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ABSTRACT

In this paper the simultaneous localization and map build-
ing (SLAM) problem, for a robot navigating in indoor envi-
ronments, is addressed. A line-based representation of the
environment is adopted. Line parameters are extracted from
range scans, and the corresponding covariance matrices are
computed from the statistical characteristics of the raw data.
An Extended Kalman Filter is then used to simultaneously
estimate the robot pose and update the line-based map. Fea-
ture matching is enhanced by separately keeping track of the
segment associated to each line. The proposed technique is
validated through numerical simulations and experimental
tests, featuring the mobile robot Pioneer 3AT within a real-
world indoor environment.

1. INTRODUCTION

Since long time, self-localization of mobile robots has been
recognized as a fundamental issue in autonomous naviga-
tion. Typical solutions rely upon the integration of the infor-
mation coming from robot sensors with the a priory knowl-
edge of the surrounding environment (map). Unfortunately,
in many applications of practical relevance (like exploration
tasks or operations in hostile environments), a map is not
available or it is highly uncertain. In these cases, the au-
tonomous agent must build a map of the surroundings while
at the same time localizing itself within it (Simultaneous
Localization And Map building, SLAM). Several solutions
have been proposed, mainly differing for the environment
representation and uncertainty description adopted (see [1]
for a comprehensive review of map building techniques). A
broad class of localization and mapping algorithms repre-
sent the environment in terms of characteristic elements de-
tectable by the robot sensory system (feature-based maps).
Pointwise landmarks are commonly used features, whose
relative range and/or bearing w.r.t. the vehicle are measured.
In this scenario, localization algorithms with known land-
marks and SLAM techniques have been devised both for a
statistical description of the sensor uncertainty (e.g. [2, 3])

and in a bounded-error framework (e.g. [4, 5]). A different
class of widely used features, especially suited for indoor
applications, are lines and segments [6, 7]. Such features
can be effectively extracted from range scans and conse-
quently exploited for localization and/or mapping purposes.
In [8] an algorithm for computing the relative displacement
between two different robot poses by aligning the corre-
sponding range scans is presented. In this context, fitting
lines are instrumental to the solution of the point-to-point
correspondence problem. A method for building a line-
based map, accounting for both robot pose and measure-
ment uncertainty, can be found in [9]. An alternative map-
ping technique is proposed in [10]. It is based on an im-
proved line extraction scheme, which explicitly takes into
account each point uncertainty in the computation of the
line parameters. However, both [9] and [10] do not explic-
itly address the SLAM problem. Recently, a segment-based
SLAM algorithm exploiting 3D laser scans has been pre-
sented in [11]. It builds a 2D map of the environment, which
is at same time used for localizing the robot, by projecting
on the horizontal plane readings of a 3D laser range finder.

In this paper we present a SLAM algorithm, adopting
a line-based description of the environment. The problem
is cast as a state estimation problem for a unique uncer-
tain dynamic system, including both the robot pose and line
parameters in a global reference frame. From range scans
delivered by a 2D laser range finder, linear features are ex-
tracted and the corresponding covariance matrices are ex-
plicitly computed. This information is then processed by an
Extended Kalman Filter (EKF) to simultaneously estimate
the current robot pose and update the map. In order to facil-
itate data association, the EKF is enhanced by keeping track
separately of segments associated to line features.

The paper is structured as follows. The formulation of
the SLAM problem is presented in Section 2. Section 3 de-
scribes the line extraction algorithm and the computation of
the corresponding covariance matrix. Section 4 illustrates
the matching strategy. Results of numerical simulations and
experimental tests are reported in Section 5. Finally, in Sec-
tion 6 possible lines of future research are outlined.
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Fig. 1. Line parameters [r, ψ]′ are expressed w.r.t. the
global reference frame. Line parameters [ρ, α]′ are ex-
pressed w.r.t a robot-centered reference frames. [x, y, θ]′

denote the robot pose w.r.t. the global reference frame.

