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Abstract: The intrinsic variability in non-dispatchable power generation raises important
challenges to the integration of renewable energy sources into the electricity grid. This paper
studies the problem of optimizing energy bids for a photovoltaic (PV) power producer taking
part into a competitive electricity market characterized by financial penalties for generation
shortfall and surplus. To this purpose, an optimization procedure is devised to cope with the
intermittent nature of PV generation and maximize the expected profit of the producer. Since
the optimal offer turns out to be a suitable percentile of the PV power cumulative distribution
function (cdf ), we investigate two approaches to properly take into account the effects of seasonal
variation and non stationary nature of PV power generation in the estimation of PV power
statistics. The first one normalizes the generated power with the power obtainable under clear-
sky conditions. The second approach estimates a time-varying PV power cdf using only power
data in a moving window of suitable width. A numerical comparison of the different bidding

strategies is performed on a real data set from an Italian PV plant.

1. INTRODUCTION

With the increasing penetration level of renewable energy
sources (RES), grid system operators have to face more
and more challenging technical issues. While RES bring in
obvious advantages in terms of production costs and en-
vironmental impact, their intrinsic intermittent and non-
dispatchable nature causes several difficulties for a correct
grid operation. In order to mitigate such problems, sev-
eral countries are promoting regulatory frameworks forcing
the producers to actively participate in the technical and
economical integration of renewables [Klessmann et al.,
2008]. In an attempt to reduce the uncertainty affecting
generation from RES, producers are required to provide
day-ahead schedules of their generation. Energy is then
remunerated according to the conformity of the actual
generation profile to the schedule, by applying financial
penalties to shortfall or surplus of energy generation. From
a producer perspective, this calls for the development of
suitable bidding strategies to offer the maximum amount
of energy while avoiding imbalance costs.

Optimal bidding strategies for a wind power producer have
been studied in [Bathurst et al., 2002, Matevosyan and
Soder, 2006, Pinson et al., 2007, Morales et al., 2010, Dent
et al., 2011], and recently in [Bitar et al., 2012]. In a market
where penalties are applied whenever the delivered power
deviates from the schedule, the optimal bid for a certain
hour of the day turns out to be a suitable percentile of
the cumulative distribution function (cdf) of the power
generation at the same hour. Under the assumption of
time-invariant statistics of power generation, the cdfs can
be estimated from all past data of the power generated
by the plant. In principle, one could apply the same
bidding strategy to other RES. However, some RES like
photovoltaic (PV) and hydro are characterized by remark-

able seasonal variations of power generation and exhibit a
significant non stationary behavior. Such a phenomenon
may negatively affect the optimal bidding strategy, if not
properly considered.

The main contribution of the paper is to present two
approaches to account for the fluctuations of the generated
power over the year and thus tune the optimal bidding
strategies originally developed for a wind source to the case
of a PV producer. The first solution consists in normalizing
the generated power with respect to the power that could
be obtained from the plant under clear-sky conditions.
In the second approach, a moving window on the most
recent power generation data is adopted to estimate a
time-varying cdf of generated power. Both techniques are
experimentally compared, in terms of average daily profit,
to the straightforward application of the optimal bidding
strategy for wind power producers.

The paper is organized as follows. Section 2 presents
the mathematical formulation of the bidding problem for
a generic non-dispatchable RES and recalls the optimal
solution. Section 3 describes the proposed approaches to
deal with the non stationarity of the PV power generation
statistics. Section 4 reports experimental results obtained
under different pricing scenarios using data from a real
Italian PV plant. Finally, some conclusions are drawn in
Section 5.

2. OPTIMAL BIDDING STRATEGY

In this section we consider a power producer from non-
dispatchable RES (e.g. wind, solar), and formulate the
problem of finding the optimal energy bids in an electricity
market featuring financial penalties for energy imbalance.
We also recall the optimal solution to this problem, which



is derived in [Bitar et al., 2012] in terms of power statistics
and imbalance penalties.

