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Abstract—The growing focus that some big companies are
putting on the electrical storage market is leading to a decrease in
the cost of these devices, which are now becoming appealing also
for residential applications, often coupled with the installation of
photovoltaic panels. This poses the problem of the optimal man-
agement of energy storage systems for residential customers in
order to fully exploit the benefits of both photovoltaic generation
and storage. The solution to this problem is an integral part of
home energy management systems, which are expected to play
a key role in the smart grid of the future. The purpose of this
paper is to propose and analyze different energy storage system
management policies in a framework with real time pricing for
both energy purchase and sell. This pricing scheme is already
present in some markets worldwide and will likely become more
and more common in the next years.

Index Terms—Energy storage systems, home energy manage-
ment systems, mixed-integer programming, receding horizon.

I. INTRODUCTION

The growing interest towards Energy Storage Systems

(ESSs) is motivated by the multiple services that these devices

are able to provide. Currently, most common applications of

ESSs are peak management, ancillary services and integration

of distributed generation [1]. Peak management consists in

storing energy in the ESSs when electricity is cheaper for later

use during peak times, when electricity is more expensive, in

order to balance demand and supply. When used for ancillary

services, ESSs can help deal with frequency and voltage

issues possibly arising when the unbalanced power supply

and demand cause partial power failures, and even black-

outs. Moreover, ESSs can be used to mitigate the fluctuation

of power generation from renewable sources, thus facilitating

their integration in the power grid.

ESSs installed at the consumers’ premises can provide

significant benefits to both the end customers and the network

operator. Thanks to recent technological advances, residential

ESSs are becoming more and more appealing because of the

sharp decrease of their cost. A further incentive to the adoption

of residential ESSs is the growing diffusion of Real-Time Pric-

ing (RTP) schemes for energy billing. This pricing scheme is

already present in some countries [2], and is especially useful

to implement demand-side management policies, encouraging

the reduction of energy consumption during peak times. In this

context, residential ESSs allow consumers to further reduce the

electricity bill by suitable charging and discharging policies,

yielding significant cost savings, especially when there are

large price fluctuations.

The most interesting scenario is when ESS and photovoltaic

(PV) and/or micro-eolic generators are jointly used [3], [4],

[5]. The main advantage concerns a smarter peak management

by exploiting the energy generated from renewable sources,

and stored in the ESS. Moreover, it is possible to sell energy

to the network not only when there is generation, but also

when energy remuneration is higher.

The optimal ESS control is an integral part of home energy

management systems (HEMSs), which are responsible for

monitoring and managing the operation of a number of devices

and smart appliances. The main purpose of HEMSs is to avoid

load peaks and reduce the electricity bill, while guaranteeing

certain levels of comfort required by the customer, exploiting

the flexibility of the most innovative home appliances [6], [7].

An aspect which makes the ESS control more challenging is

the uncertainty affecting demand and generation. In particular,

distributed generation is heavily dependent on weather condi-

tions and, consequently, characterized by high uncertainty. On

the other hand, in a HEMS framework demand is typically

less uncertain, being the result of optimal scheduling of the

appliances.

In this paper, we propose the formulation of the optimal ESS

control problem, minimizing the energy cost over a given time

horizon for a consumer equipped with PV panels. In order to

cope with uncertainty on PV generation, an implementation

based on a receding horizon scheme is adopted. At each

time step, the optimal ESS control problem is solved over a

prediction horizon of fixed length. Then, only the first control

inputs are implemented. The same procedure is repeated at

the next time step with updated PV generation forecasts.

The receding horizon control strategy is compared with a

greedy policy not requiring these forecasts to be available. The

comparison is carried out using real data from an Italian LV

network and the Italian spot market. Moreover, a sensitivity

analysis is performed with respect to some key parameters of

the receding horizon implementation.

The paper is structured as follows. Section II presents

the formulation of the optimal ESS control problem, whose

receding horizon implementation is described in Section III.

Section IV reports the numerical results, while conclusions are

drawn in Section V.
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Fig. 1. Graph of the power flows between the components of the home energy
system and the grid.

II. PROBLEM FORMULATION

The considered scenario consists of a residential customer

equipped with PV generation and ESS. Figure 1 shows the

admissible power flows in our setup between the home appli-

ances (h), the PV panel (p), the ESS (s) and the power grid

(g). Variables Pij(t) ≥ 0 represent the active power flowing

from i to j, averaged over a sampling time ∆T , where t is a

discrete time index.

