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Abstract: This paper presents an experimental setup for multi-robot systems based on the
LEGOMindstorms NXT technology. The team of mobile robots is supervised by a vision system,
which allows one to simulate different types of sensors and communication architectures. The
whole setup is embedded in the Automatic Control Telelab, a remote lab featuring several
educational experiences in control. Remote users can design control laws for the multi-agent
system in the Matlab environment and test them by performing real experiments in the proposed
setup. The paper presents several experiments showing how this setup can stimulate students’
interest in mobile robotics.
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1. INTRODUCTION

Education in the automatic control field has undergone
significant changes in the last decade. The diffusion of
new technologies at affordable price has enriched the
way subjects like control systems or robotics are being
taught in engineering curricula. Low-cost devices, highly
customizable and easy to program, are frequently adopted
for setting up hands-on experiments which complement
traditional theoretical classes. In this respect, the LEGO
technology has a leading position, thanks to its low-cost
and simplicity (e.g., see Gawthrop and McGookin [2004],
Fradkov and Albertos [2009]). Originally designed as an
educational toy for children, by now LEGO Mindstorms
kits have been used to build a variety of experimental
setups falling in very different areas ranging from signal
processing (Heck et al. [2004]), to mechatronics (Valera
et al. [2009]), cyber-physical laboratories (Filippov and
Fradkov [2009]), to name just a few.

At the same time, impressive innovations in the educa-
tional field have been brought in by the Internet and
the consequent emergence of a number of on-line tools,
allowing teachers to put in practice new pedagogical pat-
terns for enhancing the learning of technical disciplines.
Concerning the robotics and automation field, a major
role is played by remote laboratories whose employment
for distance learning is becoming increasingly widespread
(e.g., see Dormido [2004]). Differently from virtual labs,
which provide software simulations of physical processes,
remote labs allow users to remotely interact with real
experiments, thus stimulating students’ interest in imple-
menting, testing and comparing different control laws.

The importance of experimental validation is especially
true in robotics. For instance, testing on real data algo-
rithms designed for mobile robots, supposedly operating in
real-world environments, is crucial for a correct evaluation

of the performance. Unfortunately, carrying out real ex-
periments can be a difficult and expensive task, especially
when dealing with teams of robots. This is confirmed
also by the relatively few experimental results on multi-
agent algorithms that can be found in the literature (Ren
and Sorensen [2008], Mastellone et al. [2008], Benedettelli
et al. [2010]). As a consequence, allowing students to test
multi-robot algorithms on real vehicles, while being highly
instructive, may become a daunting task.

This paper presents a remote lab for mobile robotics
able to enjoy all the benefits of practicing with real
robots, while at the same time minimizing the amount of
work required to build a fully functional setup for multi-
agent systems. The proposed lab is based on the Matlab
environment and the LEGO Mindstorms technology. A
graphical interface, accessible by standard web browsers,
allows users to select one out of a set of predefined
experiments, or to test ad-hoc controllers by uploading a
Matlab function. During the experiment, visual feedback
is ensured by video streaming, and a live reconstruction of
the robot paths is depicted in a dedicated window. At the
end, all the relevant data can be downloaded for off-line
analysis. An automatic recharge station (built on purpose)
makes the system available 24 hours per day, without
the need of any human operator. A beta version of this
setup is currently embedded into the Automatic Control
Telelab (ACT), a remote laboratory formerly developed
at the University of Siena and targeted at students of
control systems willing to put in practice their theoretical
knowledge on several physical processes (Casini et al.
[2004]).

The paper is structured as follows. In Section 2 an overview
of the proposed remote lab is reported, while the main
features are described in details in Section 3. In Section 4
a set of experiments performed within the developed setup
is reported, while in Section 5 some conclusions are drawn.



2. SETUP DESCRIPTION

The experimental setup consists of four mobile robots
which can move in a workspace of approximately 4.5×3
meters. Robots are built with LEGO NXT components
and they are equipped with two servomotors able to
independently drive the left and right wheel, and a steel
ball transfer unit acting as third support. A hat with
special markers has been placed on the top of each vehicle
for detecting the robot pose (see Figure 1). The position
and orientation of the robots are extracted from images
taken by two-wide angle cameras connected to a desktop
PC (the PC server). While high-level control laws are
computed by the PC server and the desired linear and
angular speed are sent to robots through a Bluetooth
connection, low-level speed control for each robot wheel
is managed by a controller coded in NXC (Hansen [2007])
and embedded into the NXTs.

