∞ = 0;

- if δ1(β) ≤ τ ≤ δ2(β), then a(t) = a(0), ∀t ≥ 1.
ii) For 1 ≤ β ≤

√
n− 1, if

⌈

logλ2
s

1

λs

(
1

τ

r + 1

β + 1
− r

)⌉

≥
⌈

logλ2
s

(
β

τ

r + 1

β + 1
− r

)⌉

(38)

then a∞ = 1. Otherwise, a∞ = 0.
iii) For β < 1,

- if τ ≤ δ3(β), then a∞ = 1;

- if τ > δ1(β), then a∞ = 0;

- if δ3(β) < τ ≤ δ1(β), then a(t) oscillates indefinitely between [1, 0, . . . , 0]′

and [0, 1, . . . , 1]′.

Proof. By using the same argument as in Lemma 4.1, one has θ2(t) = θ3(t) = · · · =
θn(t), and, being a(0) as in (8), also a2(t) = a3(t) = · · · = an(t), ∀t ≥ 0. Hence, in the

15
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Figure 6. Star graph, WAL setting, n = 5.

sequel we will refer only to θ2(t) and a2(t).
i) Since p(1) = Ga(0), one has

p1(1) =
β

β + n− 1
,

p2(1) =
1

β + 1
.

Therefore a(1) = 1 if and only if the following conditions are satisfied

β

β + n− 1
≥ θ1(1) =

n− 1

β + n− 1
τ, (39)

1

β + 1
≥ θ2(1) =

β

β + 1
τ, (40)

which are equivalent to

τ ≤ min

{
1

β
,

β

n− 1

}

.

Conversely, a(1) = 0 if and only if

τ > max

{
1

β
,

β

n− 1

}

.

Clearly, if 1
β
< τ ≤ β

n−1 , one has a(1) = a(0). This can occur only if β >
√
n− 1.

Then, according to Corollary 4.1, one has that θ1(t) is monotonically increasing, while
θ2(t) is decreasing. Therefore, one will have a(t) = a(0) until either p1(t) < θ1(t) or
p2(t) ≥ θ2(t). From (34) and (30), both conditions will never occur if the following
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Figure 7. Star graph, WAL setting, n = 20.

inequalities hold

β

β + n− 1
≥ (n− 1)(β + 1)

nβ + 2(n− 1)
τ, (41)

1

β + 1
≤ (n− 1)(β + 1)

nβ + 2(n− 1)
τ, (42)

which correspond to δ1(β) ≤ τ ≤ δ2(β). If (42) is violated, i.e. τ < δ1(β), one eventu-
ally has a(t̄) = 1 for some t̄. Similarly, if (41) is violated, i.e. τ > δ2(β), one will have
a(t̄) = 0 for some t̄.
ii) Let 1 ≤ β ≤

√
n− 1. From the discussion in item i), it remains to analyse the sit-

uation in which β
n−1 < τ ≤ 1

β
. By comparing with (39)-(40), this assumption implies

a1(1) = 0, a2(1) = 1 and p(2) = Ga(1) so that

p1(2) =
n− 1

β + n− 1
,

p2(2) =
β

β + 1
.

Through straightforward manipulations, it is easy to show that for all β ≤
√
n− 1 it

holds

θ1(2) =

(
β(n− 1)

(β + n− 1)2
+

β(n− 1)

(β + n− 1)(β + 1)

)

τ <
n− 1

β + n− 1
(43)

which leads to a1(2) = 1. On the other hand, if θ2(2) >
β

β+1 , one will have a2(2) = 0

and hence a(2) = a(0). Being −1 < λs ≤ 0 (see Corollary 4.1), from (43) and the

17



violation of the inequality in (39), one has

β

β + n− 1
< θ1(t) <

n− 1

β + n− 1

for all t ≥ 1. This means that a(t) will keep oscillating between [1, 0, . . . , 0]′ and
[0, 1, . . . , 1]′, until one of the following conditions is violated

θ2(t) >
β

β + 1
for even t; (44)

θ2(t) ≤
1

β + 1
for odd t. (45)

Since β ≥ 1 and θ2(t) converges, it is apparent that both conditions cannot hold
indefinitely: therefore, a(t) will eventually be equal either to 1 or to 0, depending on
which condition is violated first. By using (33), it is easy to show that (44) is violated
for t = 2k if

k ≥
⌈

logλ2
s

(
β

τ

r + 1

β + 1
− r

)⌉

while (45) is violated for t = 2k + 1 if

k ≥
⌈

logλ2
s

1

λs

(
1

τ

r + 1

β + 1
− r

)⌉

which leads to condition (38).
iii) If β < 1, by following the same reasoning as in the previous item, one has that
(44) and (45) can hold simultaneously for all t, provided that

β

β + 1
< lim

t→+∞
θ2(t) ≤

1

β + 1
. (46)

By using (34), this corresponds to

δ3(β) < τ ≤ δ1(β).

