
Asynchronous Distributed Method of Multipliers
for Constrained Nonconvex Optimization

Francesco Farina1, Andrea Garulli1, Antonio Giannitrapani1, Giuseppe Notarstefano2

Abstract— This paper addresses a class of constrained opti-
mization problems over networks in which local cost functions
and constraints can be nonconvex. We propose an asynchronous
distributed optimization algorithm, relying on the centralized
Method of Multipliers, in which each node wakes up in an
uncoordinated fashion and performs either a descent step
on a local Augmented Lagrangian or an ascent step on the
local multiplier vector. These two phases are regulated by a
distributed logic-AND, which allows nodes to understand when
the descent on the (whole) Augmented Lagrangian is sufficiently
small. We show that this distributed algorithm is equivalent to
a block coordinate descent algorithm for the minimization of
the Augmented Lagrangian followed by an update of the whole
multiplier vector. Thus, the proposed algorithm inherits the
convergence properties of the Method of Multipliers.

I. INTRODUCTION

In several cyber-physical network contexts, ranging from
control to estimation and learning, nonconvex optimization
problems frequently arise. In these contexts, typically each
device knows only a portion of the whole objective function
and a subset of the constraints, so that, to avoid the presence
of a central coordinator, distributed algorithms are needed.

Distributed optimization methods relevant for our paper
can be divided in two groups: those handling nonconvex
functions but not local constraints, and methods handling
local constraints, typically designed for convex problems.
Distributed algorithms for nonconvex optimization have
started to appear in the literature only recently. Regarding
constrained problems, most of the proposed methods usually
do not deal with local constraints. In [1] a stochastic gradient
method is proposed, while in [2] a decentralized Frank-Wolfe
method is presented. In [3], [4] the authors propose distributed
algorithms, based on the idea of tracking the whole function
gradient and performing successive convex approximations of
the nonconvex cost function. A perturbed push-sum algorithm
for minimizing the sum of nonconvex functions is presented
in [5].

Regarding distributed optimization algorithms handling
local constraints, in [6] the authors propose a distributed ran-
dom projection algorithm, while a proximal based algorithm
is presented in [7]. In [8] the author proposes randomized
block-coordinate descent methods. As for Lagrangian based

1F. Farina, A. Garulli and A. Giannitrapani are with the Dipartimento di
Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena,
Siena, Italy.

2G. Notarstefano is with the Department of Engineering, Università del
Salento, Lecce, Italy.

This result is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 638992 - OPT4SMART).

distributed algorithms, in [9] an asynchronous distributed
ADMM is proposed for a separable, constrained optimization
problem. Other ADMM based approaches are presented
in [10], [11], [12], while an asynchronous proximal dual
algorithm is proposed in [13]. Finally, a distributed algorithm
for a structured class of nonconvex optimization problems
with local constrains is presented in [14].

The main contribution of this paper is a fully distributed
optimization algorithm called ASYnchronous Method of
Multipliers (ASYMM), addressing constrained optimization
problems over networks in which both local cost functions and
local constraints may be nonconvex. ASYMM is designed
for asynchronous networks. It features two types of local
updates at each node, a primal and a multiplier one, which
are regulated by an asynchronous distributed logic-AND
algorithm. When awake, nodes start performing a descent
step on a local Augmented Lagrangian. By means of a
distributed logic-AND algorithm, they realize when all of
them have reached a given tolerance on their local gradient.
Thus, still asynchronously, they start performing the multiplier
updates. An interesting feature of ASYMM is that a node just
needs to receive all neighboring multipliers to start again its
primal descent. The analysis shows that ASYMM implements
a suitable inexact version of the Method of Multipliers
and hence it inherits all the convergence properties of the
centralized method (see [15], [16]). It is worth mentioning
that our algorithm implicitly leverages on some results given
in [17], [18] to handle non-regularity of local minima (due to
the presence of local copies of the common decision variable).
In this respect, ASYMM presents three main novelties with
respect to the distributed algorithm proposed in [17], [18]:
the network model is asynchronous; primal minimization
is performed approximately; switching from a primal to a
multiplier update is performed in a distributed way.

Due to space limitations all the proofs of the presented
results are omitted and will be provided in a forthcoming
document.

Organization: In Section II-A we present the distributed
optimization set-up. The proposed distributed algorithm is
presented in Section III and analyzed in Section IV. Finally,
a numerical application is presented in Section V.

