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Abstract— Distributed estimation schemes are increasingly
popular these days. A distributed algorithm, specifically tailored
to recursive set membership estimation problems, was recently
proposed and analyzed for networks featuring a static topology.
It was shown that the agents’ estimates asymptotically converge
to a common point lying in the intersection of all the agents’
feasible sets. In this paper, by building on recent results on
constrained consensus, we prove convergence in the more
challenging scenario of networks with time-varying topology.
It is shown that convergence is guaranteed if the sequence
of graphs is jointly strongly connected over finite-length time
intervals. Moreover, an asynchronous version of the proposed
algorithm is presented, whose convergence can be deduced from
the previously obtained results.

I. INTRODUCTION

The set membership framework is a popular alternative to
tackle estimation problems in the presence of bounded uncer-
tainty [1], [2]. One distinctive feature of such a framework is
the possibility to completely characterize in terms of feasible
sets all the possible values of the unknown quantities that are
compatible with the available information. Such a feature
makes set membership approaches particularly appealing
for robust estimation problems (e.g., [3], [4]) or applica-
tions requiring guaranteed estimation errors, such as mobile
robotics problems [5], [6] or automotive applications [7],
[8], [9]. Distributed versions of set membership estimation
techniques, able to deal with a network of sensors, have been
proposed as well (e.g., [10], [11]).

Recently, a consensus-based algorithm has been presented
in [12] for distributing the set membership estimation process
over a network of agents. In that work, each agent stores:
i) a local feasible set which is recursively updated when
new measurements are available; ii) a local estimate that is
updated by computing an average of the neighbors’ estimates
and then projecting it on the local feasible set. In case of
static topology of the communication graph, it was shown
that the estimates of all the agents converge to a common
point laying in the intersection of the feasible sets of all
the nodes. Estimation algorithms having such a property
are called asymptotic interpolatory algorithms in the set
membership framework [13].

In this work, we extend the results of [12] to the more
challenging scenario of communication graphs having a
time-varying topology. By building on recent results obtained
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for the constrained consensus problem [14], [15], [16], we
show that the convergence property is preserved under mild
assumptions on the time evolution of the network topology.
In particular, convergence results apply to sequence of graphs
jointly strongly connected over finite-length time intervals
(not necessarily strongly connected at any time instant), and
to directed and unbalanced networks as well. It is worth
stressing that the major difference between the framework
considered in this paper and that of references [14], [15],
[16] is that in our case projections are made over an infinite
sequence of sets. This is a consequence of the recursive
estimation scheme, in which at each time instant a new mea-
surement is taken and a new feasible set becomes available.
On the contrary, in typical constrained consensus problems,
each agent repeatedly projects over the same feasible set.

The paper is organized as follows. In Section II, the
considered distributed set membership estimation algorithm
is introduced. Its convergence analysis is presented in Sec-
tion III. In Section IV it is shown that an asynchronous
version of the proposed estimator can be seen as a special
instance of the algorithm previously introduced, from which
convergence can be deduced. A numerical example is re-
ported in Section V, whereas some conclusions are drawn in
Section VI.

Notation: Given a matrix A, we denote by [A]ij its ij-
th entry. Given a point p ∈ Rn and a closed set Z ⊂ Rn,
we denote by PZ [p] the projection of p on Z, defined as
PZ [p] = arg minz∈Z ‖p− z‖ , where ‖·‖ denotes the 2-norm
in Rn.

II. DISTRIBUTED SET MEMBERSHIP ESTIMATION

The considered setup consists of a network of N agents
cooperating to estimate an unknown parameter x ∈ Rn. The
network is modelled as a directed graph with time-varying
topology, G(k) = (V, E(k)), where V = {1, . . . , N} denotes
the set of agents and E(k) ⊆ V ×V represent the interaction
among the agents at time k. In particular, an edge (j, i) ∈
E(k) if and only at time k agent j sends its current estimate to
agent i. In this case, we say that j is a neighbor of i. At each
time instant k, agent i takes a noisy measurement of a known
function of x. The measurement noise is supposed to be
unknown-but-bounded (UBB). Under the UBB assumption,
a feasible measurement set Mi(k) can be associated to agent
i at time k. Such a set contains all the possible values
of the unknown parameter x that are compatible with the
current measurement and the noise bound. Besides Mi(k),
each agent also stores its local feasible parameter set Xi(k)
containing the values of x that are compatible with all the



measurements taken by node i up to time k. Clearly, the
local feasible parameter set corresponds to the intersection
of all the feasible measurement sets collected up to time k,
i.e.