Conversely, if the leftmost inequality in (46) is violated one has a∞ = 1, while
violation of the rightmost inequality in (46) leads to a∞ = 0.

The next Corollary, which stems directly from the proof of Theorem 4.1, singles out
the cases in which the asymptotic behaviour is achieved in one step.

Corollary 4.2. System (5),(6), with G = F given by (28) and initial condition (8),
satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

1
β
, β
n−1

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

1
β
, β
n−1

}

.

Figures 6-7 show the asymptotic behaviours achieved in scenario WAL for different
values of β (relative confidence parameter) and τ (initial threshold of the ordinary
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Figure 8. A detail of the boundary defined by condition (38), for n = 20.

agents), in the cases of 5 and 20 agents, respectively. The different regions correspond
to: a∞ = 1 (red); a∞ = 0 (green); a(t) = a(0), ∀t (light blue); a(t) switching between
[1 0 . . . 0]′ and [0 1 . . . 1]′ (blue). The dashed curves represent the functions δi(β)
defined in (35)-(37). Notice that δ1(β) and δ2(β) intersect at β =

√
n− 1, while δ1(β)

and δ3(β) intersect at β = 1: these are the values that distinguish the three different
asymptotic scenarios described by Theorem 4.1.

It is worth remarking the particular structure of the boundary defined by (38),
which separates the regions in which a∞ = 1 and a∞ = 0, when 1 ≤ β ≤

√
n− 1. It

can be observed that this curve changes its slope an infinite number of times in any
interval β ∈ (1, 1 + ǫ), with ǫ arbitrarily small. A detail of this behaviour is shown in
Figure 8, for n = 20.

4.2. Uniform activity level

In the UAL setting with the star graph interconnection, one has F as in (28) and G

given by (29). Let r and λs be given by (30)-(31), and define the function of β:

µ(β) =
nβ + 2(n− 1)

2(n− 1)(β + 1)
. (47)

Before proving the main result, let us introduce the following technical lemma.

Lemma 4.2. Let n ≥ 2 and 0 < β <
√
n− 1. Then,

β + n− 1

n(n− 1)
<

β + 1

2β
.

Proof. One has

β + n− 1

n(n− 1)
<

√
n− 1 + n− 1

n(n− 1)
=

1 +
√
n− 1

n
√
n− 1

≤ 1 +
√
n− 1

2
√
n− 1

<
β + 1

2β
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Figure 9. Star graph, UAL setting, n = 5.

where the latter inequality comes from the fact that β+1
2β is a strictly decreasing func-

tion of β in the interval 0 < β <
√
n− 1.

Theorem 4.2. System (5),(6), with F and G given by (28) and (29), respectively,
and initial condition (8), exhibits the following asymptotic behaviours.

i) For β ≥
√
n− 1, if

⌈

logλs

(

1− r + 1

r n τ

)⌉

≥
⌈

logλs

(
1 + r

2τ
− r

)⌉

(48)

then a∞ = 1. Otherwise, a∞ = 0.
ii) For β <

√
n− 1,

- if τ < µ(β), then a∞ = 1;

- if τ > µ(β), then a∞ = 0;

- if τ = µ(β), then a(t) oscillates indefinitely between [1, 0, . . . , 0]′ and
[0, 1, . . . , 1]′.

Proof. As in Theorem 4.1, it holds θ2(t) = θ3(t) = · · · = θn(t) and a2(t) = a3(t) =
· · · = an(t), ∀t ≥ 0. Hence, we can refer only to θ2(t) and a2(t).
i) Being p(1) = Ga(0), one has p1(1) =

1
n
and p2(1) =

1
2 . Therefore a(1) = 1 if and

only if the following conditions are satisfied

1

n
≥ θ1(1) =

n− 1

β + n− 1
τ,

1

2
≥ θ2(1) =

β

β + 1
τ,
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Figure 10. Star graph, UAL setting, n = 20.

which are equivalent to

τ ≤ min

{
β + n− 1

n(n− 1)
,
β + 1

2β

}

.