The ESS is assumed to have a uni-directional connection

with the grid, i.e. the storage cannot be charged from the

power grid. This assumption is motivated by technological

reasons, since many residential systems include PV panels,

storage and inverters in an integrated solution which does

not allow ESS charging from the grid. Moreover, the same

assumption rules out arbitrage. In this paper, this makes

it possible to understand the actual benefits of residential

ESSs for both customers and network operators. Indeed, the

distributed generation maintains its “fair” behavior, allowing

for customer’s energy independence, while providing support

to the network operator during peak times. Nevertheless, if

needed, bi-directional power flow between ESS and the grid

can be introduced with minor modifications to the proposed

model.

The objective of the ESS control policy is to minimize the

total energy cost over a given time horizon of length T . This

problem can be cast as

min

T
∑

t=1

[

r(t)Pgh(t)− v(t)
(

Psg(t) + Ppg(t)
)]

∆T, (1)

where r(t) is the purchase price and v(t) is the selling price,

both assumed to be real time prices [3]. In (1) the decision

variables are all the power flows Pij(t) shown in Figure 1.

These must satisfy a number of technical constraints. The

generated PV power Pf (t) is distributed among the home

appliances, the grid and the ESS, i.e.

Pf (t) = Pph(t) + Ppg(t) + Pps(t). (2)

The energy demand D(t) of the appliances must be satisfied

by the power supplied by the PV panel, the ESS and the grid,

i.e.

D(t) = Pph(t) + Psh(t) + Pgh(t). (3)

The ESS is subject to charging and discharging ramping

constraints, denoted by Pc and Pd, respectively. Moreover,

the ESS cannot be charged and discharged at the same time.

Introducing a binary variable ys(t), which is equal to 1 if the

ESS is charged at time t, these constraints can be expressed

as

Pps(t) ≤ Pc ys(t) (4)

Psh(t) + Psg(t) ≤ Pd (1 − ys(t)). (5)

Similarly, power cannot be simultaneously purchased from

or sold to the grid:

Ppg(t) + Psg(t) ≤ Ps yg(t) (6)

Pgh(t) ≤ Pp (1− yg(t)), (7)

where Ps and Pp are contractual limits and yg(t) is an

additional binary variable which is equal to 1 if and only

if power is injected to the grid at time t. The dynamics of

the storage energy level E(t) is modeled by the difference

equation

E(t+1) = E(t)+
[

ηCPps(t)−
1

ηD

(

Psh(t)+Psg(t)
)]

∆T (8)

where ηC and ηD are the charging and discharging efficiencies.

Physical limits impose that

0 ≤ E(t) ≤ C, (9)

where C is the installed ESS capacity.

III. RECEDING HORIZON IMPLEMENTATION

The optimization problem (1)-(9) is a mixed integer linear

problem (MILP) whose solution requires the knowledge of

the generation and demand profiles Pf (t) and D(t) over

the considered time horizon. While assuming D(t) to be

known may be reasonable as a first approximation in a HEMS

framework, Pf (t) is dependent on weather conditions, and

therefore highly uncertain. In this respect, this paper proposes

a solution to (1)-(9) based on forecasts of PV generation and

a receding horizon implementation [8]. With this approach,

the problem is solved at each time t over a H-step-ahead

prediction horizon using the known demand and PV generation

forecasts as input data. Only the optimal power flows P ∗

ij(t)
computed for the current time t are then implemented. The

same procedure is repeated at time t+1 with updated storage

level and PV generation forecasts.

Similar to what is done is [9], PV generation forecasts are

not computed once, but they are updated at each time t. We

denote by P̂f (t+h|t), h = 1, . . . , H , the forecast of Pf (t+h)
made at time t. In the receding horizon implementation, the

forecast P̂f (t + h|t) replaces the true value Pf (t + h) when

solving the optimization problem (1)-(9).



Remark 1: As far as PV generation forecasting is concerned,

tools for predicting the power generated by solar PV plants

have been developed only recently, and are still far from being

a mature technology. The interested reader is referred to the

survey paper [10] for a comprehensive review of different

techniques and methodologies presented in the literature. �

The choice of H is done by trading-off conflicting objec-

tives. On the one hand, H should be as large as possible in

order to fully exploit the predictive capability of the model. On

the other hand, the length of the control horizon directly affects

the computation time required to solve the MILP problem. In

addition, the forecast uncertainty grows with H .

