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Abstract: Over recent years there has been a general consensus about the necessary changes
towards modernizing the existing power grid to meet environmental and socio-economic
objectives. The adoption of low carbon technologies is a milestone in this process. On the other
hand, the massive and uncoordinated connection of distributed generators (e.g. solar or wind)
is making the operation of electrical distribution networks more challenging, e.g. causing energy
balancing problems or voltage violations. Energy storage systems represent a possible means
to cope with these issues. In this paper, we consider the problem of sizing the energy storage
systems installed in a low voltage network with the aim of preventing voltage violations along the
feeders. Since the problem is solved at the planning stage, when future realizations of demand
and generation are unknown, we adopt a two-stage stochastic formulation where daily demand
and generation profiles are modelled as random processes. The cost function to be minimized
takes into account installation and operation costs related to storage use. By taking a scenario-
based approach, the two-stage problem is approximated via a multi-scenario optimal power
flow. To reduce the computational burden of the latter problem, a heuristic strategy consisting
of solving separately a sizing problem for each scenario, and then combining the solutions of
the single problems through a worst-case criterion, is proposed. The multi-scenario approach
and the heuristic strategy are compared in terms of both computation time and quality of the
solution using real data from an Italian low voltage network with photovoltaic generation.

Keywords: Energy storage sizing, voltage control, distribution network, two-stage stochastic
programming, scenario-based approach.

1. INTRODUCTION

The ever growing penetration of non-dispatchable power
generation is posing new challenges to distribution system
operators (DSOs), called to guarantee power quality stan-
dards to consumers. In this respect, energy storage systems
(ESSs) have been recently recognized as an instrumental
tool for energy balancing and voltage support (Chu and
Majumdar, 2012; U.S. DOE, 2013). The reason lies in the
fact that ESSs represent the most flexible solution in this
restructuring process, where new distributed energy re-
sources such as wind and photovoltaic (PV) plants, electric
vehicles and heat pumps, can be continuously connected to
the grid. In view of such a dynamic scenario, ESSs can be
easily relocated and operated both as loads or generators
according to the grid requirements. Moreover, pros of the
use of ESSs are that distributed supply and demand are
balanced locally, thus reducing recourse to curtailment of
renewable energy sources. The interested reader is referred
to (IEC, 2011; U.S. DOE, 2013) for surveys on the general
benefits that ESSs bring to the whole electricity system.

Many recent papers deal with optimal ESS allocation in
power networks, which consists of deciding the number

of ESSs to be deployed, their locations (siting) and sizes
(sizing). A recent review of methods for ESS allocation
in distribution networks can be found in (Zidar et al.,
2016). Different methods are classified according both
to the methodology used to find a solution and to the
application for which ESSs are utilized. When dealing
with voltage support in distribution networks, the problem
is often formulated in a full AC optimal power flow
(OPF) framework, where storage locations and sizes are
optimally determined subject to power balance equations
and storage dynamics. To cope with the computational
burden of the derived OPF problems, a second-order cone
programming OPF approach is considered in (Nick et al.,
2014), while convex relaxations based on semidefinite
programming (SDP) are used in (Gayme and Topcu,
2013). The alternating direction method of multipliers is
exploited in (Nick et al., 2015) to break down the original
problem into a parallel convex optimization. Giannitrapani
et al. (2016) propose a heuristic approach based on voltage
sensitivity analysis to circumvent the combinatorial nature
of the siting problem.

A challenging issue for DSOs is to cope with a significant
level of uncertainty both in planning and operation of



distribution networks. For this reason there is a growing
interest of researchers in including uncertainty explicitly in
the formulated problems. As far as ESS sizing is concerned,
in some cases a deterministic formulation of the problem
is combined with an approach based on scenarios, see,
e.g., (Nick et al., 2014; Giannitrapani et al., 2016). Baker
et al. (2014) optimize ESS energy capacity using two-
stage stochastic optimization in order to account for the
intrinsic intermittency of load and wind supply. A formu-
lation of the ESS sizing problem including intermittencies
as chance constraints is provided in (Kargarian et al.,
2016). Different stochastic techniques, such as Monte Carlo
simulation, simulated annealing and robust multi-period
OPF, have been adopted in (Baziar and Kavousi-Fard,
2013; Giannakoudis et al., 2010; Jabr et al., 2015), when
considering several optimal energy management problems
for active grids including ESSs.