Conversely, a(1) = 0 if and only if

τ > max

{
β + n− 1

n(n− 1)
,
β + 1

2β

}

.

If β+1
2β < τ ≤ β+n−1

n(n−1) , one has a(1) = a(0). Notice that, due to Lemma 4.2, such a

τ exists only if β ≥
√
n− 1. Hence, according to Corollary 4.1, the thresholds θ1(t)

and θ2(t) are, respectively, monotonically increasing and decreasing. Therefore, one
will have a(t) = a(0) until either p1(t) < θ1(t) or p2(t) ≥ θ2(t), which, according to
(32)-(33), correspond to

1

n
<

r

1 + r
τ
(
1− λt

s

)
, (49)

1

2
≥ 1

1 + r
τ
(
r + λt

s

)
, (50)

where r and λs are given by (30) and (31). Through straightforward manipulations,
(49)-(50) lead respectively to

t ≥ t0 ,

⌈

logλs

(

1− r + 1

r n τ

)⌉

,

t ≥ t1 ,

⌈

logλs

(
1 + r

2τ
− r

)⌉

.
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Clearly, if t0 > t1 one has a∞ = 1, while if t0 < t1, a∞ = 0. In case that t0 = t1, one
gets a(t0) = a(t1) = [0 1 1 . . . 1]′, which leads to p1(t0+1) = n−1

n
and p2(t0+1) = 1

2 .

Since θ2(t) is decreasing, θ2(t0 +1) < θ2(1) ≤ 1
2 . On the other hand θ1(t) is increasing

and hence

θ1(t0 + 1) < lim
t→+∞

θ1(t) =
r

1 + r
τ =

(n− 1)(β + 1)

nβ + 2(n− 1)
τ ≤ n− 1

n
(51)

where it is easy to show that the latter inequality holds for all n ≥ 2, being τ ≤ 1.
Hence a(t0 + 1) = 1 and a∞ = 1. This proves condition (48).

ii) Let β <
√
n− 1. Then, due to Lemma 4.2, β+n−1

n(n−1) <
β+1
2β . Therefore, following the

reasoning in item i), a(1) cannot be equal to a(0). In particular, a(t) will keep oscil-
lating between [1, 0, . . . , 0]′ and [0, 1, . . . , 1]′ if the following conditions are satisfied

θ1(t) >
1

n
, θ2(t) ≤

1

2
for odd t; (52)

θ1(t) ≤
n− 1

n
, θ2(t) >

1

2
for even t. (53)

Corollary 4.1 states that both θ1(t) and θ2(t) converge asymptotically to r
1+r

τ . More-
over, due to (32), θ1(t) is increasing for all even t. Thanks to (51), one can conclude
that the first condition in (53) will hold indefinitely. On the other hand, the second
condition in (52) will be eventually violated if and only if

r

1 + r
τ >

1

2

which corresponds to τ > µ(β). This leads to a∞ = 0. Conversely, if τ < µ(β),
either the first condition in (52) or the second condition in (53) will eventually be
violated, thus leading to a∞ = 1. Finally, when τ = µ(β), all conditions (52)-(53)
will hold indefinitely, thus leading to oscillations of a(t) between [1, 0, . . . , 0]′ and
[0, 1, . . . , 1]′.

Corollary 4.3. System (5),(6), with F and G given by (28) and (29), respectively,
and initial condition (8), satisfies

- a(t) = 1 for all t ≥ 1, if and only if τ ≤ min
{

β+n−1
n(n−1) ,

β+1
2β

}

;

- a(t) = 0 for all t ≥ 1, if and only if τ > max
{

β+n−1
n(n−1) ,

β+1
2β

}

.

Figures 9-10 show the asymptotic behaviours achieved in scenario UAL for different
values of β and τ , for n = 5 and n = 20, respectively. Colours have the same meaning
as in Figures 6-7. The dashed line represents the function µ(β) defined in (47), while
the solid line corresponds to condition (48) .