Let wy, be a random variable describing the energy gen-
erated by the power plant over the m-th hour of the
day, m = 1,...,24, and let C,, denote the corresponding
energy bid for the same interval. It is assumed that the
power producer is remunerated with unitary price p > 0 for
the actual generated energy. Moreover, the power producer
is penalized whenever the generated energy differs from
the bid. In particular, ¢ > 0 and A > 0 are the unitary
penalties applied for energy shortfall (w,, < C,,) and
surplus (w,, > C),), respectively. It follows that the net
hourly profit for the power producer amounts to

J(Cry W) =pwy, — qmax{Cl, — wy,, 0} 1)

— Amax{w,, — Cy,,0}.
Since J(Cyy,wy,) in (1) is a stochastic quantity due to
the uncertainty on the generated energy w,,, the optimal

bidding problem consists in finding the bid C}, which
maximizes the expected profit E[J(Cy,, wp,)], i.e.

Cr =arg IgaXE[J(Om, Wi )], (2)

where E[-] denotes expectation with respect to the statis-
tics of w,,. We define F,,(+) the cdf of the random variable
Wi, i.e. Frp(w) 2 Pr(w,<w). Moreover, we let F-1(v) =
inf{w : F,(w) > v}, v € [0,1], be the corresponding
quantile function. It turns out (see [Bitar et al., 2012])
that the optimal solution to (2) is given by:
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Note that the optimal solution (3) depends only on the
penalties ¢ and A, and the cdf of w,y,. If the penalties are
stochastic variables independent of the generated energy
Wy, the optimal bid (3) still holds by replacing g and
A with their mean values. Concerning F,(-), in real
applications it must be typically estimated from historical
energy generation data. As will be discussed in the next
section for the specific case of PV power producers, the
way Fp,(+) is estimated may have an important impact on
the practical performance of the optimal bidding strategy
(3).
In some cases, deviations from the bid are tolerated within
a specified threshold. This applies, for instance, to the
regulatory framework recently introduced in Italy. An
extension of problem (1)-(2) to the framework with soft
penalties is presented in [Giannitrapani et al., 2013b].

Remark 1. In some markets (e.g., the Italian one), it may
happen that, depending on the network contingency, ¢ < 0
and/or A < 0. This means that deviations from the sched-
ule are actually rewarded, rather than penalized, since
they contribute to mitigate the overall network imbalance.
In this case, the optimal solution to problem (2) boils down
to offering either zero or the maximum producible power
(see [Bitar et al., 2012] for details). In this paper, we will
restrict our attention to a scenario in which ¢ > 0 and
A > 0, so that the existence of a nontrivial solution (3) is
guaranteed.

3. NON STATIONARY POWER GENERATION

As recalled in Section 2, the solution of the optimal
bidding problem requires the knowledge of the generated
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Fig. 1. Example of empirical cdf of the random variable
wy in two different months of year (solid: February,
dashed: May).

power cdf at each hour of the day. In real applications,
such a distribution is to be estimated on the basis of
historical data of generated power. A distinctive feature
of renewable sources is that the generated power statistics
is strictly dependent on weather variables, e.g., wind
velocity and direction for wind plants, or irradiance and
air temperature for PV plants. It is well known that
meteorological variables exhibit strongly non stationary
behavior, which implies that special care must be taken in
the estimation of power statistics from historical data.

With regard to PV generation, which is of concern in this
paper, non stationarity is due to the time-varying patterns
of solar irradiance in days of different periods of the year.
To realize the importance of this issue, consider Fig. 1,
which shows the estimated cdfs of the energy generated
by a 825 kWp PV plant at a certain hour of the day, in
two different months of the year, i.e., February and May.
For example, it is clear even from a visual inspection of
the two curves, that both the maximum and the average
generated energy are different in the two cases. To deal
with the time-varying nature of the statistics of PV power,
we propose two alternative approaches, whose effectiveness
will be successively tested on real data in Section 4.

The first approach consists in transforming the past power
data according to a multiplicative deseasonalization model
exploiting the concept of “clear-sky” power generation
profile. This profile can be reliably computed for a PV
plant at any fixed day of the year, by assuming that
the plant is subject to the maximum solar irradiance
achievable at the plant site, i.e., under cloudless sky. Clear-
sky solar irradiance can be computed by means of well-
known analytical models, e.g., [Wong and Chow, 2001].