2. PROBLEM FORMULATION

Let us consider an autonomous vehicle navigating in a 2D
environment and let p(k) = [x(k), y(k), θ(k)]′ denote its
pose (i.e., the position x(k), y(k) and orientation θ(k)) at
time k, in a global reference frame. The environment is sup-
posed to be populated of static rectilinear features (like seg-
ments of walls, doors, shelves) detectable by the robot sen-
sory system. In this scenario, a suitable environment repre-
sentation can be given in terms of the lines underlying each
feature. A line li = [ri, ψi]

′ is parametrized by its distance
ri ≥ 0 from the origin and the direction ψi ∈ (−π, π] of
the normal passing through the origin (see Figure 1). Given
a robot kinematic model and a measurement equation, the
simultaneous localization and map building problem can be
cast as a state estimation problem for an uncertain dynamic
system. Let us suppose that the agent pose evolves accord-
ing to the following LTI model1:

p(k + 1) = p(k) + u(k) + w(k), k = 0, 1, . . . (1)

where w(k) ∈ R
3 models the noise affecting the odometric

measurements u(k) ∈ R
3.

At each time instant k, the robot is able to measure
the distance ρi(k) and orientation αi(k) of the i-th fea-
ture from its current pose p(k) (see Figure 1). Let zi(k) =
[ρi(k), αi(k)]

′, i = 1, . . . , n denote the parameter measure-
ments of the i-th feature in a robot centered reference frame.
Then, zi(k) can be expressed as a function µi(p(k), li) of
the current vehicle pose p(k) and the parameters li of the
sensed feature in the global reference frame:

zi(k) = µi(p(k), li) + vi(k), (2)

1Nonetheless, the proposed framework encompasses more general
kinematic models of the form p(k + 1) = f(p(k), u(k), w(k)).

where vi(k) ∈ R
2 models the noise affecting the i-th mea-

surement. Let us rearrange all the quantities to be estimated
into a state vector ξ(k) = [p(k)′, l′i, . . . , l

′

n]′. Since static
features are considered, from (1) the time evolution of the
state vector is given by:

ξ(k + 1) = ξ(k) + E3u(k) + E3w(k) (3)

where E3 = [I3 03×2n]′ ∈ R
(3+2n)×3. Finally, if we stack

the measurements taken at time k into a vector z(k) ∈ R
2n,

the measurement equation (2) can be rewritten as:

z(k) = µ(ξ(k)) + v(k) (4)

where µ(k) = [µ1(p(k), l1)
′, . . . , µn(p(k), ln)′]′ and v(k) =

[v1(k)
′, . . . , vn(k)′]′. Consequently, the simultaneous lo-

calization and map building problem can be stated as fol-
lows.
SLAM problem. Let ξ̂(0) be an estimate of the initial robot
pose and feature parameters. Given the dynamic model (3)
and the measurement equation (4), find an estimate ξ̂(k)
of the robot pose and feature parameters ξ(k), for each
k = 1, 2, . . . .

The main advantage of the above formulation is that any
state estimation technique can be used to address the SLAM
problem. In this work a statistical description of the uncer-
tainty is adopted, so that a natural solution to the estima-
tion problem is represented by the Extended Kalman Filter
(EKF).

3. FEATURE EXTRACTION

The extraction of lines from range scans is a widely studied
problem and several solutions are available (see e.g., [9],
[10] and reference therein). In this section we briefly review
the approach adopted in order to obtain the measurements
z(k), as well as the corresponding covariance matrix, from
a range scan. The robot is supposed to be equipped with
some kind of proximity sensor (e.g., sonar rings or laser
rangefinder) providing N range and bearing measurements
[dj , φj ]

′. The sensor readings are processed in order to ex-
tract the parameters [ρh(k), αh(k)]′ of the linear features
present in the surroundings, by iteratively alternating seg-
mentation and line fitting steps. Let us denote by

sj = [xj , yj ]
′ = [dj cos(φj), dj sin(φj)]