In this paper we consider the problem of ESS sizing for
voltage support in low voltage (LV) distribution networks.
The problem is addressed by taking explicitly into ac-
count uncertainty on demand and generation through a
two-stage stochastic programming formulation with AC
power flow constraints and storage dynamics. Considering
a finite number of scenarios, the two-stage problem is
approximated by a multi-scenario OPF problem, for which
a heuristic solution strategy based on a worst-case criterion
is devised. The two-stage approach and its heuristic are
evaluated and compared using real data from an Italian
LV network featuring overvoltages in the absence of ESSs.
Differences of this paper compared to (Baker et al., 2014)
consist mainly in the adopted network model (a bus in-
jection model enabling access to bus voltages) and the
formulated optimization problem (a full AC OPF). More-
over, the two-stage stochastic programming formulation of
the sizing problem was not present in our previous work
(Giannitrapani et al., 2016).

The paper is organized as follows. The bus injection model
of a LV network with ESSs is introduced in Section 2. Sec-
tion 3 presents the formulation of the ESS sizing problem
via two-stage stochastic optimization, while the proposed
heuristic solution strategy is described in Section 4. Sec-
tion 5 reports numerical results. Finally, conclusions are
drawn in Section 6.

2. NETWORK MODEL

In this section we introduce the bus injection model of
a LV network equipped with ESSs. For a fixed sampling
time ∆T , the value of a variable x at time t∆T is denoted
by x(t), where t = 1, 2, . . . is the discrete time index.
Moreover, the real part, imaginary part, modulus and
complex conjugate of z ∈ C are denoted by Re(z), Im(z),
|z| and z∗, respectively.

Consider a LV network described by a graph (N , E), where
N = {1, 2, . . . , n} is the set of nodes (buses) and E is
the set of edges (lines). Adopting the classical π-model
for the n-bus system, the admittance-to-ground at bus i
is denoted by yii, while yij = yji is the line admittance
between buses i and j. If (i, j) /∈ E , yij = 0. Let Vk(t) ∈ C,
Pk(t) ∈ R and Qk(t) ∈ R denote the complex voltage,
active power injection and reactive power injection at bus k

and time t, respectively. These quantities are linked by the
power balance equations

Pk(t) = Re
(
Vk(t)

∑

j∈N

V ∗
j (t)Y

∗
kj

)
(1a)

Qk(t) = Im
(
Vk(t)

∑

j∈N

V ∗
j (t)Y

∗
kj

)
, (1b)

where

Ykj =




ykk +

∑

h 6=k

ykh if j = k

−ykj otherwise.

Bus 1 is assumed to be a slack bus, characterized by
fixed voltage magnitude and phase, i.e. V1(t) is known for
all t. Conversely, all other buses in the set K = {2, . . . , n}
are treated as load buses. This means that, given Pk(t)
and Qk(t) for all k ∈ K, bus voltages Vj(t), j ∈ K, are
determined by solving the power flow equations (1).

Voltage quality requirements set by current regulation take
the following form:

v2k ≤ |Vk(t)|
2 ≤ v2k, (2)

where vk ≤ vk are given positive bounds. The real power
flow from bus i to bus j is also bounded to reflect the
physical limits of the lines:

Re
(
Vi(t)

[
Vi(t)− Vj(t)

]∗
y∗ij

)
≤ P ij . (3)

The left-hand side of (3) is the real power transferred from
bus i to bus j at time t, while P ij = P ji is a given upper
bound.

Let S ⊆ K be the set of buses equipped with ESSs. For
s ∈ S, the storage level at bus s and time t is denoted
by es(t), while rs(t) and bs(t) are the average active and
reactive power exchanged between t∆T and (t + 1)∆T .
The quantities rs(t) and bs(t) are bounded as follows:

Rs ≤ rs(t) ≤ Rs (4a)

Bs ≤ bs(t) ≤ Bs, (4b)

where Rs < 0, Rs > 0 and Bs < Bs are given bounds
depending on the ESS technology adopted. For the sake
of simplicity, charging and discharging efficiencies are
assumed equal to 1 and the dynamics of es(t) are modelled
through the difference equation

es(t+ 1) = es(t) + rs(t)∆T, (5)

with known initial condition es(1). For all t, the storage
level es(t) is bounded as follows:

0 ≤ es(t) ≤ Es, (6)

with Es being the ESS capacity installed at bus s. Since
in this paper we consider time horizons of one day, the
additional constraint stating that the storage level at the
beginning and at the end of the day are equal, is imposed
to decouple ESS operation in different days:∑

t∈T rs(t) = 0, (7)

where T = {1, . . . , T } and T is the number of time samples
per day.