Xi(k) =

k⋂
h=1

Mi(h), i = 1, . . . , N. (1)

By construction, {Xi(k)} is a nonincreasing sequence of
sets, i.e. Xi(k + 1) ⊆ Xi(k) for all k. Hence, according to
the definition of limit of a sequence of sets [17], it converges
to a set

Xi = lim
k→∞

Xi(k). (2)

As a result, it is possible to define the global asymptotic
feasible parameter set as

X =

N⋂
i=1

Xi. (3)

We are interested in finding a distributed set membership
estimator that returns a sequence of estimates eventually
converging to the global asymptotic feasible parameter set
X , i.e., an asymptotically interpolatory estimator. A possible
solution is provided by the distributed estimation algorithm
described below.

An agent updates its estimate in two steps. First, it
computes a weighted average of its estimate and those of
its neighbors. Then, it projects such an average on the
current local feasible parameter set. Let xi(k) be the estimate
computed at time k by node i. For i = 1, . . . , N and
k = 0, 1, 2, . . . , the distributed estimation algorithm can be
written as

Xi(k + 1) = Xi(k) ∩Mi(k + 1), (4)

zi(k) =

N∑
j=1

aij(k)xj(k), (5)

xi(k + 1) = PXi(k+1)[zi(k)], (6)

with the initial conditions xi(0) and Xi(0) = Rn. Clearly,
the weights aij(k) must comply with the topology of the
communication graph, i.e. aij(k) = 0 if (j, i) /∈ E(k).

III. CONVERGENCE ANALYSIS

In this section, the convergence properties of Algo-
rithm (4)-(6) are analyzed. In particular, it is shown that it
is indeed an asymptotically estimator.

The following assumptions are enforced throughout the
paper.

Assumption 1 (Sets): The feasible measurement sets
Mi(h), h = 1, 2, . . . , in (1) are closed convex sets.
Moreover, the global asymptotic feasible parameter set X
in (3) is not empty.

Assumption 2 (Network): There exist T > 0 and an infi-
nite sequence of time instants {kl}, l = 0, 1, . . . , such that
for all l:

i) kl+1 − kl < T ;
ii) the union of graphs G(kl), G(kl + 1), . . . , G(kl+1− 1)

is strongly connected.

Moreover, for all i, j = 1, . . . , N , and for all k, the weights
aij(k) ≥ 0 in (5) satisfy:
iii) aii(k) > 0;
iv) if i 6= j, aij(k) > 0 if and only if (j, i) ∈ E(k);

v)
N∑
j=1

aij(k) = 1;

vi) if aij(k) > 0, then aij(k) > η, for some η > 0. 2

Under Assumption 1, the local feasible parameter sets
Xi(k), as well as their limit sets Xi, are closed convex sets,
being the intersection of (possibly infinitely many) closed
convex sets. The nonemptiness of the asymtpotic feasible
set X is guaranteed if the measurement noise satisfies the
UBB constraints. Assumptions 2 is typically made to ensure
consensus achievement in the presence of time-varying graph
topologies (e.g., see [15], [16]).

Let us recall the following results, concerning infinite
sequences of closed convex sets. The proofs can be found in
[12].

Lemma 1: Let {Z(k)}, k = 1, 2, . . . , be a nonincreasing
sequence of closed convex subsets of Rn and denote by Z
its limit. Consider an arbitrary point p ∈ Rn and let q(k) =
PZ(k)[p] be its projection on Z(k). Then, for any z ∈ Z and
k = 1, 2, . . . , it holds

(p− q(k))>(z − q(k)) ≤ 0. (7)

2

Lemma 2: Let {Z(k)}, k = 1, 2, . . . , be a nonincreasing
sequence of closed convex subsets of Rn and denote by Z
its limit. Let {z(k) ∈ Z(k)} be a sequence admitting a
convergent subsequence {z(kj)}, j = 1, 2, . . . , to a point
ẑ. Then, ẑ ∈ Z. 2

In order to prove the convergence of the estimates gener-
ated by Algorithm (4)-(6), we need to exploit several prop-
erties of networks with time-varying graph topology, which
essentially stem from Assumption 2. We briefly summarize
them hereafter; the reader interested in the details of the
derivations can find them in the referenced papers.