Notation and definitions: Given a matrix A ∈ Rn×m we
denote by A[i, j] the (i, j)-th element of A, A[:, i] its i-th
column and A[i, :] its i-th row. We write A [i, :] = b to assign
the value b to all the elements in the i-th row of A. Given two
vectors A,B ∈ Rn×1, we write A > c if all elements of A are
greater than c and A > B if A[i] > B[i] for all i. We denote
by 0n×m the n×m zero matrix. If J = {j1, ..., jm} is a set

of indexes, we denote by [zj]j∈J the vector [zj1 , ..., zjm].
A function Ψ(x) has Lipschitz continuous gradient if there
exists a constant L such that ‖∇Ψ(x)−∇Ψ(y)‖ ≤ L‖x−y‖
for all x, y. It is σ-strongly convex if (∇Ψ(x)−∇Ψ(y))>(x−
y) ≥ σ‖x − y‖2. Let x = [x>1 , ..., x

>
N]>, with xi ∈ Rni

and
∑N
i=1 ni = m, and let Um×m be a column partition

of the identity matrix such that x =
∑N
i=1 Uixi and xi =

U>i x. The function Φ(x) has block component-wise Lipschitz
continuous gradient if there are constants Li ≥ 0 such that
‖∇xiΦ(x +Uisi)−∇xiΦ(x)‖ ≤ Li‖si‖ for all x ∈ Rn and
si ∈ Rni .

II. SET-UP AND PRELIMINARIES

A. Distributed Optimization Set-up

Consider the following optimization problem

minimize
x

N∑
i=1

fi(x)

subject to hi(x) = 0, i = 1, ..., N,

gi(x) ≤ 0, i = 1, ..., N,

(1)

with fi, hi, gi : Rn → R satisfying the following assumptions.
Assumption 2.1: Functions fi, hi, gi ∈ C2, i ∈ {1, ..., N}

have bounded Hessian and Lipschitz continuous gradients.
Moreover, problem (1) has at least one feasible solution. �

Assumption 2.2: Every local minimum of (1) is a regular
point and satisfies the second order sufficiency conditions.�

Problem (1) is to be solved in a distributed way by a
network of N peer processors without a central coordinator.
Each processor has a local memory, a local computation
capability and can exchange information with neighboring
nodes. Moreover, functions fi, hi and gi are private to node i.
The network is described by a fixed, undirected and connected
graph G = (V, E), where V = {1, ..., N} is the set of nodes
and E ⊆ {1, ..., N} × {1, ..., N} is the set of edges. We
denote by Ni = {j ∈ V | (i, j) ∈ E} ∪ {i} the set of the
neighbors of node i (including i itself) and by di = |Ni| the
cardinality of Ni. Also, we denote by dG the diameter of G.

We consider a generalized version of the asynchronous
communication protocol presented in [13]. Each node has
its own concept of time defined by a local timer, which
triggers when the node has awake, independently of the
other nodes. Between two triggering events each node is in
IDLE mode, i.e., it listens for messages from neighboring
nodes and, if needed, updates some local variables. When
a trigger occurs, it switches into AWAKE mode, performs
local computations and broadcasts the updated information
to neighbors. Formally, the triggering process is modeled
by means of a local clock τi ∈ R>0 and a certain waiting
time Ti. As long as τi < Ti the node is in IDLE . When
τi = Ti the node switches to the AWAKE mode and, after
running the local computations, resets τi = 0 and selects a
new waiting time Ti, according to the following assumption.

Assumption 2.3 (Local timers): For each node i, there
exists T̄i such that Ti ≤ T̄i for each awakening cycle. �

Assumption 2.4 (No simultaneous awakening): Only one
node can be awake at each time instant. �

B. Equivalent Formulation and Method of Multipliers

Due to the connectedness of G, problem (1), can be
rewritten in the equivalent form

minimize
x1,...,xN

N∑
i=1

fi(xi)

subject to xi = xj , ∀(i, j) ∈ E ,
hi(xi) = 0, i ∈ V,
gi(xi) ≤ 0, i ∈ V.