Given the uncertainty on future generation, it would be

desirable to have the ESS available both for charging or

discharging. This could be achieved by keeping the ESS

energy level close to half of the storage capacity C. For this

reason, the cost function in (1) is replaced with

CTOT = CEC + γCESS, (10)

where

CEC =
1

H

H
∑

t=1

[r(t)Pgh − v(t)(Psg(t) + Ppg(t))]∆T, (11)

is the normalized total energy cost over the prediction horizon,

and

CESS = ‖E(H)−
1

2
C‖. (12)

represents a terminal cost penalizing the deviation from the

desired ESS energy level. In (10), the parameter γ determines

the weight of the term CESS relative to CEC . The tuning

of γ is done by trial-and-error, taking into account its effect

on (10). An advantage of using the normalized cost (11) in

place of that in (1) is that this allows for the selection of γ

independently of the length H of the prediction horizon.

IV. NUMERICAL RESULTS

Numerical results of this section are obtained using a real

5-day data set of demand, PV generation and prices from an

Italian case study (see Figs. 2 and 3). The time step is ∆T =
5 min. Since PV generation forecasts are not available, they

are artificially simulated. The forecast P̂f (t+h|t) is computed

by adding to the true value Pf (t+h) an error term drawn from

a zero mean Normal distribution with standard deviation

σ(h) = σ0(1− e−λh), (13)

where σ0 ≥ 0 and λ ≥ 0 are parameters allowing to model

different characteristics of forecast accuracy. The rationale

behind model (13) is that forecast uncertainty typically grows

with the lead time h in the short-term, and then tends to

remain constant in the medium-term. A sensitivity analysis

with respect to σ0 is presented at the end of this section.

An example of how the receding horizon strategy uses

the PV power and satisfies the demand, taking advantage of

information about demand, generation and energy prices, is

shown in Fig. 4. The first day of the data set is considered.

Notice that demand is mainly satisfied with PV power during
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Fig. 2. Demand and PV generation profiles.
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Fig. 3. Selling and purchase price profiles.
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Fig. 4. Example of demand satisfaction (top) and PV power usage (bottom)
with the receding horizon strategy (first day of the data set).
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Fig. 5. ESS SoC profiles.

daylight hours. The only exception is between 1PM and 2PM,

when the strategy prefers to supply the appliances with power

from the grid, while storing PV energy into the ESS. Power

from the ESS is used to supply the appliances between 6PM

and 8PM. This behavior can be understood by comparing

Fig. 4 with the left-hand part of Figs. 2 and 3 (day #1).

Between 6PM and 8PM, PV generation is low, while demand

and purchase price have a peak. Therefore, the receding

horizon strategy prefers to buy power from the grid between

1PM and 2PM, when it is cheaper, and use power from the

ESS between 6PM and 8PM, when it would be more expensive

to buy power from the grid.

In the following, the receding horizon implementation pro-

posed in this paper is compared with a greedy policy inspired

by [11], which does not require PV generation forecasts, and

is defined as follows. If Pf (t) > D(t), the demand is fully

satisfied by the PV power and the excess of generation is

stored into the ESS, or sent to the grid when the ESS is full. If

Pf (t) ≤ D(t), all the PV power is used to satisfy the demand,

and the difference D(t) − Pf (t) is drained from the ESS as

long as possible, or purchased from the grid when the ESS is

empty.

A. Comparison with greedy policy

The purpose of the comparison presented in this section

is to evaluate to what extent the optimization-based receding

horizon control policy provides better economic results than

the greedy policy. The performance of both strategies is further

compared with the solution of the optimization problem over

the whole 5-day horizon, under the ideal scenario of known PV

generation. Figures 5 and 6 show the ESS state of charge (SoC)

and the cumulative cost, respectively. The receding horizon

scheme is implemented with H = 60 (corresponding to a

prediction horizon of five hours), σ0 = 0.4 (10% of the PV

installed power), λ = 0.1, and γ = 0.0015. Notice that,

in Fig. 6, the cumulative cost resulting from the application

of the proposed control strategy is very close to that of the

optimal solution, despite being computed using uncertain PV
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Fig. 6. Cumulative cost.

generation forecasts.

The final cost (i.e., the total energy cost at the end of the 5-

day period) incurred by the proposed strategy and the greedy

policy, are 4.22 e and 5.00 e, respectively, while the optimal

cost amounts to 3.90 e. This means that the receding horizon

strategy yields a final cost which is only 8.2% greater than the

optimal (but ideal) one, whereas the greedy policy exhibits

a much worse performance (28.2% greater than the optimal

one).

