
Analysis of threshold models for collective actions in social networks

Andrea Garulli, Antonio Giannitrapani, Marco Valentini

Abstract— In this paper, we study the asymptotic behaviors
of threshold models used to describe the formation of collective
actions in social networks. At each time instant, each agent
of the network makes a choice between two possible actions.
The decision is made on the basis of the actions chosen by its
neighbors and the value of a dynamically updated threshold.
The main novelty of the proposed model is the introduction of
a parameter accounting for the level of self-confidence of the
agents, which affects the dynamic evolution of the threshold and
in turn the way the agents make their decision. The objective
is to identify which are the possible limiting behaviors of the
network and under which conditions each of them occurs.
Three different network topologies are considered. In the case
of complete graph, the asymptotic behaviors are analytically
characterized, whereas for star and ring graphs an extensive
numerical analysis is presented.

I. INTRODUCTION

Since their introduction in [1], threshold models have been

widely used to explain the collective behavior of a commu-

nity of individuals in many different application domains,

ranging from diffusion of innovations, to spread of riots or

strikes, to opinion dynamics. Such models find a natural

application in the analysis of social networks. Driven by

their recent development and pervasiveness, several studies

have explored the mechanisms underlying the spread of

information or behaviors in such communities (see e.g. [2]-

[4] and references therein). Recently there has been an

increasing interest to the application of system theoretic

methodologies to the analysis of dynamic models relevant

to these problems [5]-[8].

In this context, threshold models are well suited to predict

the occurrence of cascade effects, i.e. the possibility that a

behavior or opinion adopted by a small number of influential

agents will spread to a large part of the network [9]. In [10],

threshold models are adopted to analyze how innovations

spread into a network starting from a set of promoters. Such

a model has been later generalized in [11] to account for

the possibility for a member of the network to abandon a

previously adopted innovation. Moreover the effect of the

presence of a group of agents which maintain the innovation

for a finite time despite the behavior of their neighbors is

analyzed. Threshold models have been recently used in [12],

[13] to analyze the mechanisms underlying the formation

of a collective action taking place during political unrest

or social revolutions. The objective is to identify under

which conditions a single radical agent is able to eventually

persuade all the individuals of the network to engage in the

The authors are with the Dipartimento di Ingegneria dell’Informazione
e Scienze Matematiche, Università di Siena, Via Roma 56, 53100
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demonstration. A peculiarity of such a model is the adoption

of two different classes of thresholds in order to capture the

different behavior of radical and uncommitted members.

In this paper, we generalize the models proposed in [12]

along two directions. First, the assumption that each agent

weights equally its own opinion and other members’ opinions

is relaxed. A parameter is introduced representing the relative

weight that an agent assigns to its own opinion with respect

to that of its neighbors. Moreover, two different mechanisms

modelling the way in which an agent decides whether to

become active or not are considered. Similarly to what is

assumed in [9],[11],[12], a non progressive model is adopted,

meaning that each agent can change its actions multiple

times. At each time instant, each individual compares its

current threshold value with an indicator of the average

activity level of the neighbors. In the proposed model, such

an indicator can be either the fraction of active neighbors

(as in [12]) or a weighted average of the number of active

neighbors which takes into account the self-confidence of

each agent. The main contribution of the paper is the analysis

of the asymptotic behavior of the network for different graph

topologies. The case of complete network is analytically

characterized, while a thorough simulation study is carried

out for star and ring graphs. It turns out that in the proposed

framework, a wider variety of collective limiting behaviors

emerge. Moreover, the decision mechanism plays a key role

in determining the possible asymptotic behaviors of the

community.

The paper is organized as follows. In Section II, the

addressed threshold models are introduced, together with

the two different decision schemes considered. Section III

presents the analytic results in the case of complete graph,

whereas a numerical analysis for the case of star and ring

topologies is presented in Section IV. Section V contains

some conclusions and possible lines of future research. The

proofs of the technical results can be found in [14].

II. PROBLEM FORMULATION

Let us consider a network of n > 1 agents described by

an undirected graph G = (V, E), where V denotes the vertex

set and E ⊆ V × V is the edge set. Two agents i and j are

neighbors if (i, j) ∈ E . Let Ni denote the set of neighbors

of agent i and ni be its cardinality. By convention, an agent

is always considered a neighbor of itself, i.e. (i, i) ∈ E , for

all i. In this work, the network topology is assumed to be

time-invariant.