For a generic bus k ∈ K having loads, generators and ESSs
connected to it, Pk(t) and Qk(t) in (1) can be written as

Pk(t) = PG
k (t)− PD

k (t)− rk(t) (8a)

Qk(t) = QG
k (t)−QD

k (t)− bk(t), (8b)



where the superscript G refers to generation and the
superscript D refers to demand. The following additional
constraints apply to buses not equipped with ESSs:

rh(t) = bh(t) = 0, h ∈ K\S. (9)

Moreover, in case no load/generator is connected to bus k,
demand/generation at bus k is assumed to be zero.

3. PROBLEM FORMULATION VIA TWO-STAGE
STOCHASTIC OPTIMIZATION

At the planning stage, the fundamental decision problem
related to the adoption of ESSs in a power network con-
cerns ESS allocation, i.e. one has to decide the number and
the locations of the ESSs (siting problem), as well as their
sizes (sizing problem). For voltage support applications
in LV networks, an iterative technique for ESS allocation
is proposed in (Giannitrapani et al., 2016). In particular,
ESS siting is accomplished by exploiting voltage sensitivity
analysis to identify the most effective connections between
nodes with the aim of maximizing the impact of power
injection/consumption on voltage variations. In this paper
we address the companion ESS sizing problem in a setting
with uncertainty. Since the sizing problem is solved at the
planning stage, when future realizations of demand and
generation are unknown, we adopt a stochastic formulation
where daily demand and generation profiles are considered
as stochastic quantities. The cost function to be minimized
takes into account both installation and operation costs
related to ESS use. In particular, installation costs are
assumed to be proportional to the total installed ESS
capacity, while for the sake of simplicity only average line
losses are considered as operation costs. More composite
choices are possible without changing the nature of the
problem, see, e.g., (Zarrilli et al., 2017).

Following (Shapiro et al., 2014), the considered problem
can be cast in a two-stage stochastic optimization frame-
work. Let ξ be the random vector containing the values
PD
k (t), QD

k (t), PG
k (t) and QG

k (t) for all k ∈ K and t ∈ T
(recall that the time horizon T is assumed to span one
day), and denote by Ξ the support of the probability
distribution of ξ. Moreover, let x denote the vector of ESS
capacitiesEs for all s ∈ S. The total installed ESS capacity
corresponding to x is

C(x) =
∑

s∈SEs. (10)

Then, the first-stage problem aiming at finding the ESS
sizes which minimize a linear combination of installation
and operation costs, reads as

minx∈XEξ[L(x, ξ)] + γC(x), (11)

where X = {x : x ≥ 0} (the inequality is to be intended
component-wise) and γ > 0 is a weighting parameter
which trades off installation and operation costs. The
latter are represented by the term Eξ[L(x, ξ)], namely
the expected value, taken with respect to the probability
distribution of ξ, of the line losses under an optimal ESS
operation policy which minimizes them. In other words,
L(x, ξ) is the optimal value of the second-stage problem:

L(x, ξ) = miny∈G(x,ξ)ℓ(x, y, ξ), (12)

where the vector y contains the values Vk(t), rs(t) and
bs(t) for all k ∈ K, s ∈ S and t ∈ T ; the objective function
ℓ(x, y, ξ) denotes the average total line losses per sampling
time:

C
(x

∗
)

γ

Fig. 1. Typical plot of the installation cost C(x∗) versus
the weighting parameter γ.