The second approach consists in devising an adaptive
mechanism for updating daily or weekly the estimates
of power cdfs. The simple technique adopted consists in
estimating the power cdf at a given hour based on most
recent historical data, by selecting a moving window whose
width in the past is optimized according to the best profit
obtainable by the bidding strategy.



Feb 4
09H - - = May

Fig. 2. Example of averaged cdfs of the normalized variable
B11 (solid: February, dashed: May).

3.1 Exploiting clear-sky generation profiles

In the first approach, we choose to normalize both the
generated power and the bid at a given hour with respect
to the maximum power obtainable from the plant at the
same hour, i.e. under clear-sky conditions.

The solar irradiance at ground level takes maximum val-
ues in a cloudless day and is defined as clear-sky solar
irradiance (I.s). The generation profile of a PV plant hit
by clear-sky solar radiation is called clear-sky generation
profile (wes). It can be estimated by using clear-sky solar
irradiance and the power curve of PV modules. An analyt-
ical form of the power curve of PV modules is provided by
the PVUSA model (see [Dows and Gough, 1995]), which
expresses the generated power w,, as a function of solar
irradiance I, and air temperature 7T;, according to the
equation:

Wy = aly, +bI2 + el Ty, (4)

where a, b and ¢ are the model parameters (typically
a>0,b <0, c < 0). Although model (4) is linear-in-
the-parameters, parameter estimation is complicated by
the fact that measurements of solar radiation and air
temperature may not be available at the plant site. A
heuristic approach to estimate such parameters in the
partial information case is presented in [Bianchini et al.,
2013], which relies on historical data of generated power,
air temperature forecasts and clear-sky solar irradiance.
The clear-sky generation profile can be computed from (4)
by replacing I, with the clear-sky solar irradiance ;s
and T, with commonly available temperature forecasts.

Let us denote by wes,m the clear-sky PV energy over
the m-th hour of the day (to simplify notation, we omit
the dependence of wes, on the day of the year), and
let wy, = BmWesm, Bm € [0,1]. Moreover, the bid
is parameterized as Cp, = amWesm, am € [0,1]. By
substituting the expressions of w,, and C,, into (1), we
obtain that J(Ch,, W) = Wes,mJ (Qm, Bm), Where

J(ama ﬁm) :pﬁm - qmax{am - Bma 0}

- /_\max{ﬁm — ayn, 0}, (5)
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Fig. 3. Example of two moving window cdfs: F1(120) (w | 46)
and F1(120) (w ] 135) (solid: February, dashed: May).

The considered bidding problem can thus be reformulated
as finding
o, = argmax E[J (am, Bm)], (6)

where E[] here denotes expectation with respect to the
statistics of 3,,. Let Fs..,(8) denote the cdf of the random
variable [(,,. Similarly to the previous case, the optimal
solution to (6) is given by:

' A+q
The optimal bid is finally computed as
Cr = o Wesm- (8)

In this way, the seasonal variations of PV power generation
are captured by the clear-sky PV energy profile weg m,.
As a consequence, to a first approximation, the resulting
normalized energy (,, can be regarded as a stationary
process, thus mitigating the adverse effect of seasonality
on the bidding strategy. Figure 2 shows the empirical cdfs
of the normalized generated energy relative to the same
hours of the day and months of the year as those of Fig. 1.
Note the reduction of the discrepancies between the two
curves, if compared with Fig. 1. The main advantage of
the proposed bidding strategy is that the power cdf can
be estimated on the basis of the entire historical data set
of the generated power.

3.2 Moving Window

An alternative approach to tackle the non stationary
behavior of PV power generation is to estimate the cdfs
of the random variables w,, by using only the most recent
portion of the data set.