As for the complete graph, also for the star graph it can be observed that the
WAL scenario shows a wider variety of asymptotic behaviours with respect to the
UAL scenario. In particular, in the latter the initial activity pattern a(0) is never
maintained indefinitely and the persistent oscillations for β < 1 occur only under the
singular condition τ = µ(β) (while in the WAL scenario they show up for the entire
range of τ values). Notice that these oscillations are due to the shyness of the agents,
which are less confident in their own opinion than in that of their neighbours, thus
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Figure 11. Ring graph.

leading to persistent switchings between activity and inactivity. Moreover, it can be
shown that in the UAL scenario, one has a∞ = 1 whenever τ ≤ 1

2 , irrespective of
the number of agents n and of the confidence parameter β. Conversely, in the WAL
scenario, the region in which a∞ = 1 tends to shrink as either n or β grow.

5. Ring graph

In this section we analyse the asymptotic behaviour of system (5)-(6) when the graph
has a ring structure. In the ring graph, agent i has as neighbours agents i − 1 and
i+1, with the convention n+1 = 1 (see Figure 11). We still assume that agent 1 is a
radical while the others are ordinary, and we analyse the asymptotic behaviour of the
system starting from the initial condition (8). The matrix F is now given by

F =















β
β+2

1
β+2 0 . . . 0 1

β+2
1

β+2
β

β+2
1

β+2 0 . . . 0

0 1
β+2

. . .
. . . . . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1
β+2

1
β+2 0 . . . . . . 1

β+2
β

β+2















(54)

while matrix G in scenario UAL is

G =













1
3

1
3 0 . . . 0 1

3
1
3

1
3

1
3 0 . . . 0

0 1
3

. . .
. . . . . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1
3

1
3 0 . . . . . . 1

3
1
3













(55)

23



In order to simplify the treatment, hereafter only the case in which n is odd (i.e.,
the number of ordinary agents is even) will be considered. Moreover, let h = n−1

2 . The
following technical result, relying on the properties of circulant matrices (Davis, 1979),
provides the analytic expression for the threshold evolution according to equation (5).

Lemma 5.1. Consider the dynamic model (5), with matrix F given by (54), θ(0) =
[0, τ, . . . , τ ]′, 0 < τ < 1 and odd n. Then,

θ(t) =
n− 1

n
τ1 − τ

h∑

k=1

(λk)
tvk, (56)

where

λk =
1

β + 2

(

β + 2 cos

(

k
2π

n

))

, (57)

vk =
2

n

[

1 cos

(

k
2π

n

)

. . . cos

(

(n− 1)k
2π

n

)]′
, (58)

for k = 1, . . . , h, and h = n−1
2 .

Proof. Matrix F in (54) is a circulant matrix, i.e. it has the form

F =








f0 f1 f2 . . . fn−1

fn−1 f0 f1 . . . fn−2
...

...
...

. . .
...

f1 f2 f3 . . . f0








,

where f0 = β
β+2 , f1 = fn−1 = 1

β+2 and fi = 0, for i 6= 0, 1, n − 1. The eigenvalues

and eigenvectors of a circulant matrix can be computed analytically (e.g., see Davis,

1979). Let ωk = ek
2π

n
j , where j =

√
−1. The eigenvalues of F are given by

λk =

n−1∑

i=0

fiω
i
k =

1

β + 2

(

β + 2 cos

(

k
2π

n

))

, k = 0, . . . , n− 1.

The eigenvectors of F are given by

uk =
1√
n
[1 ωk . . . ωn−1

k ]′, k = 0, . . . , n− 1. (59)

and form an orthonormal basis. A circulant matrix can always be diagonalised. Let
U = [u0 u1 . . . un−1], then F = UΛU∗, where Λ = diag(λ0, . . . , λn−1) and U∗ is the
conjugate transpose of U (Th. 3.2.1 in Davis, 1979). Observing that λ0 = 1, λk = λn−k,
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k = 1, . . . , h, and u0 =
1√
n
1, the evolution of the thresholds θ(t) can be written as

θ(t) = UΛtU∗θ(0) =
n− 1

n
τ1 +

h∑

k=1

λt
k(uku

∗
k + un−ku

∗
n−k)θ(0)

=
n− 1

n
τ1 − τ√

n

h∑

k=1

λt
k(uk + un−k),

where the last equality comes from u∗kθ(0) = − τ√
n
, since u∗k1 = 0, k = 1, . . . , n − 1.

The thesis (56) easily follows by noting that the entries of uk in (59) are such that
ωl
k + ωl

n−k = 2 cos
(
l 2π
n

)
, for l = 0, . . . , n− 1 and k = 1, . . . , h.