ℓ(x, y, ξ) =
∑

t∈T

∑
k∈N Pk(t)∆T/T, (13)

with Pk(t) given by (1a), and the feasible set G(x, ξ) is
defined by power balance equations, ESS dynamics and
constraints on voltage, real power flow and ESS power
exchanges:

G(x, ξ) = {y : (1)− (9), k ∈ K, s ∈ S, (i, j) ∈ E , t ∈ T }.
(14)

In practical applications, only a finite set of scenarios
of demand and generation is available. Each scenario is
represented by a realization ξd of the random variable ξ,
either extracted from historical data sets, or generated via
simulation of suitable identified models. In these cases,
problem (11)-(12) can be approximated in a discrete
fashion. Let D be the number of scenarios and define D
distinct vectors of unknowns with the same meaning as
y in (12), denoted by yd, d = 1, . . . , D. Then, problem
(11)-(12) is approximated by

min
x,y1,...,yD

D∑

d=1

pd ℓ(x, yd, ξd) + γC(x) (15)

s.t. x ∈ X, yd ∈ G(x, ξd), d = 1, . . . , D,

where pd represents the probability associated to sce-
nario ξd (see Remark 2) 1 . Approximation of (11)-(12)
through (15) is justified by the fact that, if ξ were discrete-
valued with possible values ξ1, . . . , ξD, then the two prob-
lems would be equivalent thanks to the interchangeability
principle, see (Shapiro et al., 2014). In the following, x∗ is
used to denote the value of x at the optimum of problem
(15), while E∗

s denotes the optimal size of the ESS at bus
s corresponding to the solution x∗.

Problem (15) is a multi-scenario, multi-period OPF, which
is very hard to solve due to non-convexity (typical of OPF
problems), time-coupling constraints (determined by ESS
dynamics) and scenario-coupling constraints (represented
by ESS sizes). A possible approach to cope with this
computational burden is by resorting to SDP convex
relaxations (Lavaei and Low, 2012; Low, 2014). In the next
section, a heuristic approach based on solving separately a
sizing problem for each scenario, thus allowing for parallel
computation, is proposed.

Remark 1. The weighting parameter γ is used to trade off
installation and operation costs. The installation cost C(x)
at the optimum of problem (15), i.e. for x = x∗, is plotted
in Fig. 1 as a function of the weighting parameter γ. As
expected, when greater weight is given to the installation
costs, the total installed ESS capacity decreases. However,

1 With a slight abuse of terminology, from now on we will denote a
scenario by the corresponding realization of the random vector ξ.



the term C(x∗) cannot decrease below a lower bound
mainly imposed by the satisfaction of voltage quality
constraints under all scenarios.

Remark 2. The probability pd of scenario ξd is a measure
of its representativeness with respect to the probability
distribution of ξ. When information on this distribution is
missing, a uniform distribution pd = 1/D can be adopted.

4. HEURISTIC METHOD BASED ON SCENARIOS

The proposed heuristic method to tackle problem (15)
consists of solving a sizing problem for each scenario, and
then combining the solutions found, e.g. through a worst-
case criterion. Let xd be the vector of ESS sizes in scenario
ξd. The sizing problem for scenario ξd reads as

min
xd,yd

ℓ(xd, yd, ξd) + γd C(xd) (16)

s.t. xd ∈ X, yd ∈ G(xd, ξd),

where γd > 0 is the weighting parameter. This problem
is a multi-period OPF, for which solution strategies based
on SDP convex relaxations can be adopted as for problem
(15). Indeed, (16) is obtained from (15) by considering
scenario ξd only, hence with D = 1 and pd = 1. The values
of xd and yd at the optimum of problem (16) are denoted

by x̃d and ỹd, respectively. Moreover, Ẽs,d is the size of
the ESS at bus s corresponding to the solution x̃d. The
weighting parameter γd of problem (16) plays the same
role as γ in problem (15). Therefore, the plot of the cost
C(x̃d) versus γd will be like the one of Fig. 1, see also
(Giannitrapani et al., 2016).

The final decision on the size of the ESS at bus s is made
according to the rule

Ẽs = max
d=1,...,D

Ẽs,d. (17)

This rule is justified by the fact that ESS sizes Es enter
the definition of the feasible set of problem (15) only as
upper bounds in constraints of the type (6), one for each
scenario. Hence, (17) ensures that the vector x̃ constructed

with values Ẽs, together with the vectors ỹ1, . . . , ỹD, form
a feasible solution for problem (15).