In accordance with the model proposed in [12], two

variables are associated to agent i, namely the threshold

θi(t) ∈ [0, 1] and the action ai(t) ∈ {0, 1}. The variable



ai discriminates whether the corresponding agent is active at

time t (ai(t) = 1) or not (ai(t) = 0). The threshold θi(t) is

used to model the way an agent changes its action value.

The agent behavior is described by the time evolution of

the threshold and the action variable. At each time step,

an agent updates its threshold to a weighted average of its

neighbors’ threshold

θi(t+ 1) =
∑

j∈Ni

fijθj(t), i = 1, . . . , n, (1)

where the weights are such that 0 < fij < 1 and
∑

h fih =
1, ∀i, j. After updating the threshold, each agent computes

the activity level of its neighbors as

pi(t) =
∑

j∈Ni

gijaj(t), i = 1, . . . , n, (2)

where the weights are such that 0 < gij < 1 and
∑

h gih = 1,

∀i, j. Finally, the new action value is computed by comparing

the activity level pi(t) with the threshold θi(t+1) and setting

ai(t+1) =

{

1 if pi(t) ≥ θi(t+ 1)

0 else
, i = 1, . . . , n. (3)

By setting fij = gij = 0 whenever j 6∈ Ni, equations (1)

and (2) can be rewritten in matrix form as

θ(t+ 1) = Fθ(t), (4)

p(t) = Ga(t), (5)

where θ = [θ1, . . . , θn]
′, a = [ai, . . . , an]

′, p = [p1, . . . , pn]
′,

and F and G are matrices whose ij-th entries are fij and

gij , respectively. By introducing the function

φ(x) =

{

1 if x ≥ 0,

0 else ,

and exploiting (5), equations (3) become

a(t+ 1) = φ(Ga(t)− Fθ(t)), (6)

where the function φ(·) is to be intended componentwise.

If the initial threshold values are 0 ≤ θi(0) ≤ 1 and not

all zero, then it is easy to check that ae = 0 and ae = 1

(where 1 denotes a vector whose entries are all equal to 1)

are always equilibrium points for system (6).

In this paper, the entries of matrix F are chosen as

fij =











β
β+ni−1

if i = j,
1

β+ni−1
if j ∈ Ni, j 6= i,

0 else ,

(7)

where β > 0 is the relative weight each agent assigns to its

current threshold value compared to that of its neighbors. In

other words, β can be interpreted as the relative confidence

that each agents has on its own opinion, with respect to that

of the other members of the network. As long as matrix G

is concerned, we consider two different settings:

a) G = F , i.e. the same relative weight is adopted in

computing the activity level of the neighbors;

b) G = {gij}, such that

gij =

{

1

ni

if j ∈ Ni,

0 else ,
(8)

i.e., pi(t) in (2) represents the fraction of active neigh-

bors of agent i.

Notice that in scenario b) each agent decides whether to

become active or not by just “counting” the number of active

neighbors. Conversely, in scenario a) an agent weights in

a different way the fact that its neighbors are active with

respect to its own activity status. This is consistent with

the idea that a self-confident individual, weighting its own

opinion β times that of its neighbors, will also consider in

a different way its own behavior with respect to that of its

neighbors.

Remark 1: Notice that when β = 1 the weights are

fij = gij = 1

ni

, ∀i, ∀j ∈ Ni, and hence the framework

considered in [12] is recovered. In this case, the threshold

update rule (4) consists in computing the average of the

neighbors’ thresholds, and the activity level (5) is equal to

the fraction of active neighbors.

We are interested in studying the asymptotic behavior of

the system when at time t = 0 there is an active agent

with threshold equal to zero (a radical), while the remaining

agents are inactive and have all the same threshold equal to

τ , with 0 < τ < 1 (these agents are called ordinary). This

corresponds to the initial condition

θ(0) = [0, τ, . . . , τ ]′, a(0) = [1, 0, . . . , 0]′. (9)

Clearly, for a given weighting scheme, the behavior of system

(4)-(6) depends heavily on the topology of the interconnec-

tion network. A notable case is that in which the graph G
is assumed to be complete, i.e., (i, j) ∈ E , for all i, j. This

case is thoroughly analyzed in the next section.