(2)

Next we define the Augmented Lagrangian associated to
problem (2). Let νij ∈ Rn and ρij be the multiplier and
penalty parameter associated to the equality constraint xi =
xj . Similarly, let λi and ρIi , respectively µi and ρEi , be
the multiplier and penalty parameter associated to the i-th
inequality, respectively equality, constraint. Moreover, let x =
[x>1 , ..., x

>
N]>, denote by P the vector stacking all the penalty

parameters, ν, λ and µ the vectors stacking the corresponding
multipliers, and, consistently let Λ = [ν>, λ>, µ>]>. Thus,
the Augmented Lagrangian associated to (2) is

LP(x,Λ) =

N∑
i=1

{
fi(xi)

+
∑

j∈Ni\i

[
ν>ij (xi − xj) +

ρij
2
‖xi − xj‖2

]
+

+ λihi(xi) +
ρEi
2
‖hi(xi)‖2+

+
1

2ρIi

(
max{0, µi + ρIigi(xi)}2 − µ2

i

)}
.

(3)

A powerful method to solve problem (2) is the well known
Method of Multipliers, which consists of the following steps
(see e.g. [15], [16]),

xk+1 = arg min
x
LPk(x,Λk) (4)

νk+1
ij = νkij + ρkij(x

k+1
i − xk+1

j), ∀(i, i) ∈ E , (5)

λk+1
i = λki + ρkEihi(x

k+1
i), i ∈ V, (6)

µk+1
i = max{0, µki + ρkIigi(x

k+1
i)}, i ∈ V, (7)

where Pk+1 ≥ Pk ≥ ... ≥ P0 > 0. Sufficient conditions
guaranteeing the convergence of this method to a local
minimum of problem (2) have been given, e.g., in [16]. One
of these conditions involves the regularity of the local minima
of the optimization problem. In general, such a condition is
not verified in problem (2) due to the constraints xi = xj .
In [17], [18] the results in [16] have been extended to deal
with the non regularity of the local minima of problem (2).

We want to stress that the Augmented Lagrangian defined
in (3) is not separable in the local decision variables xi.
Thus, the minimization step in (4) cannot be performed by
independently minimizing with respect to each variable.

III. ASYNCHRONOUS METHOD OF MULTIPLIERS
DISTRIBUTED ALGORITHM

In this section, the Asynchronous Method of Multipliers
(ASYMM) for solving problem (2) in an asynchronous and

distributed way is presented. We start by introducing a
distributed algorithm allowing nodes in an asynchronous
network to agree that all of them have set a local flag to 1.

A. Asynchronous distributed logic-AND

Each node in the network is assigned a flag Ci that is
initially set to 0 and is then changed to 1 in finite time. We
propose an asynchronous distributed logic-AND algorithm,
based on the synchronous algorithm proposed in [19], for
checking if all the nodes have Ci = 1.

Each node i stores a matrix Si ∈ {0, 1}dG×di which
contains information about the status of the node itself and its
neighbors. Let Si[l, j|i] denote the element in the l-th row and
j|i-th column of Si, where j|i is the index associated to node j
by node i. Then, the elements Si[1, j|i] for j ∈ Ni\i represent
the values of the flags of nodes j ∈ Ni\i and Si[1, di] the one
of node i itself. This means that Si[1, di] = Ci. Moreover, for
l = 2, . . . , dG, the element Si[l, j|i], j ∈ Ni \ i, represents
the status of the (l − 1)-th row of Sj defined as the product
of all its entries. Similarly, Si[l, di] represents the status of
the (l − 1)-th row of Si and can be computed as

Si[l, di] =

di∏
b=1

Si[l − 1, b]. (8)

Hence, Si[l, di] = 1 if and only if Si[l− 1, j|i] = 1 ∀j ∈ Ni.
A pseudo code of the distributed logic-AND algorithm is
reported in Algorithm 1. Notice, in particular, that node i has
to broadcast to all its neighbors only the last column of Si,
i.e. Si[:, di]. Moreover it stores only the dj-th column of the
matrices Sj of its neighbors j ∈ Ni\i.