5. NUMERICAL RESULTS

The proposed methods for ESS sizing are tested on a real
LV network whose topology was provided by the main
Italian DSO. The test network is shown in Fig. 2. It
consists of 17 buses and 16 lines. A total of 26 loads and
4 PV generators are connected to the network. Installed
power of the PV generators is 9 kWp at buses 6 and 7,
6 kWp at bus 11 and 4 kWp at bus 15. For all loads
and PV generators, historical data are available with
time step ∆T = 60 min over a period of 90 days. In
the network model, 10% tolerance around the nominal
voltage magnitude is allowed at all buses k ∈ K, i.e.
vk = 0.9 pu and vk = 1.1 pu in (2), in accordance with the
European Norm 50160. With these bounds, the available
demand and generation profiles are such that the network
often experiences overvoltages in the absence of ESSs. For
this reason, an empty initial storage level is assumed for
all ESSs, i.e. es(1) = 0 kWh, in order to compensate
overvoltages with as small as possible storage capacity.
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Fig. 2. Test LV network with 17 buses.

The bounds P ij in (3) are all set to 35 kW. Bounds

in (4) are chosen such that Rs = −Rs = 25 kW and
Bs = −Bs = 25 kVar.

The siting algorithm presented in (Giannitrapani et al.,
2016) is run in order to locate two ESSs in the network.
In this case when only overvoltages show up, locations
selected by the algorithm are buses 11 and 15, i.e. two
buses with PV generators. In the following, all SDP
relaxations of OPF problems for ESS sizing are solved
using the CVX modelling package for convex optimization
(Grant and Boyd, 2014) and the SeDuMi solver (Sturm,
1999) on an Intel Xeon 2.4 GHz CPU with 32 GB RAM.

5.1 Sizing via two-stage programming

In order to evaluate how the computation time of problem
(15) scales with the number D of scenarios, the SDP
relaxation of (15) is solved for increasing values of D.
Ten scenarios are initially selected by picking ten days
randomly from the available data set. Then, larger groups
of scenarios are iteratively constructed by adding ten days
(picked randomly among those remaining) to the ones
previously selected. Table 1 shows the approximate com-
putation time of the SDP problems solved for the different
values of D considered. The choice γ = 0.001 is made for
all problems, while pd = 1/D is the probability associated
to each scenario when D scenarios are considered. The
computation time turns out to be approximately quadratic
in D up to D = 70. Most importantly, for D = 80 it is not

Table 1. Computation time for solving the
SDP-relaxed version of problem (15).

D time [min]

1 0.3
10 8
20 25
30 51
40 91
50 139
60 205
70 302
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Fig. 3. Comparison of the total ESS capacities C(x∗) (red
bars) and C(x̃) (blue bars) for N = 20 groups of
D = 20 scenarios.

possible to solve the SDP problem due to out-of-memory
issues caused by the prohibitive number of variables in-
volved. Similar computational issues are reported in the
literature for applications with a large number of scenarios,
see, e.g., (Nick et al., 2015). This highlights that the real
drawback of the formulation (15) is not the computation
time (whose weight at the planning stage may be relative),
rather the fact to become rapidly intractable as D grows.

5.2 Sizing via heuristic method

A point in favor of the heuristic method of Section 4 is that
the computation time of the solution C(x̃) scales linearly
with the number D of scenarios (assuming sequential com-
putation). The first row of Table 1 shows the approximate
computation time for solving the SDP-relaxed version of
problem (16). This implies that obtaining C(x̃) requires
about 24 min for D = 80, when a solution of the SDP-
relaxed version of (15) cannot be either computed. It
is also stressed that computation times can be further
reduced by parallelizing the computation.

To assess the performance of the heuristic method, we
evaluate the gap between the total ESS capacity C(x∗)
obtained by solving the multi-scenario problem (15) and
the one C(x̃) obtained by applying the heuristic method.
To evaluate this gap under different data realizations,
N = 20 groups of D = 20 scenarios are formed by picking
days randomly from the available data set. For each
group of scenarios, the SDP-relaxed version of problem
(15) is solved with probability pd = 1/D associated to
each scenario. Moreover, SDP-relaxed versions of problem
(16), one for each scenario, are solved, and then the
solutions of the single-scenario problems are combined
according to (17). In all the multi- and single-scenario
problems solved, the weighting parameters γ, γ1, . . . , γD
are selected in order to get as small as possible total ESS
sizes C(x∗), C(x̃1), . . . , C(x̃D) (see Fig. 1). With this choice
and by defining x̄ = argmaxd=1,...,D C(x̃d), it holds that
C(x̄) ≤ C(x∗) ≤ C(x̃), which represents a computable,
guaranteed interval for C(x∗). Since in this case C(x∗) can

be computed, the bar plot in Fig. 3 compares the total ESS
sizes C(x∗) (red bars) and C(x̃) (blue bars) obtained. For all
groups of scenarios, it can be observed that C(x∗) ≤ C(x̃)
as expected, and the two solutions are typically very close.
For a quantitative assessment, let the relative gap (in
percent) be defined as