From (56) and (58) it can be checked that θi+1(t) = θn−i+1(t), for i = 1, . . . , h
and for all t. Hence, due to the structure of matrices F and G resulting from the ring
interconnection, one will also have ai+1(t) = an−i+1(t) and pi+1(t) = pn−i+1(t), for i =
1, . . . , h. The following lemma gives other useful properties that will be instrumental
to proving the main result.

Lemma 5.2. Consider the same assumptions as in Lemma 5.1 and let β ≥ 1. Then
for all t ≥ 1 the following statements hold

i) θi(t) ≤ θi+1(t), for i = 1, . . . , h;
ii) θi(t− 1) ≤ θi+1(t), for i = 1, . . . , h.

Proof. i) By (8), the statement is true at t = 0. Now, let the statement hold at time
t. Then, recalling that θh+1(t) = θh+2(t) for all t, one has for i = 2, . . . , h

θi+1(t+ 1)− θi(t+ 1) =
1

β + 2
θi(t) +

β

β + 2
θi+1(t) +

1

β + 2
θi+2(t)

−
(

1

β + 2
θi−1(t) +

β

β + 2
θi(t) +

1

β + 2
θi+1(t)

)

≥ 0,

while, being β ≥ 1,

θ2(t+ 1)− θ1(t+ 1) =
1

β + 2
θ1(t) +

β

β + 2
θ2(t) +

1

β + 2
θ3(t)−

β

β + 2
θ1(t)

− 2

β + 2
θ2(t) ≥ β − 1

β + 2
(θ2(t)− θ1(t)) ≥ 0.

Therefore, the claim holds by induction.
ii) By applying the result in item i), for all i = 1, . . . , h, one has

θi+1(t) =
1

β + 2
θi(t− 1) +

β

β + 2
θi+1(t− 1) +

1

β + 2
θi+2(t− 1)

≥
(

1

β + 2
+

β

β + 2
+

1

β + 2

)

θi(t− 1) = θi(t− 1).
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5.1. Weighted activity level

Now, we are ready to characterise the asymptotic behaviour in the WAL scenario, for
the ring graph interconnection. In order to streamline the presentation, only the case
β ≥ 1 will be treated.

Theorem 5.1. Let E be a ring graph, F = G given by (54) as in the WAL setting, n
odd and β ≥ 1. Define

qj(β) = inf
t

{

n− 1

n
− 2

n

h∑

k=1

(λk)
t cos

(

jk
2π

n

)}

, j = 1, . . . , h, (60)

q0(β) =
n− 1

nβ
(61)

where λk is given by (57), and set ~ = ⌊h2 ⌋. Then, system (5),(6), with initial condition
(8), exhibits the following asymptotic behaviours:

i) If τ ≤ n
n−1

1
(β+2) , then a∞ = 1.

ii) If

1

(β + 2)qj+1(β)
≤ τ ≤ 1

(β + 2)qj(β)
, (62)

for some j ∈ {0, 1, . . . , ~}, then a∞ = αj, given by

αj =
[
1 . . . 1
︸ ︷︷ ︸

0 . . . 0 1 . . . 1
︸ ︷︷ ︸

]′
, j = 1, . . . , ~.

j + 1 j
(63)

iii) If τ > max
{

1
(β+2)q0(β)

, 1
(β+2)q1(β)

}

, then a∞ = 0.

Proof. Before proving the single items, let us show by induction that pi(t) ≥ pi+1(t),
for i = 1, . . . , h and for all t ≥ 0. Being

p(0) =

[
β

β + 2

1

β + 2
0 . . . 0

1

β + 2

]′

and β ≥ 1, the statement is true at t = 0. Let pi(t) ≥ pi+1(t), i = 1, . . . , h, at time t.
Then, being θi(t) ≤ θi+1(t) according to item i) in Lemma 5.2, one has that a(t) = αj

in (63) for some j, which in turn gives

p(t+ 1) = Gαj =
[
1 . . . 1
︸ ︷︷ ︸

β+1
β+2

1
β+2 0 . . . 0

︸ ︷︷ ︸
1

β+2
β+1
β+2 1 . . . 1

︸ ︷︷ ︸

]′

j n− 2j − 3 j − 1
(64)

and hence pi(t+ 1) ≥ pi+1(t+ 1), i = 1, . . . , h.
i) According to the previous discussion, a(t) is either equal to 1 or 0, or it takes
values αj in (63), which then lead to p(t + 1) as in (64). Being lim→+∞ θ(t) = n−1

n
τ ,

if n−1
n

τ < 1
β+2 , one has that eventually a(t) will switch from αj−1 to αj , for all
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Figure 12. Ring graph, WAL setting, n = 5.

j = 1, . . . , h, thus leading to a∞ = αh = 1.
ii) Let j ∈ {1, 2, . . . , ~}. From (56) and (60), one gets

inf
t
θj+1(t) = τ qj(β).