Algorithm 1 Asynchronous distributed logic-AND
Initialization: Ci ← 0, Si ← 0dG×di

AWAKE
if
∏di
l=1 Si[dG, l] 6= 1 then
Si[1, di]← Ci
Si[l, di]←

∏di
b=1 Si[l − 1, b] for l = 2, ..., dG

BROADCAST Si[:, di] to all j ∈ Ni\i

if
∏di
l=1 Si[dG, l] = 1 then

STOP and send STOP signal to all j ∈ Ni\i

IDLE
if Sj [:, dj] received from j ∈ Ni\i and not received a
STOP signal then

Si[l, j|i]← Sj [l, dj] for l = 1, ..., dG

if STOP received, set Si[dG, :]← 1

It can be seen that a node will stop only when the last row
of its stopping matrix is composed by all 1s, i.e. when

di∏
b=1

Si[dG, b] = 1. (9)

The following result states that (9) can be satisfied at some
node if and only if Ci = 1 for all i.

Proposition 3.1: Let Assumption 2.3 holds. Suppose that
when a flag Ci switches from 0 to 1, it remains equal to 1
indefinitely. Then, a node i satisfies

∏di
b=1 Si[dG, b] = 1 in

finite time if and only if at a certain time instant one has
Cj = 1 for all j ∈ V . �

B. ASYMM Algorithm

We now present the proposed ASYMM algorithm for
solving problem (2) in an asynchronous and distributed way.

Before describing the algorithm, we need to introduce a “lo-
cal Augmented Lagrangian”, whose minimization with respect
to the decision variable xi is equivalent to the minimization
of the entire Augmented Lagrangian (3). To this end, define
xNi = [xj]j∈Ni , ΛNi = [λi, µi, [νij]j∈Ni\i, [νji]j∈Ni\i],
and PNi = [ρIi , ρEi , [ρij]j∈Ni\i, [ρji]j∈Ni\i]. Then we can
introduce the local Augmented Lagrangian

L̃PNi
(xNi ,ΛNi) =

= fi(xi)+

+
∑

j∈Ni\i

[
x>i (νij − νji) +

ρij + ρji
2

‖xi − xj‖2
]

+

+ λihi(xi) +
ρEi
2
‖hi(xi)‖2+

+
1

2ρIi

(
max{0, µi + ρIigi(xi)}2 − µ2

i

)
. (10)

It can be easily verified that, for fixed values of xj ,
j 6= i, minimizing (3) with respect to xi is equivalent to
minimizing (10) with respect to xi, i.e.

arg min
xi
LP(x,Λ) = arg min

xi
L̃PNi

(xNi ,ΛNi).

Moreover, the gradients with respect to xi are equal, i.e.

∇xiLP(x,Λ) = ∇xiL̃PNi
(xNi ,ΛNi). (11)

We are now ready to introduce ASYMM (which we report
in Algorithm 2), whose rationale is the following. When a
node wakes up, it performs a gradient descent step on its local
Augmented Lagrangian until every node has reached a suitable
accuracy. This check is performed by nodes themselves in a
distributed way. When a node gets aware of this condition, it
performs (only) one ascent step on its local multiplier vector.
Then, it gets back to the primal update when it has received
the updated multipliers from all its neighbors.

More formally, when node i wakes up, it checks through a
flag, called Mdone, if its multiplier vector and the neighboring
ones are up to date. If this is the case (which corresponds to
Mdone = 0), it performs one of the following two tasks:
T1. If

∏di
l=1 Si[dG, l] 6= 1, it performs a gradient descent

step on its local Augmented Lagrangian and checks if
the local tolerance on the gradient has been reached
(if the latter is true this corresponds to setting Ci ← 1
in the distributed logic-AND). Then it updates matrix
Si, and broadcasts the updated xi and Si[:, di] to its
neighbors.

T2. If
∏di
l=1 Si[dG, l] = 1, it performs an ascent step on

the local multiplier vector and updates the local penalty
parameters, then sets Mdone = 1 and broadcasts the
updated multipliers and penalty parameters νij and ρij
(associated to constraints xi = xj) to its neighbors.

When in IDLE , node i continuously listens for messages
from its neighbors, but does not broadcast any information.
Received messages may contain either the local optimization
variable and variables for the logic-AND, or multiplier vectors
and penalty parameters. If necessary, node i suitably updates
local variables of the logic-AND or the flag Mdone. We note
that, for node i, sending a new multiplier νij or receiving a
new νji corresponds to sending or receiving a STOP signal in
the asynchronous logic-AND. Finally, regarding the rule used
for updating the penalty parameters, the heuristics presented,
e.g., in [16, Chapters 2 and 3] can be used.