ν(x̃, x∗) =
C(x̃)− C(x∗)

C(x∗)
× 100%. (18)

It turns out that the maximum of ν(x̃, x∗) over the
considered groups of scenarios is 5.4%, with an average
value of 1.2%. For 13 groups out of 20, the relative gap
is less than 0.4%. Far from being an exhaustive test,
these results show the good performance of the proposed
heuristic on the available data set also in terms of quality
of the solution found.

Remark 3. The solution of the SDP problem may be
infeasible for the original problem (15) or (16), leading
in particular to violations of the voltage magnitude and
real power flow constraints. For this reason, feasibility of
the solution of the SDP problem for the corresponding
original problem should be always checked a posteriori.
For each scenario considered, this amounts to solve a
series of T power flow problems (1), one for each time
period t = 1, . . . , T , where the complex voltages Vk(t)
are the unknowns and the active and reactive power
Pk(t) and Qk(t) are given by (8), with rs(t) and bs(t)
provided by the solution of the relaxed problem for all
s ∈ S. Then, satisfaction of constraints (2) and (3) is
verified with the complex voltages Vk(t) returned by the
power flow problems. This check was always successful for
the solutions of all relaxed problems considered in this
section. An example is presented in Fig. 4, showing the
daily voltage profiles at bus 6 in one of the considered
scenarios both in the absence and in the presence of ESSs.
When ESSs are not installed, overvoltages due to high PV
generation occur between 11 AM and 5 PM (blue curve).
The problem is prevented with the use of the ESSs (red
curve). Since ESSs are initially empty, they are not used
until overvoltages show up (the blue and red curve overlap
until 10 AM). Then, voltage is pulled back below the upper
bound by charging the ESSs. Notice that the bus voltage
is higher after 6 PM in the case with ESSs. This is due to
constraint (7), causing the ESSs to discharge for restoring
the initial energy level at the end of the day.

6. CONCLUSIONS AND FUTURE WORK

This paper dealt with the deployment of ESSs for voltage
support applications in LV networks. Sizing of these ESSs
was addressed by taking explicitly into account uncer-
tainty on demand and generation through a two-stage
stochastic programming formulation. Considering a finite
number of scenarios, the two-stage problem was then ap-
proximated by a multi-scenario sizing problem. This made
it possible to devise a heuristic solution strategy based
on solving a sizing problem for each scenario, and then
combining the solutions of the single problems through
a worst-case criterion. The presented numerical results,
obtained for a test LV network with 17 buses, showed
that, even when one resorts to SDP convex relaxations, the
multi-scenario sizing problem suffers from computational
issues as the number of scenarios grows. On the other
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Fig. 4. Voltage magnitude at bus 6 in one of the considered
scenarios: (blue) in the absence of ESSs, (red) in the
presence of ESSs.

hand, the proposed heuristic method based on solving
multi-period OPF problems of fixed size, is computa-
tionally less demanding. Moreover, the gap between the
solution of the heuristic method and that of the multi-
scenario problem was acceptable, and typically very small,
in all presented instances.

Future work will provide an extensive validation of the
heuristic method in terms of solution gap using different
network topologies and scenarios of demand and genera-
tion. Moreover, in order to limit the computation time of
the multi-scenario sizing problem, suitable scenario reduc-
tion techniques will be investigated. A scenario reduction
technique makes it possible to downsize a given scenario
set to a scenario subset of prescribed cardinality while
preserving as much as possible the information useful to
the solution of the underlying optimization problem. To
the best of the authors’ knowledge, scenario reduction
techniques appropriate to solve ESS sizing problems are
missing. Standard clustering techniques such as k-means
are used in (Nick et al., 2014). On the other hand, scenario
reduction techniques based on the notion of probability
distance (Dupačová et al., 2003) are shown in (Bucciarelli
et al., 2016) to be unsuitable to the purposes of ESS sizing.
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