Let F,(nL)(w | d) be the time-varying cdf describing the
statistics of the random variable w,, estimated from the
realizations of the random variables

Wm,d—1, Wm,d—25 - -+ s Wm,d—L,
where d = 1,...,365 is the day the random variable w,,
refers to, and L is the width of the window. In this case,

the optimal bid for the m-th hour of day d is computed
as:
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This idea leads to an adaptive mechanism which aims at
tracking the seasonal variations by selecting only most
recent power data to estimate the cdfs. Differently from
the approach in Section 2, in which for fixed hour of the
day one has always the same cdf, independently of the day
of the year, here the cdf changes every day. Figure 3 shows

this adaptation process using a moving window of length
L = 20 days.

Note that the length L of the moving window must
be selected as a suitable trade-off between estimation
accuracy and adaptation capability. If L is chosen too
large, the effect of removing non stationarity by tracking
the seasonal variations is not reached (the conditional

cdf F,%L)(- | d) tends to resemble the unconditional one
F.(+), i.e. the cdf estimated using the whole dataset). On
the other hand, if L is chosen too small, the conditional
cdf turns out to be statistically inaccurate, since it is
estimated using few data. In the experimental results of
the next section, it will be shown how to tune the width of
the moving window by evaluating the performance of the
bidding strategy (9) for different values of L.

4. EXPERIMENTAL RESULTS

The performance of the bidding strategies described so far
is evaluated in this section using experimental data from
an Italian PV plant.

The basic bidding strategy introduced in Section 2 will
be denoted by OB. The bidding strategies developed in
Section 3, which use different techniques to mitigate the
effects of seasonality of PV power generation, will be
denoted by OB+N and OB+WTI for the approaches ex-
ploiting normalization and moving window, respectively.
Furthermore, the results obtained with the aforementioned
bidding strategies are compared with those of two addi-
tional bidding strategies fully exploiting weather forecasts.

The first one, which uses weather forecasts along with the
PV power curve (4) to compute the energy bids, will be
denoted by WEF+PC. This intuitive approach consists in
offering the forecast energy derived by substituting the
forecasts of solar irradiance and air temperature into the
equation of the power curve (4).

The second one, which combines the normalization tech-
nique of Section 3.1 and the use of weather forecasts
for the classification of the next day, will be denoted by
WF+O0OB+N. In other words, this alternative approach
consists in training a classifier which, given energy fore-
casts for the next day, in the simplest implementation
labels the next day as “sunny” or “cloudy”, depending
on the level of total daily generated energy. Then, the bid
made for that day is the optimal contract computed as
in (7)-(8), but using the conditional normalized PV power
cdf of the corresponding class. The interested reader is
referred to [Giannitrapani et al., 2013a] for further details.

The following data from a 825 kWp PV power plant are
available:

e generated power wy,,
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Fig. 4. Average daily profit for the bidding strat-
egy OB+WI in the market scenario where p =

0.1027 €/kWh and ¢ = A = 0.4p.

e solar irradiance forecasts I,,,
e air temperature forecasts T},.

The number of days spanned by the data set corresponds
to one year of recordings in 2012. The data set is split
into a training set (about two third of the data) and a
validation set, containing the remaining data.

4.1 Selection of the window width

The performance of the bidding strategy OB+WI depends
on the selection of the window width. Figure 4 shows how
the results could change significantly for different values
of the parameter L. Here, the average daily profits have
been computed over the entire year.

The optimal value of the window width is chosen by simply
selecting the one providing the highest average daily profit.
According to the results shown in Fig. 4, in the next
simulations we set L = 20 days.

4.2 Optimal bidding strategies

For the bidding strategies OB and OB+N, the training
set is used to compute the empirical cdfs F,,(-) and
Fes.m(-). Then, the bids C,, are computed using (3) or
(7)-(8), according to the strategy adopted. Concerning
the strategy OB-+WTI, the bids are computed as in (9),

where F7(nL)(~ | d) is estimated from the data gathered
over the most recent L days. The proposed strategies have
been evaluated using the data contained in the validation
data set under four market scenarios. The values of the

Table 1. Simulation setup.

g=Xx
Scenario I 0.25p
Scenario 11 0.5p
Scenario 111 0.75p
Scenario IV p
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Fig. 5. Average daily profits in Scenario 1.
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Fig. 6. Average daily profits in Scenario II.

surplus and shortfall penalties are summarized in Table 1
(it is always assumed ¢ = \), whereas the price p =
0.1027 €/kWh is taken to be the same in all scenarios.