Algorithm 2 ASYMM

Initialization: Initialize xi, Λi, νi, Pi, ρi, Si = 0dG×di ,
Mdone = 0.

AWAKE
if
∏di
l=1 Si[dG, l] 6= 1 and not Mdone then

xi ← xi − 1
Li
∇xiL̃PNi

(xNi ,ΛNi)

if ‖∇xiL̃PNi
(xNi ,ΛNi)‖ ≤ εi then Si[1, di]← 1

Si[l, di]←
∏di
b=1 Si[l − 1, b] for l = 2, ..., dG

BROADCAST xi, Si[:, di] to all j ∈ Ni\i

if
∏di
l=1 Si[dG, l] = 1 and not Mdone then

νij ← νij + ρij(xi − xj) for j ∈ Ni\i
λi ← λi + ρEihi(xi)

µi ← max{0, µi + ρIigi(xi)}

update ρEi , ρIi , ρij for all j ∈ Ni\i
Mdone ← 1
BROADCAST νij , ρij to j ∈ Ni\i

IDLE
if Sj [:, dj] received from j ∈ Ni\i and not already received
some new νji then Si[l, j|i]← Sj [l, dj] for l = 1, ..., dG

if νji and ρji received from j ∈ Ni\i set Si [dG, :]← 1
if xnewj received from j ∈ Ni\i, update xj ← xnewj

if Mdone and νji received from all j ∈ Ni\i then
Mdone ← 0, Si ← 0dG×di , update εi

IV. ASYMM CONVERGENCE ANALYSIS

In order to analyze ASYMM, we start by noting that
under Assumption 2.3, from a global perspective, the local
asynchronous updates result into an algorithmic evolution
in which, at each iteration, only one node wakes up in an

essentially cyclic fashion1. Hence, we can associate to each
triggering an iteration of the distributed algorithm. We denote
by t ∈ N a discrete, universal time indicating the t-th iteration
of the algorithm and define as it ∈ V the index of the node
triggered at iteration t.

In the following we show that: (i) there is an equivalence
relationship between ASYMM and an inexact Method of
Multipliers and (ii) the convergence of ASYMM to a local
minimum of problem (1) is guaranteed under suitable condi-
tions inherited from the (centralized) optimization literature.

A. Equivalence with an inexact Method of Multipliers

We consider an inexact Method of Multipliers which
consists of solving the k-th instance of the Augmented
Lagrangian minimization by means of a block-coordinate
gradient descent algorithm (see, e.g., [20] for a survey), which
runs for a certain number of iterations hk. A pseudo code of
this inexact Method of Multipliers is given in the following
table, where ih is the index of the block chosen at iteration
h and the penalty parameters are updated as in [16].

Algorithm 3 Inexact MM
for k = 0, 1, ... do

x̂0 = xk

for h = 1, ..., hk do
x̂h+1 = x̂h − 1

Lih
Uih∇xihLP(x̂h,Λk)

xk+1 = x̂h
k+1

νk+1
ij = νkij + ρkij(x

k+1
i − xk+1

j), ∀(i, i) ∈ E
λk+1
i = λki + ρkEihi(x

k+1
i), i ∈ V

µk+1
i = max{0, µki + ρkIigi(x

k+1
i)}, i ∈ V

We would like to clarify that the ordered sequence of
indexes h and k used in Algorithm 3 does not coincide with
the sequence in the universal time t of ASYMM algorithm.
We will rather show that a (possibly reordered) subsequence
of iterations (in the universal time t) of ASYMM will give
rise to the h and k sequences in Algorithm 3.

Let t1, t2, ... be a subsequence of {t} such that at each t`
a multiplier update (task T2) has been performed by node it`
and let t1 be the time instant of the first multiplier update.
Then, the following result holds.

Lemma 4.1: Each sequence (itkN+1
, ..., it(k+1)N

), for k =
0, 1, ..., is a permutation of {1, ..., N}. Moreover, if εi > 0
∀i ∈ V , multiplier updates occur infinitely many times. �

Define Λi = [λi, µi, [νij]j∈Ni\i] and let x̃ti and Λ̃ti be the
value of the state vector and of the multiplier vector at node
i, at iteration t, computed according to ASYMM. Then, the
following Corollary follows immediately from Lemma 4.1.