Through some tedious manipulations, it is possible to show that the infimum in (60)
is equal to n−1

n
for j = ~+ 1, . . . , h, and it is approached asymptotically as t grows to

infinity. Conversely, for j = 1, . . . , ~, the infimum satisfies qj(β) <
n−1
n

and is attained
at some finite t∗j . Moreover, being θj+1(t) = τ for all t ≤ j − 1, one obviously has that
t∗j ≥ j. By following the same reasoning as in item i), the switch from αj to αj+1 will

never occur if τ qj(β) > 1
β+2 . Now, let (62) hold. From the rightmost inequality, by

applying item ii) in Lemma 5.2, one gets

1

β + 2
≥ θj+1(t

∗
j ) ≥ θj(t

∗
j − 1) ≥ · · · ≥ θ2(t

∗
j − j + 1).

Being t∗j ≥ j, one has t∗j − j+1 ≥ 1. Hence, all the thresholds θi, i = 2, . . . , j will take

a value below 1
β+2 in successive times, thus guaranteeing that all the switchings from

αi−1 to αi will eventually occur. This proves that condition (62) leads to a∞ = αj .
iii) If τ > 1

(β+2)q1(β)
, one has that the switching from a(0) = α0 to α1 never occurs. In

such a case, one gets

p(t) = Ga(0) =

[
β

β + 2

1

β + 2
0 . . . 0

1

β + 2

]′

and a(t) = α0 indefinitely, unless limt→+∞ θ1(t) >
β

β+2 , for some t. The latter condition

corresponds to n−1
n

τ > β
β+2 , i.e., τ > 1

(β+2)q0(β)
.

Figures 12-13 show the asymptotic behaviours achieved in scenario WAL for dif-
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Figure 13. Ring graph, WAL setting, n = 21.

ferent values of β and τ , in the cases of 5 and 21 agents, respectively. The different
regions correspond to: a∞ = 1 (red); a∞ = 0 (green); a(t) = a(0), ∀t (light blue);
a∞ = αj (different shades of yellow). In particular, for the case n = 5 only a∞ = α1

is present, while for n = 21 one can observe five regions corresponding to a∞ = αj ,
j = 1, . . . , 5, the lightest (and largest) one corresponding to α1. The dashed curves
represent the boundaries defined by Theorem 5.1 as functions of τ and β.

In Figure 13, it can be noticed that the regions in which a∞ = αj tend to shrink
as j grows, while they approach the region in which a∞ = 1. Moreover, these regions
also shrink as β grows. On the other hand, their number increases with the number
of agents, being proportional to n

4 . Apart from these regions, the other asymptotic
patterns are the same as for the star graph, but the region in which a∞ = a(0) is much
larger in the ring network, while those in which 0 or 1 are achieved are significantly
reduced (compare, e.g., Figures 7 and 13).

5.2. Uniform activity level

Let us consider the UAL setting. The asymptotic behaviour for β ≥ 1 is described by
the next result.

Theorem 5.2. Let E be a ring graph, F and G given by (54) and (55), respectively,
n odd and β ≥ 1. Let the functions qj(β), j = 1, . . . , h, be defined as in (60). Then,
system (5),(6), with initial condition (8), exhibits the following asymptotic behaviours:

i) If τ ≤ n
3(n−1) , then a∞ = 1.

ii) If

1

3qj+1(β)
≤ τ ≤ 1

3qj(β)
,

for some j ∈ {1, 2, . . . , ~}, then a∞ = αj, given by (63).
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iii) If τ > n−1
3n , then a∞ = 0.