Fig. 1. The LEGO NXT mobile robot.

Interaction with the remote user is provided through web
pages and a GUI implemented as a Java applet, which
allows one to start/stop the experiment as well as to view
the experiment behavior by means of a graphical panel
and an on-line camera (Figure 2). User-defined controllers
consisting in a Matlab function can be uploaded and run
by using a specific interface (see Section 3).

Since the system must be available 24 hours a day, a crucial
aspect regards the automatic recharge of robots batteries.
To this purpose, once an experiment is over, a procedure
drives the robots to a “box” able to recharge their lithium
batteries without any human intervention, thanks to two
metal plates placed on the bottom of each robot. A more
detailed description of the system setup can be found in
Casini et al. [2009].

3. FEATURES OVERVIEW

In this section, an overview of some features of the multi-
robot remote lab is reported.

Although this facility can be used in research contexts (see
Section 4 for research driven experiments), the main aim of
this project is educational; to this purpose, it is essential to
provide easy-to-use tools to users, in order to allow them to
concentrate on a given task rather than spending time in
understanding how to use the system. So, efforts have been
directed to simplify user interaction, by allowing students
to write controllers as a Matlab function and to run them

Fig. 2. The graphical user interface allowing interaction
with the experiment.

through a very simple web interface. In addition, some
useful tools (simulator and player) can be downloaded to
speed up controller synthesis and performance analysis.

Before describing how users can perform experiments, it
is useful to report the kinematic model of the robots.
Let pi(t) = [xi(t) yi(t) θi(t)]

′ be the position (m) and
orientation (rad) of the i-th robot at time t (see Figure 3),
then the robot pose evolves according to the unicycle
model

ẋi(t) = vi(t) cos(θi(t))

ẏi(t) = vi(t) sin(θi(t)) i = 1, . . . , N (1)

θ̇i(t) = ωi(t)

where vi(t) and ωi(t) denote the linear (m/s) and angular
speed (rad/s) of the vehicle. Users who want to design
their own controllers have to write a Matlab function
which returns the values vi(t) and ωi(t) of each robot, as
it will be explained in the following.
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Fig. 3. Sketch of robot pose. The shape of the robot reflects
the top view of a real vehicle.

User-defined experiments. Through the Control Interface
(Figure 4), users may select the experiment to perform
by choosing between a set of predefined experiences or by
designing their own experiment. Predefined experiments
have been provided both for showing the capabilities of
the proposed remote lab and for helping users design their
own tests. To perform a custom experiment, users have



to download and modify a template file (Figure 5). This
file is a Matlab function which is invoked at each sampling
time and play the role of controlling robots. Here, the input
parameter Time denotes the time instant when the routine
is called, Ts is the sampling time, and Pose is a matrix
whose columns contain the pose (x, y, θ) of each vehicle.
The output arguments are the number N robot of robots
involved in the experiment and their initial pose Pose init
(used only during the experiment initialization), and a
matrix U containing the desired linear and angular speed
of each robot.

Fig. 4. The Control Interface.

function [U N_robot Pose_init]
=ACT_MR_template(Time,Pose,Ts)

N_robot=4; % number of robots

%-- initial position (0=default position)
Pose_init=[3.92 3.92 3.92 3.92

2.43 1.83 1.20 0.57
pi pi pi pi];

U=zeros(2,N_robot); % robot commands
end

Fig. 5. Matlab code of template function for designing a
user-defined controller.

A simple example of user-defined function is reported in
Figure 6 to demonstrate the simplicity of this tool. Here,
after setting an appropriate starting pose, four vehicles
have to follow a circular trajectory of a given radius in
a certain time, without using position feedback. To do
this, the same linear and angular speed is given at each
robot (the two rows of matrix U denotes the linear and
angular speed, respectively, while columns denote robots
identities).