Corollary 4.2: For all τ ∈ {tkN+1, ..., t(k+1)N}, k =

0, 1, ..., it holds Λ̃t
iτ

= Λ̃τ
iτ
∀t∈{τ, τ+1, . . . , t(k+1)N}. �

For all τ ∈ {tkN+1, ..., t(k+1)N}, k = 0, 1, ..., define

xk+1
iτ

= x̃τiτ , Λk+1
iτ

= Λ̃τ
iτ .

1Indexes in {1, . . . , N} are drawn according to an essentially cyclic rule
if there exists M ≥ N such that every i ∈ {1, . . . , N} is drawn at least
once every M extractions.

By using Lemma 4.1 and reordering the indexes iτ , one can
define

xk+1 =
[(
xk+1

1

)>
, ...,

(
xk+1
N

)>]>
,

Λk+1 =
[(

Λk+1
1

)>
, ...,

(
Λk+1
N

)>]>
.

The next two lemmas show that a local primal (resp.
multiplier) update is performed according to a common
multiplier (resp. primal) variable.

Lemma 4.3: For all τ ∈ {tkN+1, ..., t(k+1)N}, k = 0,1, ...,
every multiplier update Λk+1

iτ
is performed using xk+1. �

Lemma 4.4: Let τki be the time instant in which xk+1
i is

computed, i.e., τki ∈ {tkN+1, ..., t(k+1)N} such that node i is
awake at time τki . Then, for all t ∈ {τki , τki + 1, . . . , τk+1

i },
every descent step on the Augmented Lagrangian with respect
to xi is performed using the multiplier vector Λk+1. �

Next lemma states that every node performs at least one
primal update between the beginning of two consecutive
cycles of multiplier updates.

Lemma 4.5: Between tkN+1 and t(k+1)N+1 every node
performs task T1 at least once. �

The equivalence of ASYMM and Algorithm 3 is stated in
the next theorem, whose proof relies on the previous Lemmas.

Theorem 4.6: Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold.
Then, ASYMM is equivalent to an instance of Algorithm 3 in
which the selection of nodes ih satisfies an essentially cyclic
rule. Moreover, if in Algorithm 2, εi > 0 ∀i ∈ V , the total
number of primal descent steps hk is finite. �

B. Local Convergence

Let us first introduce a result that allows us to bound the
norm of the gradient of a strongly convex function with block
component-wise Lipschitz continuous gradient, during the
evolution of a block coordinate descent algorithm. Specifically,
we relate this bound to given local tolerances εi on the norm
of the gradient with respect to block i.

Lemma 4.7: Let Φ(y1, . . . , yN) be a σ-strongly convex
function with block component-wise Lipschitz continuous
gradients (with Li being the Lipschitz constant with respect
to block yi) in a subset Y ⊆ Rn. Let {yh} be a sequence gen-
erated starting according to yh+1 = yh− 1

Lih
Uih∇yihΦ(yh),

where y0 ∈ Y and indexes ih ∈ {1, . . . , N} are drawn in an
essentially cyclic way. If, for some h̄ > 0, ‖∇yiΦ(yh̄)‖ ≤
εi, ∀i ∈ {1, . . . , N}, then

‖∇yΦ(yh)‖ ≤

√√√√ N∑
i=1

(
Liεi
σ

)2

for all h ≥ h̄. �
In order to show the local convergence, we need an

additional assumption.
Assumption 4.8: There exists some k̄ > 0, such that for

all k ≥ k̄, the sequence xk generated by ASYMM belongs
to a σk-strongly convex neighborhood of a local minimum
of LPk(x,Λk). �

Assumption 4.8 is indeed strong, but it is somehow standard
in the optimization literature. As pointed out, e.g., in [16],

while it is not possible to guarantee that such an assumption
holds a priori, in practice it turns out to be satisfied after a
sufficient number of iterations of the primal minimization
and multiplier/penalties update. The next Theorem, whose
proof relies on Lemma 4.7, shows that ASYMM guarantees
‖∇xLPk(xk+1,Λk)‖ ≤ εk, with εk depending on the local
thresholds εi.