′, (5)

the Cartesian coordinates of the j-th point in the robot-centered
reference frame. The segmentation phase consists in par-
titioning the sensor readings into subsets Sh (called seg-

ments) of “almost collinear” points: Sh =
{

s
(h)
1 , . . . , s

(h)
nh

}

,

h = 1, . . . , q, where nh denotes the cardinality of the h-th
segment. Each set is built iteratively. All the points sj are
processed sequentially, with the first two initializing the seg-
ment S1. Then, a point sj , is added to the current segment
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Fig. 2. Extraction of segments Sh = {s
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3 } (squares ¤). The

points marked with a cross × are not added to Sh since their
normal distance to the fitting line is greater than δ0, whereas
s
(h+1)
1 is not added to Sh because its distance from s

(h)
6 is

greater than δ1. Assuming Np = 3, when three consecutive
points cannot be inserted into Sh, the new segment Sh+1

is instantiated. Assuming N0 = 5, the segment Sh+1 is
discarded since it does not contain enough points.

if: i) its normal distance from the current fitting line is be-
low a threshold δ0 and ii) its Euclidean distance from the
last point in the current segment is below a threshold δ1.

When a new point is inserted in the current segment, the
parameters of the fitting line are recomputed on the basis of
the new set of points. If Np consecutive points do not meet
the above criterion, the current segment Sh is assumed to
be completed, and a new one Sh+1 is instantiated, starting
from the next point with respect to the last one inserted into
Sh. Notice that the condition which determines the end of
a segment allows to filter out spurious readings (outliers)
due to small projections, indentations or occlusions of a flat
surface. Moreover, in order to increase the robustness of the
extraction phase and reject false features, segments shorter
than a minimum lengthL0 or made up of less thanN0 points
are deemed unreliable and discarded. An example of the
segmentation procedure is depicted in Figure 2.

Once a segment Sh has been identified, the parame-
ters of the corresponding linear feature [ρh, αh]′ are com-
puted by fitting a line through all the points belonging to
Sh. Specifically, denoting by s(h)

i = [x
(h)
i , y

(h)
i ]′, the coor-

dinates of the i-th point in Sh, the parameters of the fitting
line are computed by minimizing the cost function:

E(ρ, α) =

nh
∑

i=1

(

ρ− x
(h)
i cos(α) − y

(h)
i sin(α)

)2

. (6)

The solution of the above optimization problem can be an-
alytically computed as a function of the points s(h)

i concur-
ring to define the current line. Recalling equation (5), the
parameters of the h-th feature can be written as a function
g : R

2nh → R
2 of the sensor readings (see [12]):

[ρh, αh]′ = g
(

d
(h)
1 , φ

(h)
1 , . . . , d(h)

nh
, φ(h)

nh

)

. (7)

The line parameters extracted according to the above
procedure represent the measurements (4) used to update
the state estimate. However, the EKF requires the knowl-
edge of the covariance matrix of the observation noise v(k).
An approximation of such a matrix can be obtained, through
linearization of equation (7), from the statistical properties
of the errors affecting the raw data delivered by the sensor
(see [12]).

4. DATA ASSOCIATION

In order to be processed by the EKF, each measurement ex-
tracted from the sensor data must be associated to the corre-
sponding line present in the map (matching problem). Let

ξ̂(k|k − 1) = [p̂(k|k − 1)′, l̂1(k|k − 1)′, . . . , l̂n(k|k − 1)′]′

be the state estimate at time k, before the measurements are
processed. Given the current state estimate ξ̂(k|k − 1) and
the observations zh(k), the matching problem consists in
determining the feature li (if it exists) in the map, originat-
ing the h-th measurement, h = 1, . . . , q. Several heuristics
can be devised to this purpose, involving different compari-
son criteria. In this respect, the following observations have
to be considered:
i) the comparison requires to express the extracted line pa-
rameters w.r.t. the global reference frame;
ii) the uncertainty affecting the parameters involved in the
comparison must be taken into account;
iii) different features in the environment may lie on the same
line (e.g., two aligned walls separated by a hallway).