Denote by A(k) ∈ RN×N the matrix whose ij-th entry is
aij(k). Let

Ψ(t, s) = A(t− 1) . . . A(s+ 1)A(s), t > s (8)

be the state transition matrix from time s to time t, with the
convention Ψ(t, t) = I . By defining

ui(k) = PXi(k+1)[zi(k)]− zi(k), (9)

expressions (5)-(6) can be written as

xi(k + 1) =

N∑
i=1

aij(k)xj(k) + ui(k), (10)

for i = 1, . . . , N . Let {kl} be a sequence of time instants
defined as in Assumption 2. Then, the evolution of the
estimates x(k) at time instants kl is given by

x(kl+1) = Ψ(kl+1, kl)x(kl) +

kl+1∑
r=kl+1

Ψ(kl+1, r)u(r − 1).

(11)



Under Assumptions 2, Ψ(kl+1, kl) is a row-stochastic,
irreducible and aperiodic matrix, for all kl. Hence,
{Ψ(kl+1, kl)}, l = 0, 1, . . . , is a sequence of matrices
admitting an absolute probability sequence {v(kl)}

v>(kl) = v>(kl+1)Ψ(kl+1, kl) (12)

satisfying vi(kl) > δ, for all i = 1, . . . , N and all kl, for
some δ > 0 [16], [18]. An absolute probability sequence
with such a property is said to be uniformly bounded away
from zero. Therefore, summing up, there always exist a scalar
δ > 0 and an absolute probability sequence {v(kl)} such that
for i = 1, . . . , N and all kl:

vi(kl) > δ (13)
N∑
i=1

vi(kl) = 1 (14)

N∑
i=1

vi(kl+1) [Ψ(kl+1, kl)]ij = vj(kl) (15)

with Ψ(kl+1, kl) defined as in (8).
Let ui(k), i = 1, . . . , N , k = 1, 2, . . . , be defined as

in (9), where zi(k) is computed according to (4)-(6). Then,
by exploiting properties (13)-(15) and Lemma 1, it is possible
to show that

lim
k→∞

‖ui(k)‖ = 0, i = 1, . . . , N. (16)

The proof of (16) relies on arguments similar to those used
in [16] and is omitted due to space constraints.

Now, let {xi(k)}, i = 1, . . . , N , k = 1, 2, . . . , be the
sequences of estimates computed according to (4)-(6). Define

y(k) =
1

N

N∑
i=1

xi(k). (17)

Then, it is possible to show that

lim
k→∞

‖y(k)− xi(k)‖ = 0 , i = 1, . . . , N. (18)

In order to prove (18), one can adopt a procedure analogous
to that employed for Lemma 9 in [15]. The main argument
consists essentially in studying the evolution of system (10)
when driven by a vanishing input, as guaranteed by (16).

We are now ready to prove the main result of the paper.
Theorem 1: Let Assumptions 1-2 hold. Let {xi(k)}, i =

1, . . . , N , k = 1, 2, . . . , be the sequences of estimates
computed according to (4)-(6). Then, there exists a point
x̂ ∈ X , with X given by (1)-(3), such that

lim
k→∞

xi(k) = x̂, i = 1, . . . , N.