Theorem 4.9: Let Assumptions 2.1, 2.2, 2.3, 2.4 and 4.8
hold. Then, there exists k̄ > 0, such that for all k ≥ k̄, it
holds ‖∇xLPk(xk+1,Λk)‖ ≤ εk with

εk =

√√√√ N∑
i=1

(
Lki ε

k
i

σk

)2

,

where εki is the local tolerance set by node i for the primal
descent related to multiplier Λk and Lki is the Lipschitz
constant of ∇xLPk(x,Λk) with respect to xi. �

We want to remark that the only global parameter σk

appearing in our analysis does not need to be known by
the nodes, because it is not required for the execution of
ASYMM.

We stress that ASYMM is equivalent to Algorithm 3 even
without Assumption 4.8, which is needed to guarantee the
local convergence to a (strict) local minimum of problem (1).
In fact, for k < k̄ in Assumption 4.8 the Augmented
Lagrangian can be nonconvex, thus Lemma 4.7 cannot be
invoked. However, the block coordinate descent algorithm is
guaranteed to converge (at least) to a stationary point as shown
in [21]. This means that multiplier updates in ASYMM will
surely occur after a finite number of primal minimizations.
Moreover, as Pk grows, the Augmented Lagrangian typically
becomes locally strongly convex, see, e.g., [16]. If this
happens, the block coordinate descent algorithm approaches
the corresponding minimum of the Augmented Lagrangian
and, provided that for k ≥ k̄ the local tolerances εki vanish as
k →∞, the minimization of the Augmented Lagrangian will
be asymptotically exact. This guarantees a convergence result
for ASYMM in the same sense as the one in the centralized
case: the convergence of the algorithm is contingent upon
the generation of (possibly local) minima of the Augmented
Lagrangian that, after some index k̂, stay in the neighborhood
of the same local minimum x? of problem (2). As reported
in [16], extensive numerical experience has shown that, from a
practical point of view, choosing the obtained xk as the initial
condition for the (k + 1)-th minimization usually generates
sequences {xk} within a neighborhood of the same local
minimum x?.

V. NUMERICAL RESULTS

Consider a network of N sensors, deployed over a certain
region, communicating according to a connected graph G =
(V, E), which have to solve the optimization problem

minimize
x

N∑
i=1

fi(x)

subject to ‖x− ci‖ −Ri ≤ 0, i = 1, ..., N

ri − ‖x− ci‖ ≤ 0, i = 1, ..., N,

0 0.5 1 1.5 2 2.5
·104

−4

−2

0

2

t

x̃
t i

0 1,000 2,000

−2

0

2

(a)

0 10 20 30 40 50

−4

−2

0

2

4

k

x
k i

(b)

Fig. 1: Evolution of the local decision variables xi.

0 10 20 30

10−4

10−3

10−2

10−1

100

101

102

iteration k

lo
g
(ξ

k
)

Fig. 2: Logarithm of the measure of infeasibility ξk.

which can be rewritten in the form of problem (2).
Such a problem naturally arises, for example, in the context

of source localization under the assumption of unknown but
bounded (UBB) noise, in which each agent knows its own
absolute location ci and takes a noisy measurement yi of
its own distance from an an emitting source located at an
unknown location x? as yi = ‖x?− ci‖+wi, with |wi| ≤ κi
for some κi ≥ 0.

Suppose fi(xi) = x>i xi for all i ∈ V . We report a
simulation with N = 10 nodes and n = 2, in which
x? ∈ U [−2.5, 2.5]n, ci ∈ U [−2.5, 2.5]n and κi = U [0, 0.3]
for all i ∈ V , where U [a, b] denotes the uniform distribution in
the interval [a, b]. The graph is modeled through a connected
Watts-Strogatz model in which nodes have mean degree
K = 2. Let us define the measure of infeasibility at iteration
k as ξk =

∑N
i=1[max(0, ‖xki − ci‖ − Ri) + max(0, ri −

‖xki − ci‖) +
∑
j∈Ni\i ‖xki − xkj ‖]. We run ASYMM for

25000 iterations. In Fig. 1a the values x̃ti are shown for each
t = 1, ..., 25000 and each i ∈ V . A magnification of the first
2500 iterations is reported as a subplot. Fig. 1b shows the
evolution of xki for each i ∈ V . As it can be seen, the nodes
performed 50 multiplier updates along the 25000 iterations.
Finally, in Fig. 2 the values of ξk are reported.

VI. CONCLUSIONS

In this paper we proposed ASYMM, an asynchronous
distributed algorithm for a class of constrained optimization
problems in which both local cost functions and constraints
can be nonconvex. ASYMM has been proved to be equivalent
to an inexact Method of Multipliers from which it inherits
all the convergence properties.