Range of possible experiments. Since the user-defined Mat-
lab function described above is completely open, users
are able to perform several kinds of experiments, ranging

function [U N_robot Pose_init]
=circle(Time,Pose,Ts)

N_robot=4; % number of robot used

cx=2.25; % center of circle X-coord (m)
cy=1.5; % center of circle Y-coord (m)
r=0.8; % radius of circle (m)
p=100; % period (s)

% initial pose
Pose_init=[cx+r cx cx-r cx

cy cy+r cy cy-r
pi/2 pi -pi/2 0];

w=2*pi/p; % angular speed (rad/s)
v=2*pi*r/p; % linear speed (m/s)

% robot speed commands
U=[v v v v % linear speed (m/s)

w w w w]; % angular speed (rad/s)
end

Fig. 6. Example of user-defined function.

from single-robot to multi-robot, from centralized to de-
centralized control. Although robots are not equipped with
exteroceptive sensors, users may easily implement different
types of virtual sensors starting from the global knowledge
of the robot poses. For instance, it is possible to simulate
range and bearing measurements among robots as in the
case of on-board sensors like e.g., sonars and/or laser range
finders.

Simulator. A Matlab function simulating the robots kine-
matics is available for download from the Control Interface
(Figure 4). Here, the continuous-time model (1) has been
discretized and implemented. This function is particularly
useful to have preliminary information about the behavior
of a user-defined controller before uploading and testing
it on the real setup. Since this simulator takes as input
a Matlab function with exactly the same structure as
the one to be uploaded, users do not need to make any
change in their code to perform simulations. A graphical
animation of the robot motion is also provided. At the end
of the simulation, relevant data is returned to perform a
posteriori analysis.

Experiment player. When a remote experiment is over,
data can be downloaded as a Matlab workspace file (.mat).
For each time step, significant data like robot poses and
input commands are provided. To help the user evaluate
the behavior of a performed experiment, an experiment
player is provided as a Matlab function able to graphically
reproduce the real behavior from the downloaded data.
In addition to reproduction, it is also possible to use
it for creating an animation of the experiment. All the
experiment representations depicted in the next section
have been created by this tool.

4. ILLUSTRATIVE EXAMPLES

In order to illustrate the potential of the proposed setup
for teaching and research purposes, in this section we



Fig. 7. The team of LEGO mobile robots.
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Fig. 8. Experiment A: open-loop control law (a), closed-
loop control law (b). Initial (empty disc) and final
(filled disc) robot position; desired way points (×)
and corresponding robot positions (◦); actual robot
path (solid line).

will present a selection of real experiments ranging from
simple single-robot control to more complex decentralized
architectures for the collective motion of a multi-agent
team (see Figure 7). All the figures in this section have
been created from data gathered at the end of each
experiment.

4.1 Experiment A: Single-robot control

The first experiment is a very basic control problem suit-
able for an entry-level robotics course, involving only one
robot. The user is given a sequence of way points (marked
with a cross in Figures 8(a)-8(b)), and the objective is
to design a control law driving the robot to pass through
them. This simple problem is well suited for showing the
superiority of feedback control laws over open-loop ones.
For instance, Figure 8(a) shows the results of a naive
turn-and-go strategy, precomputed beforehand. The robot
motion is decomposed into a sequence of two basic actions,
namely: i) turning at constant rate, and ii) going forward
at constant speed. Then, given the desired way points,
and the chosen forward and angular speed, the appropriate
action is selected for each sampling time. Obviously, this
open-loop controller exhibits a very poor performance,
with a tracking error growing unboundedly over time. The
system behavior can be significantly improved by resorting
to a feedback control scheme, which takes into account the
error between the next way point to reach and the current
robot pose, as provided by the vision system. A control
law, consisting of two independent proportional controller
for the forward and angular speed, has been implemented
and tested. Now, the effects of a number of disturbances
like wheel slippage, uneven terrain, actuator nonlinearities,
are well compensated for by the closed-loop system, as it
is clearly visible in Figure 8(b).

4.2 Experiment B: Multi-robot centralized control

The second experiment is more complex than the previous
one, requiring the control of all the four vehicles of the
team. Starting from an arbitrary initial configuration, each
robot must first reach a specified vertex of a square. Then,
the vehicles must simultaneously move to the adjacent ver-
tex (in counter-clockwise direction), like baseball players
on the diamond. In this case, a number of issues arising
from the interaction of multiple agents must be tackled,
like e.g. collision avoidance. This scenario can be effectively
adopted for practicing with high-level strategy of mission
planning and motion coordination. The results summa-
rized in Figures 9(a)-9(c) refer to an experiment performed
with a centralized controller, which is responsible for the
overall team coordination, as well as for the motion control
of each vehicle. Given the state of the system, i.e. position
and orientation of the robots, the controller takes care of
planning the next point to be reached by the agents, syn-
chronizes the motion of the vehicles, and finally computes
the velocity commands to be sent to the robots. It is worth
remarking that all these tasks can be accomplished just by
uploading a single Matlab function.