Notice that the control policy provided by the receding

horizon scheme resembles the optimal ESS usage (see the ESS

SoC profiles in Fig. 5). Looking carefully at the PV generation

profiles, one may notice that the greedy policy performs fairly

well in the presence of clear-sky conditions (days 1, 2, 4

and 5), whereas it degrades in cloudy day 3. This behavior

is observed also in other data sets characterized by low or

intermittent PV generation.

From a more in-depth study, it can be seen that there is a

twofold reason for the different behavior of the two policies.

First, selling power from the ESS to the grid is not allowed

when using the greedy strategy. Second, PV power is always

used following a fixed priority strategy, namely: i) satisfy the

demand; ii) store energy in the ESS; iii) inject power to the

grid. This rigid structure does not allow, for example, to sell

the excess of PV generation when the ESS is not full, or to

sell all the PV generation to the grid, while satisfying the

home demand with ESS only. Notice that the latter operation

mode could be the most convenient one during high selling

price periods. On the contrary, the receding horizon approach

manages to exploit all the opportunities offered by ESS and

PV generation.

B. Sensitivity analysis with respect to H and γ

Tuning of the length H of the prediction horizon and of the

weighting parameter γ plays a key role for the performance

of the receding horizon strategy. Figure 7 and Table I show

the ESS SoC profile and the final cost for different values

of H and γ. It can be observed that, for fixed γ, the final



Days

1 2 3 4 5

S
o

C
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

optimal solution

H=60, gamma=0.0015

H=36, gamma=0

H=60, gamma=0

H=144, gamma=0

Fig. 7. ESS SoC profiles for different values of H and γ.

cost decreases while increasing H . This is likely due to the

fact that, with larger H , the final time step enters earlier the

prediction horizon. In this way, the final cost may benefit

earlier from the predictive capability of the model.

On the other hand, the effect of γ is minor as long as γ is

chosen sufficiently small (order of 10−3 in this case). Indeed,

the best results are achieved with values of γ in the range

[10−4, 10−3]. Larger values of γ may even have a negative

impact on the final cost. For this reason, the choice γ = 0
will be made in the following. A similar behavior has been

observed also using other data sets of both PV generation and

demand.

Notice in Fig. 7 that the best results in terms of final cost are

achieved by those control policies featuring a ESS usage closer

to that of the optimal solution (which is actually obtained by

minimizing the final cost over the whole 5-day horizon).

C. Sensitivity analysis with respect to σ0

A further contribution of this section is to evaluate the effect

of the forecast uncertainty on the performance of the proposed

control strategy. Recall that, in this paper, the standard devia-

tion of the forecast error is modelled according to (13), with

σ0 mostly affecting the steady-state accuracy of the forecasts.

For the chosen value λ = 0.1, and ∆T = 5 min, steady state

is reached in approximately 4 hours.

Table II shows the final cost for different values of H and

σ0. In all simulations, the weight γ on the terminal cost is set

TABLE I
FINAL COST (e) FOR DIFFERENT VALUES OF H AND γ

(σ0 = 0.4, λ = 0.1)

H
γ

0 0.0001 0.001 0.01 0.1

12 5.350 5.343 5.344 5.725 5.821
24 4.976 4.973 4.969 5.396 5.490
48 4.430 4.429 4.428 5.071 5.155
72 4.219 4.215 4.137 4.891 4.974

108 4.040 4.039 4.237 4.824 4.907
144 4.027 4.026 4.221 4.753 4.887

to 0. It turns out that the performance of the receding horizon

strategy does not seem to suffer from increasing the medium-

term forecast uncertainty. The main reason is that forecasts

are continuously updated at each time step, so that forecast

accuracy in the very short-term is what matters most. Indeed,

the results in Table II are almost insensitive to σ0 for a given

control horizon H .

V. CONCLUSIONS

This paper addressed the problem of optimal ESS manage-

ment for residential customers equipped with PV generation.

The proposed receding horizon approach consists in solving

at each step a MILP problem with the aim of minimizing

the energy bill for the end-user. A suitable cost function

with a regularization term allows one to limit the size of

the optimization problem, thus making the proposed control

scheme amenable to a real-time implementation. Moreover, the

approach is fairly robust with respect to medium-term forecast

uncertainty.

The proposed ESS control strategy may be embedded in the

functionalities of HEMSs. In this context, benefits of ESS and

PV generation for the customer are expected to increase when

coupled with the optimal management of additional devices,

such as plug-in electric vehicles and smart appliances. The idea

is to optimally schedule the home appliances (e.g, deferring

their start or suspending their operation) to maximize the over-

all benefits of ESS and PV generation. Further ongoing work

is focused on integrating demand response in the considered

setting [12].
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