REFERENCES

[1] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE
Transactions on Automatic Control, vol. 58, no. 2, pp. 391–405, 2013.

[2] H.-T. Wai, A. Scaglione, J. Lafond, and E. Moulines, “A projection-free
decentralized algorithm for non-convex optimization,” in Signal and
Information Processing (GlobalSIP), 2016 IEEE Global Conference
on. IEEE, 2016, pp. 475–479.

[3] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 120–136, 2016.

[4] Y. Sun, G. Scutari, and D. Palomar, “Distributed nonconvex multiagent
optimization over time-varying networks,” in Signals, Systems and
Computers, 2016 50th Asilomar Conference on. IEEE, 2016, pp.
788–794.

[5] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3744–3757,
2017.

[6] S. Lee and A. Nedic, “Distributed random projection algorithm for
convex optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 2, pp. 221–229, 2013.

[7] K. Margellos, A. Falsone, S. Garatti, and M. Prandini, “Distributed
constrained optimization and consensus in uncertain networks via
proximal minimization,” IEEE Transactions on Automatic Control,
vol. PP, no. 99, pp. 1–1, 2017.

[8] I. Necoara, “Random coordinate descent algorithms for multi-agent
convex optimization over networks,” IEEE Transactions on Automatic
Control, vol. 58, no. 8, pp. 2001–2012, 2013.

[9] E. Wei and A. Ozdaglar, “On the O(1=k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Global
conference on signal and information processing (GlobalSIP), 2013
IEEE. IEEE, 2013, pp. 551–554.

[10] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence
rate of a distributed alternating direction method of multipliers,” IEEE
Transactions on Automatic Control, vol. 61, no. 4, pp. 892–904, 2016.

[11] P. Bianchi, W. Hachem, and I. Franck, “A stochastic coordinate descent
primal-dual algorithm and applications,” in Machine Learning for
Signal Processing (MLSP), 2014 IEEE International Workshop on.
IEEE, 2014, pp. 1–6.

[12] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent
primal-dual algorithm and application to distributed asynchronous
optimization,” IEEE Transactions on Automatic Control, vol. 61, no. 10,
pp. 2947–2957, 2016.

[13] I. Notarnicola and G. Notarstefano, “Asynchronous distributed opti-
mization via randomized dual proximal gradient,” IEEE Transactions
on Automatic Control, vol. 62, no. 5, pp. 2095–2106, 2017.

[14] ——, “A randomized primal distributed algorithm for partitioned and
big-data non-convex optimization,” in Decision and Control (CDC),
2016 IEEE 55th Conference on. IEEE, 2016, pp. 153–158.

[15] R. T. Rockafellar, “Augmented lagrange multiplier functions and duality
in nonconvex programming,” SIAM Journal on Control, vol. 12, no. 2,
pp. 268–285, 1974.

[16] D. P. Bertsekas, Constrained optimization and Lagrange multiplier
methods. Academic press, 2014.

[17] I. Matei, J. S. Baras, M. Nabi, and T. Kurtoglu, “An extension of
the method of multipliers for distributed nonlinear programming,” in
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on.
IEEE, 2014, pp. 6951–6956.

[18] I. Matei and J. S. Baras, “Nonlinear programming methods for
distributed optimization,” arXiv preprint arXiv:1707.04598, 2017.

[19] T. Ayken and J.-I. Imura, “Diffusion based stopping criterion for
event-triggered distributed optimization,” SICE Journal of Control,
Measurement, and System Integration, vol. 8, no. 6, pp. 371–379,
2015.

[20] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[21] Y. Xu and W. Yin, “A globally convergent algorithm for nonconvex
optimization based on block coordinate update,” Journal of Scientific
Computing, pp. 1–35, 2017.

	I Introduction
	II Set-up and Preliminaries
	II-A Distributed Optimization Set-up
	II-B Equivalent Formulation and Method of Multipliers

	III Asynchronous Method of Multipliers Distributed Algorithm
	III-A Asynchronous distributed logic-AND
	III-B ASYMM Algorithm

	IV ASYMM Convergence Analysis
	IV-A Equivalence with an inexact Method of Multipliers
	IV-B Local Convergence

	V Numerical Results
	VI Conclusions
	References