Proof. By adopting the same argument as in the proof of Theorem 5.1, it can be
shown that a(t) can take only the values 1, 0, or αj in (63). In the latter case, one gets

p(t+ 1) = Gαj =
[
1 . . . 1
︸ ︷︷ ︸

2
3

1
3 0 . . . 0

︸ ︷︷ ︸
1
3

2
3 1 . . . 1

︸ ︷︷ ︸

]′
.

j n− 2j − 3 j − 1

Then, item i) and item ii) for j = 1, . . . , ~ can be proven by following the same
reasoning as in the proof of Theorem 5.1.
Concerning item iii), let us first observe that if τ > 1

3q1(β)
, the switching from a(0) = α0

to α1 never occurs. Being

p(1) = Gα0 =

[
1

3

1

3
0 . . . 0

1

3

]′

and q1(β) <
n

n−1 , one has τ n−1
n

> 1
3 and hence limt→+∞ θ1(t) >

1
3 . This means that

eventually one will have θ1(t) > p1(t) and therefore a∞ = 0.

Figures 14-15 show the asymptotic behaviours achieved in scenario UAL for different
values of β and τ , for n = 5 and n = 21, respectively. Colours have the same meaning
as in Figures 12-13. The range of τ is reduced to highlight the presence of the regions
in which a∞ = αj . The dashed line represents the boundaries defined by Theorem 5.2
as function of τ and β.

According to Theorem 5.2, in the UAL scenario it never occurs that a∞ = a(0), i.e.,
the initial condition cannot be maintained indefinitely. Once again, this is a major
difference with respect to what happens in the WAL setting (compare Figures 14-
15 with Figures 12-13). Moreover, a larger value of the self-confidence parameter β
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Figure 15. Ring graph, UAL setting, n = 21.

enlarges the gap between the extreme asymptotic behaviours a∞ = 1 and a∞ = 0 in
the WAL scenario, while this is not the case in the UAL case.

By comparing the results obtained in the two considered scenarios, it can be con-
cluded that the choice of the matrix G plays a key role in defining the pattern of
asymptotic behaviours in all the interconnection topologies considered in the paper.

Figure 16. Ego network used for simulation, including n = 53 nodes and 198 edges (the red node is the ego
node).

6. Experimental results with ego networks

In this section, we evaluate to what extent the analytic results presented so far, and
obtained in the case of simple graph topologies, apply to more realistic social networks.
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Figure 17. Final fraction of radical agents when the only initial radical agent is placed at the ego node.

To this end, we have carried out extensive simulations on a real ego network and
observed how the asymptotic behaviours depend on the model parameters.

The test network used in this study is extracted from the data set described in
(Leskovec and Mcauley, 2012), consisting of ten ego networks taken from Facebook.
The network selected has n = 53 nodes, including the ego node, and 198 edges, re-
sulting in an average degree of 7.47 edges per node (see Fig. 16). The highest degree
node is clearly the ego node, which, by definition, is connected to all the other nodes.
The node with the second highest degree has 19 incident edges, whereas 10 nodes are
connected to the ego node only. Dynamic system (5),(6) has been simulated with such
an ego network constituting the underlying communication infrastructure. The WAL
setting has been considered, i.e. F = G is assumed in throughout this section, with
the entries of F given by (7). Different combinations of the initial threshold τ and the
self-confidence weight β have been simulated. Parameter τ ranges from 0.01 to 0.99,
whereas β varies from 0.1 to 20.

In the first scenario considered, the ego node is the only agent initially active.
The fraction number of final active agents, as a function of τ and β, is shown in
Fig. 17. Among the graphs studied in Sec. 3-5, the network topology more similar
to the ego network under consideration is clearly the star network. Although a non
negligible number of additional edges between the non-central nodes are now present,
the asymptotic behaviours of the system are very similar to those analytically derived
in Sec. 4.1 (e.g., compare Fig. 7 to Fig. 17). For large values of the self-confidence
weight, i.e. for β >

√
n− 1 ≃ 7.21, the asymptotic behaviour of the test network

is in very good agreement with that predicted by Theorem 4.1 (point (i)), with a∞
switching from 1 to a(0) to 0 as τ crosses the functions δ1(β) and δ2(β) (see Fig. 17).
For smaller values of β a richer variety of asymptotic behaviours are now observed. In
contrast to what happens for a truly star network, in this case 13 different values of
a∞ are found. Notice, however, that three stationary asymptotic behaviours predicted
by Theorem 4.1, namely a∞ ∈ {0, a(0), 1}, cover more than 95% of the simulation
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Figure 18. Final fraction of radical agents, averaged over 100 different initial conditions, for different initial

fractions ξ of radical agents.