III. COMPLETE GRAPH

In order to study the asymptotic behavior of system (4)-

(6), we need to introduce the following technical results.

Lemma 1: Consider the dynamic model (4), with the

weights chosen as in (7). If the interconnection graph is

complete and θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

θ1(t) =
n− 1

n
τ
(

1− λt
)

, (10)

θi(t) =
n− 1

n
τ

(

1 +
1

n− 1
λt

)

, i = 2, . . . , n, (11)

where λ =
β − 1

β + n− 1
.

Corollary 1: Consider the dynamic model (4), with the

weights chosen as in (7). If the interconnection graph is

complete and θ(0) = [0, τ, . . . , τ ]′, 0 < τ < 1, then

lim
t→∞

θ(t) =
n− 1

n
τ1. (12)

Moreover, if β > 1, then

θ1(t+ 1) > θ1(t), (13)

θi(t+ 1) < θi(t), i = 2, . . . , n, (14)
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for all t ≥ 0.

A. Setting a)

Let us first, consider the setting a), i.e.,

G = F =
β

β + n− 1
In +

1

β + n− 1
(11′ − In). (15)

Define the functions of τ ∈ (0, 1):

γ1(τ) = (n− 1)τ, (16)

γ2(τ) =
1

τ
− (n− 2), (17)

γ3(τ) =
n

n− 1

1

τ
− (n− 1), (18)

γ4(τ) =
(n− 1)2τ

n− (n− 1)τ
. (19)

Such functions are shown in Figs. 1-2 for n = 4 and n = 20,

respectively. The following result holds.

Theorem 1: System (4),(6), with G = F given by (15)

and initial condition (9), exhibits the following asymptotic

behaviors:

i) if γ1(τ) ≤ β ≤ γ2(τ), then a(t) = 1, ∀t ≥ 1;

ii) if γ2(τ) < β < γ1(τ), then a(t) = 0, ∀t ≥ 1;

iii) if β < γ1(τ) and β ≤ γ2(τ), then a(t) = 1, ∀t ≥ 2;

iv) if β ≥ max{γ3(τ), γ4(τ)}, then a(t) = a(0), ∀t > 0,

v) if γ1(τ) ≤ β < γ4(τ), then there exists a finite t1 such

that a(t) = 0, ∀t ≥ t1;

vi) if γ2(τ) < β < γ3(τ), then there exists a finite t2 such

that a(t) = 1, ∀t ≥ t2.

Theorem 1 gives the complete characterization of the

asymptotic behavior of system (4),(6), with initial condition

(9). Notice that there are three possible asymptotic activity

profiles: i) all the agents become active; ii) all the agents

become inactive; iii) the situation remains always the same

as in the initial condition (i.e., agent 1 is active and all the

others are inactive). It should be also remarked that the first

two cases occur in at most two steps, except for the following

conditions:
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• if γ1(τ) ≤ β < γ4(τ), then a(t) = 0 within a finite

time t1;

• if γ2(τ) < β < γ3(τ), then a(t) = 1 within a finite

time t2.

In such cases, it is not possible to find an upper bound on t1
or t2. For example, if n = 5, τ = 0.99 and β = 15, one has

that a(t) = 0 only for t ≥ 19. Similarly, if n = 5, τ = 0.01
and β = 118, one has that a(t) = 1 only for t ≥ 56. Figures

1-2 show the curves γi(τ) in the β − τ plane, for n = 4
and n = 20 respectively. It can be observed that in the latter

case the curves γ2(τ) and γ3(τ) are almost indistinguishable.

As expected, the area in which all the agents end up to be

inactive grows with n, while the region in which all the

agents become active tends to shrink, as well as that in which

the initial condition a(0) is maintained.

B. Setting b)

Now, let us consider setting b). When the interconnection

graph is complete, this means that

G =
11

′

n
, (20)

and F is given by (15). Let us define the functions of τ ∈
(0, 1):

η1(τ) = (n− 1)(nτ − 1), (21)

η2(τ) =
n− 1− n(n− 2)τ

nτ − 1
. (22)

Then, the following result holds.