The first issue is addressed by solving zh(k) = µh(p̂(k|k−
1), lh) with respect to lh. At the same time, the covari-
ance of the extracted parameters is propagated, through lin-
earization, according to the covariance matrix of the current
robot pose estimate. To face the last problem, for each line
l̂i(k|k − 1) in the map the endpoints of an associated seg-
ment are computed and updated beside the EKF recursion,
in order to trace the length and the position of the physical
feature along the corresponding line. We stress that the seg-
ment endpoints are not included in the state vector, but are
used as an instrumental tool to enhance the matching stage.

The matching algorithm proceeds through two stages.
First, for each measurement zh(k) all possible associations
are determined by using three validation gates. The param-
eters involved in this test are:



a) the squared difference of orientation, weighted by the in-
verse of its variance, between the extracted line and the fea-
ture estimate l̂i(k|k − 1);
b) the squared normal distance, weighted by the inverse of
its variance, of the midpoint of the extracted segment to the
line estimate l̂i(k|k − 1);
c) the overlapping percentage between the extracted seg-
ment and the one associated to the line estimate l̂i(k|k− 1).

Then, among all feasible correspondences, the one min-
imizing a cost function involving the quantities previously
computed in a)-c) (typically a weighted sum) is selected.
When a measurement zh(k) is associated to a feature l̂i(k|k−
1), the endpoints of the i-th segment are updated, by pro-
jecting the endpoints of the extracted segment onto the cor-
responding line l̂i(k|k − 1). If a measurement zh(k) does
not match any of the lines currently present in the state vec-
tor, it has to be considered as a new feature and the state
vector is properly augmented (see [12] for details). In order
to avoid the introduction of spurious features in the state
vector, an unmatched measurement can be first inserted into
a list of tentative features and then added to the state only
when it is deemed sufficiently reliable (e.g., if it is detected
at least a prescribed number of times over a given length of
time as suggested in [3]).

Despite the cautions taken in the extraction and match-
ing phases, it may still happen that two initially distinct fea-
tures turn out to be related to the same environment item
(e.g., a long wall with temporary occlusions, or duplication
of the same feature due to a poor estimation of the current
robot pose). A possible way to deal with this problem is to
periodically inspect the state vector and check whether any
pair of features pass the aforementioned validation gates. If
that is the case, the two state components can be actually
considered as two estimates of the same feature, and they
can be consequently merged according to their current un-
certainties.

5. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the performance of the line-based SLAM
algorithm, synthetic indoor environments have been consid-
ered first. The robot motion has been simulated according
to the model (1), where the odometric errors are modelled
as a white, Gaussian process with standard deviation equal
to 5% of the nominal displacement. The robot is supposed
to be equipped with a proximity sensor (like a laser range
finder), featuring limited field of view (maximum distance
10 m and scanning angle 180◦). The raw data [di, φi]

′ are
corrupted by white, Gaussian noise with standard deviations
σdi = 0.015 m and σφi = 10−4 rad. Figure 3 shows four
snapshots of the exploration of a simple four rooms environ-
ment. The robot starts from the upper left room and covers
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Fig. 3. Synthetic environment (dashed line) and estimated
map (solid line) at different time instants: a) initial map; b)
before closing the first loop; c) after closing the first loop;
c) after closing the second loop.

two clockwise loops at an average speed of 0.5 m/s, while
taking scans of the surroundings at a frequency of 2 Hz.
Figure 3-(a) depicts the estimated map after the first laser
scan; while the vehicle goes away from its initial position
the estimation accuracy of the newly discovered feature de-
grades (Figure 3-(b)); the completion of the first loop allows
to reduce the map uncertainty (Figure 3-(c)); the resulting
map after closing the second loop is very close to the actual
environment structure (Figure 3-(d)). Figures 4 and 5 show
the evolution of the estimation errors, as well as the esti-
mated 3σ bounds, of the robot pose and of a line present in
the map, respectively. It can be noticed how the estimation
uncertainty remarkably shrinks whenever a loop closure is
recognized.