The performance achieved by the proposed bidding strate-
gies in the four test scenarios is reported in Figs. 5, 6, 7
and 8. The bars represent the average daily profit com-
puted over 1000 simulations. In each simulation, different
training and validation data sets have been obtained by
selecting the days belonging to each set randomly but
without overlapping. This method avoids that presented
results could be biased by a specific choice of the two data
sets (e.g. the first eight months as training set and the last
four months as validation set).

4.8 Discussion

In all scenarios, OB performs significantly worse than the
bidding strategies OB+N and OB+WI. In this respect,
the approaches adopted to manage the non stationary be-
haviour of PV power generation seem to work by enhanc-
ing consistently the results of the base line strategy OB. In
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Fig. 7. Average daily profits in Scenario I11.
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Fig. 8. Average daily profits in Scenario VI.

Scenario I the profit of the PV power producer increases
up to 5.3%, in Scenario II up to 11.6%, in Scenario III
up to 19.2% and in Scenario IV up to 28.7%. Note that
the improvement increases with the entity of the penalty.
Moreover, the strategy OB+WI performs slightly better
than OB+N.

The strategy WF+PC is ranked poorly with respect to
OB+N e OB+WTI in all scenarios, despite using weather
forecasts. Typically, such a naive approach may lead to
unsatisfactory performance because it is strictly dependent
on the accuracy of the weather forecasts and does not take
into account the price p and the penalties A and g. On the
other hand, the strategy WF+OB+N, which overcomes
the above mentioned drawbacks through a different use
of weather forecasts, turns out to be the most profitable
one among all the strategies presented in the paper. We
stress that both WF+PC and WF+OB+N exploit the
same information, i.e. the weather forecasts provided by
a commercial meteorological service. It is apparent that
a classification-based approach to the use of weather



forecasts turns out to be more robust to forecast errors,
whereas the performance of a power curve-based approach
degrades quickly as the forecast inaccuracy increases.
This makes strategy WF4+OB+N particularly favorable
when having access to only moderately accurate weather
forecasts.

The bar plots in Figs. 5, 6, 7 and 8 show the average results
for each scenario. However, it is stressed that we observed
profit(WF+OB+N) > profit(OB+WI) > profit(OB+N) >
profit(WF+PC) > profit(OB) in 98% of the trials.

For comparison purposes, the ideal strategy R is also
considered, where it is assumed that the exact generation
profile of the next day is known in advance. This makes
it possible to evaluate the performance of the proposed
bidding strategies with respect to the maximum achiev-
able. Although the profits go down when the penalties
raise, for each scenario the bidding strategy OB+WTI fills
approximately 37% of the gap between OB and R, while
WF+OB+N fills 54% of the same gap.

5. CONCLUSIONS

The optimal bidding strategy for a power producer from
non-dispatchable renewable energy sources participating
in a competitive market with financial penalties for gener-
ation imbalance, requires the knowledge of the cumulative
distribution function of the power generation. However,
when dealing with PV plants, the statistics of the power
generation differ significantly over the year according to
the seasonality of the solar irradiance. This work has
focused on the development of suitable methodologies able
to cope with the non stationary nature of PV power gener-
ation. Two approaches have been proposed. The first one
aims at removing the non stationarity by normalizing the
energy generated hourly with the energy obtainable under
clear-sky conditions. The second one consists in tracking
the actual time-varying cumulative distribution function
through the use of a moving window containing the most
recent generation data.

Experimental results have shown that both solutions reach
comparable performance and provide an effective means
to adapt the bidding strategy to the case of a PV power
producer. Indeed, a significant increase of the average
daily profit has been observed, with respect to the bare
application of a bidding strategy which simply neglects
the power generation non stationarity. Remarkably, the
proposed solutions perform even better than offering the
predicted power generation profile computed by substitut-
ing the day-ahead forecasts of solar irradiance and air

temperature into the equation of the PV plant power
curve.
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