Theorem 2: System (4),(6), with F defined as in (15), G

given by (20) and initial condition (9), has the following

asymptotic behaviors:

i) if η1(τ) ≤ β ≤ η2(τ), then a(t) = 1, ∀t ≥ 1;

ii) if η2(τ) < β < η1(τ), then a(t) = 0, ∀t ≥ 1;

iii) if β < η1(τ) and β ≤ η2(τ), then a(t) = 1, ∀t ≥ 2;

iv) if τ > 1

n−1
, β ≥ η1(τ), then there exists a finite t1 such

that a(t) = 0, ∀t ≥ t1;

v) if τ < 1

n−1
, β > η2(τ), then there exists a finite t2 such

that a(t) = 1, ∀t ≥ t2;



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

n = 4

β

τ

η1(τ)
η2(τ)

τ = 1

n−1

Fig. 3. Case b), n = 4.

vi) if τ = 1

n−1
, β > 1, then a(t) = a(0), ∀t ≥ 0.

Figures 3-4 show the curves ηi(τ) in the β − τ plane,

along with the vertical line τ = 1

n−1
, for n = 4 and n =

20 respectively. In the latter case the curve η2(τ) is almost

coincident to the vertical line. Also in this case, the area

in which all the agents end up to be inactive grows with n

(notice the scale on τ ), while the region in which all the

agents become active tends to shrink.

C. Discussion

First, notice that when β = 1, matrix G is the same in both

settings, so that conditions in Theorems 1 and 2 coincide.

In this case, the considered scenario matches exactly that

addressed in [12], and the results therein presented are

recovered. In particular, it can be noticed from Figures 1-4

that only two situations occur: either a(1) = 1 if τ ≤ 1

n−1
,

or a(1) = 0 otherwise. The introduction of the parameter

β, accounting for the relative confidence of each agent on

its own opinion, has significantly enriched the picture of

possible asymptotic behaviors of the system. For β > 1, three

new different situations appear in setting a): all the agents

become active or inactive, but in more than one step; the

initial situation is maintained indefinitely. As β increases, the

latter situation occurs for a larger range of values of the initial

threshold τ . This corresponds to the fact that in a network

whose agents are more self-confident, it is more difficult to

persuade them to change their activity status. Conversely, for

β < 1, this behavior disappears and either 1 is reached (in

one or two steps) or all the agents become inactive in one

step.

Another interesting observation concerns the differences

between the scenarios a) and b). The same five behaviors

described above for setting a), are present also in setting

b), but the condition in which a(t) = a(0), ∀t, occurs only

if τ is exactly equal to 1

n−1
, which is clearly a singular

condition. This confirms the intuition that matrix G has a

strong influence on the asymptotic behavior of the system.

IV. STAR AND RING GRAPH

In this section we analyze other two graph structures con-

sidered in [12]: the star graph and the ring graph. Although
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a full theoretical characterization of these cases is beyond

the scope of this paper, a detailed numerical analysis of the

asymptotic behaviors is given next.

A. Star graph

In the star graph, the radical agent (i = 1) is the centre

of the graph, while the remaining n− 1 ordinary agents are

connected only to the radical. This leads to a matrix F of

the form

F =



















β
β+n−1

1

β+n−1
. . . . . . 1

β+n−1
1

β+1

β
β+1

0 . . . 0
... 0

. . . 0
...

...
. . . 0

1

β+1
0 . . . . . . β

β+1



















.

We consider scenarios a) and b), defined as in Section III.

While in the former G = F , in the latter one has

G =

















1

n
1

n
. . . . . . 1

n
1

2

1

2
0 . . . 0

... 0
. . . 0

...
...

. . . 0
1

2
0 . . . . . . 1

2

















.

Figures 5-6 show the asymptotic behaviors achieved in

scenario a) for different values of τ (initial threshold of the

ordinary agents) and β (relative confidence parameter), for

n = 5 and n = 20, respectively. The corresponding plots for

scenario b) are shown in Figures 7-8. The different regions

correspond to:

• ∃t̄ such that a(t) = 1, ∀t ≥ t̄ (red);

• ∃t̄ such that a(t) = 0, ∀t ≥ t̄ (green);

• a(t) = a(0), ∀t (cyan);

• a(t) oscillates indefinitely between [1 0 . . . 0]′ and

[0 1 . . . 1]′ (blue).