The proposed SLAM algorithm has been validated also
on real data, gathered during several experiments performed
by a mobile robot Pioneer 3AT. This vehicle has a differ-
ential drive guide and is equipped with a SICK LMS laser
range finder, providing 180◦ planar scans of the environ-
ment, with a 0.5◦ resolution. The results of a typical run are
shown in Figure 6. The robot explores an environment con-
stituted by four rooms of our laboratory (labelled from (A)
to (D) in Figure 6) according to the sequence: (A)-(D)-(A)-
(B)-(C)-(B)-(A). The total distance travelled by the vehicle
is about 170 m, at an average speed of 0.4 m/s. Along the
path, the robot collects range scans at a frequency of 4 Hz
and accordingly updates its pose estimate and the line-based
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line) of feature #15.

map. In Figure 6, the trajectory estimated by the SLAM al-
gorithm (solid line) and the one reconstructed from encoder
readings (dashed line) are depicted, together with the seg-
ments associated to the final line estimates in the map (thick
solid lines). It can be noticed the poor quality of odomet-
ric estimates which after the first turns rapidly begin to drift
away from the actual vehicle position; the error accumu-
lated at the end of the run is about 4.5 m. The effective-
ness of the SLAM algorithm to compensate for odometric
errors is clear from the final position and orientation errors,
smaller than 0.07 m and 0.5◦, respectively. Although the
ground truth is available only for the initial and final po-
sitions, nonetheless satisfactory estimation accuracy along
the path can be observed, by looking at Figures 7-8 where
70 range scans taken during the experiment are plotted ac-
cording to the current odometric estimate (Figure 7) or to
the current SLAM algorithm estimate (Figure 8).
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Fig. 6. Estimated trajectory by the SLAM algorithm (solid
line) and by odometry (dashed); segments associated to final
map (thick solid lines).

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

PSfrag replacements

x (m)

y
(m

)

Fig. 7. Raw data relative to odometric pose estimates.
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The final map built by the SLAM technique is com-
posed of 66 features. The parameters of the segmentation
procedure have been tuned trading-off the accuracy of the
extracted lines and the need to account for several uneven-
nesses characterizing real-world features. The overall map
management based on a tentative list and periodical line
merging, resulted in the rejection of 48 spurious lines and
the fusion of 19 map elements. It is worth noticing that
the misalignment among the rooms actually resembles the
shape of the building (dating back to the 15th century) and is
not due to mapping faults. The presence of slightly curved
walls or occlusions caused an over-segmentation of the map
which in some cases, as a result of a wrong matching, gener-
ated overlapping segments corresponding to nominally dif-
ferent features. However, despite these drawbacks, the map
accuracy proved to be suited for navigation purposes, al-
lowing the robot to traverse back and forth different rooms
without getting lost.

6. CONCLUSION AND FUTURE WORK

In this paper, a simultaneous localization and mapping tech-
nique for mobile robots navigating in indoor environments
has been presented. By adopting a line-based representation
of the environment, the problem is cast as a state estima-
tion problem and it is tackled via the Extended Kalman Fil-
ter. The covariances of the extracted lines are computed di-
rectly from the uncertainty affecting the robot sensors. The
results of experimental validation, carried out using the mo-
bile platform Pioneer 3AT, confirm the viability of the pro-
posed approach in unstructured indoor environment.

Current directions of research include the integration
of additional features (e.g, corners), the adoption of differ-
ent segmentation algorithms (e.g., [10]), more sophisticated
matching policies and techniques to address scalability is-
sues (e.g., [13]). The consistency of the line-based map in
the long run is currently under investigation. Finally, exten-
sions of the proposed technique to cooperative SLAM for a
multi-robot system will be pursued.
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