4.3 Experiment C: Cyclic pursuit

The developed setup can be exploited also for more ad-
vanced multi-robot experiments, like those required for
testing ongoing research work. As an example, the third
experiment presented in this section concerns the well-
known cyclic pursuit problem, where each robot has to
follow the next one (modulo n). Differently from what
happened in Experiment B, this time the team coordina-
tion must be achieved in a decentralized fashion, without
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Fig. 9. Experiment B: three snapshots taken at time t = 25
s (a), t = 40 s (b) and t = 150 s (c). Initial (empty
disc) and current (filled disc) robot position; actual
robot path (solid line).

the aid of a global controller that knows the full state
of the system. Figures 10(a)-10(c) report the results of
an experiment where the cyclic pursuit algorithm studied
in Marshall et al. [2006] has been implemented. Roughly
speaking, the forward and angular speed of a vehicle are
proportional to the distance and direction of its preceding
neighbor (the prey), respectively. By properly selecting
the ratio of gains of the two controllers, it is possible
to achieve a team configuration where the vehicles rotate
equally spaced on a circle. Notice that the tested algorithm
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Fig. 10. Experiment C: three snapshots taken at time
t = 20 s (a), t = 50 s (b) and t = 150 s (c). Initial
(empty disc) and current (filled disc) robot position;
actual robot path (solid line).

assumes that a robot is equipped with a suitable sensor
providing range and bearing measurements with respect
to its prey. Although the LEGO vehicles do not carry
any such exteroceptive sensor, the experimental setup is
flexible enough to allow one to simulate the presence of
on-board “virtual sensors”. In this case, from the pose of
the vehicles provided by the vision system, the required
measurements are synthetically generated via software
(possibly modeling different levels of sensor accuracy), and
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Fig. 11. Experiment D: three snapshots taken at time t =
70 s (a), t = 150 s (b) and t = 400 s (c). Initial (empty
disc) and current (filled disc) robot position; actual
robot path (solid line); reference beacon (asterisk).

then the control law of each robot is computed preserving
the decentralization of the algorithm.

4.4 Experiment D: Collective circular motion

The fourth experiment shows how the proposed setup
can be used to validate multi-robot controllers which take
into account constraints commonly found in a real-world
scenario, like the one proposed in Ceccarelli et al. [2008].
Specifically, the problem considered there was that of

collective circular motion. The objective was to design a
decentralized control law able to put the vehicle in rotation
about a virtual reference beacon, while at the same time
keeping a minimum distance to the next rotating vehi-
cle and avoiding collisions among members of the team.
The problem becomes harder if one explicitly considers a
number of constraints naturally arising in practice from
technological limitations. It is supposed that robots are
indistinguishable, and that each agent can only take range
and bearing measurements with respect to “close enough”
neighbors, i.e. vehicles falling inside the field of view of its
sensors. The solution proposed in Ceccarelli et al. [2008]
has proved to have nice theoretical properties in the case
of static reference beacon, while only simulation results
where available in case of a moving target. Figures 11(a)-
11(c) refer to the validation of that control law for tracking
a slowly moving reference beacon (marked with an as-
terisk). It can be seen how the vehicles proceed spiraling
about the moving beacon and finally settle on a circle as
the reference stops.

5. CONCLUSIONS

An experimental setup for multi-robot systems, embedded
in the remote control lab ACT, has been developed and
tested. The experiments presented in Section 4 are just
a few examples of possible applications of the proposed
setup. Their very different nature (single- or multi-robot,
centralized or decentralized architecture) and purpose
(teaching or research) demonstrate the versatility of the
developed tool. At the same time, user interaction is ex-
tremely easy, requiring just basic skills of Matlab program-
ming. The interested reader can play with a beta version at
http://act.dii.unisi.it/mr. Movies and animations of
real experiments, including those presented in this paper,
are available at http://act.dii.unisi.it/mr video.

Several additional features are currently under develop-
ment. The possibility of including virtual obstacles, or
even more complex artificial environments, will allow stu-
dents and researchers to deal with fundamental tasks
in mobile robotics, such as path planning, mapping and
SLAM. Students’ interest will be stimulated by setting up
a set of competitions on specific topics, such as virtual
target tracking or cooperative pursuit-evader games, by
employing the student competition environment of the
ACT (Casini et al. [2005]).
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