It can be observed that setting a) shows a wider variety

of behaviors than setting b). As for the complete graph, the

case β = 1 is the same in the two settings and coincides with

that studied in [12]. By increasing the value of β, we first

notice a larger range of τ values for which all the agents tend
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to become inactive and successively, only in setting a), an

area in which the initial condition is maintained indefinitely.

However, this area tends to decrease for larger values of

n and does not show up in setting b). The complexity of

the overall system behavior is also testified by the non

monotonicity of the curve separating the areas in which

the asymptotic value of a(t) is 1 and 0, respectively. In

particular, it has been observed that in setting a), this curve

seems to change its slope an infinite number of times in any

interval β ∈ (1, 1 + ǫ), with ǫ arbitrarily small.

B. Ring graph

In the ring graph, agent i has as neighbors agents i − 1
and i+ 1 (with the convention n+ 1 = 1). We still assume

that agent 1 is a radical while the others are ordinary, and

we analyze the asymptotic behavior of the system starting

from the initial condition (9). The matrix F is now given by

F =

























β
β+2

1

β+2
0 . . . 0 1

β+2
1

β+2

β
β+2

1

β+2
0 . . . 0

0 1

β+2

. . .
. . . . . .

...

...
. . .

. . .
. . .

...

0
. . .

. . . 1

β+2
1

β+2
0 . . . . . . 1

β+2

β
β+2

























,
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while matrix G in scenario b) is

G =























1

3

1

3
0 . . . 0 1

3
1

3

1

3

1

3
0 . . . 0

0 1

3

. . .
. . . . . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1

3
1

3
0 . . . . . . 1

3

1

3























.

The asymptotic behaviors achieved in scenario a) and b) for

different values of τ and β and n = 20, are shown in Figures

9 and 10, respectively. The red, green and cyan regions have

the same meaning as for the star graph. The blue region

corresponds to an indefinite oscillation between two vectors

a(t) in which only the even or the odd agents are active (we

observed that this behavior is present only if the number of

agents is even). Finally, the yellow regions correspond to

cases in which there exists an integer r, 1 ≤ r ≤ ⌊n
2
⌋ − 1,

and a time t̄ such that for all t ≥ t̄,

ai(t) = 1 i = 1, . . . , r + 1 and i = n− r + 1, . . . , n
ai(t) = 0 i = r + 2, . . . , n− r.

Different shades of yellow correspond to different values of

r. For example, the largest yellow regions correspond to the

case r = 1.
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Once again, the case in which the initial condition a(0) is

maintained indefinitely shows up only in setting a). More-

over, it is apparent that the influence of parameter β on the

system behavior is more remarkable in setting a) than in

setting b). This confirms that a key aspect for this class of

threshold models is the choice of the matrix G, which indeed

plays a crucial role in the definition of the decision of the

agents to become active or not.

V. CONCLUSIONS

A class of threshold models which can be used to describe

the onset of collective actions in social networks, has been

analyzed. It has been shown that the introduction of a

parameter accounting for the level of self-confidence of the

agents has significantly enriched the variety of asymptotic

behaviors of the network. Moreover, it is apparent that the

choice of the mechanism underlying the computation of the

agents’ activity levels has a strong influence on the network

evolution.

A class of threshold models which can be used to describe

the onset of collective actions in social networks, has been

analyzed. It has been shown that the introduction of a

parameter accounting for the level of self-confidence of the
agents has significantly enriched the variety of asymptotic

behaviors of the network. Moreover, it is apparent that the

choice of the mechanism underlying the computation of the

agents’ activity levels has a strong influence on the network

evolution.

Clearly, the work is still at a preliminary stage and several

developments can be foreseen. The derivation of analytic

results for the star and ring graph structures is ongoing.

It would be also interesting to evaluate the behavior of

the network for other graph structures, or for different

initial conditions. Another generalization, may concern the

study of networks in which there are groups of agents with

different self-confidence levels. Finally, a possible evolution

of the proposed threshold models is to consider time-varying

averaging schemes of the agent thresholds, inspired by works

on opinion dynamics [15] or on consensus with adaptive

weights [16], [17].
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