runs.
A second set of simulations has been carried out to analyse how the presence of

more than one initial radical agent modifies the final distribution of active agents.
To this end, the simulations have been initialised to a number of radicals equal to
round(ξn), where ξ denotes the fraction of initial radical agents. The identity of the
initial radicals (i.e., the node where initial radicals are placed within the network) may
have an impact on their ability to persuade a larger number of neighbours. Intuitively,
more central or more connected nodes (in a sense, more “popular” agents) are able
to mobilise a higher number of individuals. To mitigate such an effect, simulation
results are averaged over 100 different randomly generated identities of the initially
active agents. For consistency with the theoretical analysis, the ego node is always
initially active. The final fraction of active agents is reported in Fig. 18, for four
different values of ξ ranging from 0.05 to 0.30. It can be noticed that the smaller the
number of initial radicals, the sharper the transition between regions corresponding to
different asymptotic behaviours. Although somehow blurred by the averaging process,
separating curves similar to those shown in Fig. 8 can be observed. For values of β
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close to one, the transition between the regions with all active and all inactive final
agents is very irregular and spiked. This suggests that the fractal boundary found in
Theorem 4.1 (point (ii)), and shown in Fig. 8, is revealing of a phenomenon which can
be experienced also in actual ego networks.

7. Conclusions

This paper has presented a class of dynamic threshold models which can be used to
analyse collective actions in social networks. The main feature of this model class is
that the threshold is time-varying, as it evolves according to a dynamic opinion model.
The asymptotic activity pattern of the network clearly depends not only on the graph
topology, but also on the level of self-confidence of the agents. Moreover, a crucial role
is played by the selected mechanism for the computation of the neighbours’ activity
level, which determines how the agents decide to become active or not.

The analytic results obtained so far support the thesis proposed in (Hassanpour,
2014), and based on empirical evidence, according to which “in the presence of a risk-
averse majority and a radical minority, adding more links among the majority does not
necessarily help mobilisation.” By looking at the regions corresponding to all agents
becoming eventually active (e.g., red regions in Figs. 2, 7 and 13), it can be clearly
seen that achieving full mobilisation in a highly connected network (e.g., a complete
graph) can be harder than doing it in a less connected topology (e.g., star and ring
graphs).

The study presented in this paper can be extended along different research direc-
tions, some of which are highlighted below.

• Network topology. One limitation of the results obtained so far is that they
hold under quite strong assumptions on the topology of the underlying communi-
cation network (complete, star or ring graphs). This has allowed us to analytically
characterise the asymptotic behaviours of the network and to identify interest-
ing phenomena observed in more complex structures as well, as confirmed by
numerical simulations. Undertaking a similar analysis for more realistic social
networks (e.g., ego networks or power-law networks) would represent a major
improvement of this work.

• Initial conditions. A further enrichment of the analysis is the consideration of
a broader class of initial conditions. In this respect, interesting questions concern
the effect that the number of initial radical agents, or their centrality within the
network, have on the asymptotic behaviour of the system. Similarly, an addi-
tional aspect worth investigation is the presence of groups of ordinary agents
having different initial thresholds (e.g., modelling two parties with different ini-
tial opinions about the action to be undertaken).

• Individual model. One key feature of the proposed model over existing ones
is its ability to reproduce the behaviour of individuals exhibiting a wide range
of self-confidence levels, by suitably tuning the parameter β. So far, only ho-
mogeneous communities have been studied, i.e. all the agents are supposed to
behave according to the same value of β. However, the flexibility of the model
allows one to study also networks composed of groups of agents with differ-
ent self-confidence levels, thus analysing which types of dynamics arise between
confident and hesitant agents.

• Opinion dynamics model. A major factor influencing the network evolution
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is the dynamic model used to represent the time evolution of the individuals’
threshold. A variation of the widely used DeGroot opinion model has been used
in this work. However, alternative opinion dynamics models can also be consid-
ered, such as models with time-varying or state-dependent weights (like in the
Hegselmann-Krause model, Blondel et al., 2009), models including antagonis-
tic interactions (Altafini and Lini, 2015; Proskurnikov et al., 2016), or stochastic
models frequently used in the social learning literature (Acemoglu et al., 2011a).
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