Proof: Let y(k) be given by (17) and define

qi(k) = PXi(k)[y(k)]. (19)

Since xi(k) ∈ Xi(k) for i = 1, 2, . . . , N and all k, we have
that

N∑
i=1

‖y(k)− qi(k)‖ ≤
N∑
i=1

‖y(k)− xi(k)‖ . (20)

By exploiting (18), (20) implies that

lim
k→∞

N∑
i=1

‖y(k)− qi(k)‖ = 0

and thus
lim
k→∞

‖y(k)− qi(k)‖ = 0 (21)

for i = 1, . . . , N . From (21), we can conclude that

lim
k→∞

‖qi(k)− qj(k)‖ = 0 (22)

for i, j = 1, . . . , N .
Now, let x̄ be any point in X . From (5),(6), one has that

for i = 1, . . . , N

‖xi(k)− x̄‖2 ≤ ‖zi(k − 1)− x̄‖2

≤
N∑
j=1

aij(k − 1) ‖xj(k − 1)− x̄‖2 (23)

where the first inequality comes from the properties of
projections on convex sets and the second one from Jensen’s
inequality. By iterating the inequalities above backwards in
time and recalling the definition of the transition matrix
Ψ(·, ·) in (8), one gets

‖xi(k)− x̄‖2 ≤
N∑
j=1

[Ψ(k, 0)]ij ‖xj(0)− x̄‖2

≤ max
j
‖xj(0)− x̄‖2 ,

(24)

where the last inequality comes from the row-stochasticity
of matrix Ψ(k, 0). From (24), one has that all the sequences
{xi(k)} are bounded, and therefore so is the sequence
{y(k)}. Consequently, from (21), the sequences {qi(k)} are
bounded too and hence they admit a converging subsequence
{qi(kh)}, i.e.

lim
h→∞

qi(kh) = x̂i. (25)

By Lemma 2, the limit points x̂i ∈ Xi. But, from (22) one
has that x̂1 = · · · = x̂N

4
= x̂ ∈ X . From (18) and (21), it

follows
lim
h→∞

xi(kh) = x̂ (26)

for i = 1, . . . , N . By the definition of limit, for any ε > 0
there exists a ĥ such that ‖xi(kh)− x̂‖ < ε for all h ≥ ĥ
and i = 1, . . . , N .

Using the same arguments as in (23)-(24), one has that for
i = 1, . . . , N and all k ≥ kĥ

‖xi(k)− x̂‖2 ≤ ‖zi(k − 1)− x̂‖2

≤
N∑
j=1

[
Ψ(k, kĥ)

]
ij

∥∥xj(kĥ)− x̂
∥∥2

≤ max
j

∥∥xj(kĥ)− x̂
∥∥2 ≤ ε2,

where the third inequality comes from the row-stochasticity
of matrices Ψ(k, kĥ). Hence, the thesis follows. 2

Remark 1: Theorem 1 can be seen as an extension of the
convergence results presented in [15], [16] on constrained



consensus algorithms in the presence of time-varying topol-
ogy. A major difference with respect to those works is that in
the recursive estimation problem considered here, the local
feasible set Xi(k) is updated at each time instant, rather than
being constant. As a result, an agent projects the current
estimate each time on a different set. Theorem 1 shows that
convergence is guaranteed as long as the sequence of local
feasible sets is nonincreasing. 2

Remark 2: Assumption 2 about the time-varying topology
of the network is similar to those adopted in related work
such as [15], [16]. In particular, Assumption 2 does not
require that the communication graphs be strongly connected
at any time instant. It is sufficient that the union of graphs
over uniformly bounded time intervals is jointly strongly con-
nected. Moreover, unbalanced networks are allowed, result-
ing in weight matrices not necessarily doubly stochastic. As a
result, this framework can be used to study the convergence
of asynchronous implementations of Algorithm (4)-(6), as
explained in the next section. The presence of time delays
can also be accounted for, by adopting a framework similar
to the one in [15], where an extended model is studied by
defining a state vector that includes delayed copies of the
agent states taken at different time instants.

Remark 3: At time instant k+ 1, agent i updates its local
feasible set Xi(k + 1) by computing the intersection of the
current local feasible set Xi(k) with the set Mi(k + 1) as-
sociated to the new measurement available (see (4)). Hence,
the local feasible sets Xi(k) form a nonincreasing sequence
of sets by construction. It is easy to see that when such a
property does not hold, the convergence of all the estimates
xi(k) to a common point belonging to the global feasible
set X cannot be guaranteed anymore. At the same time, this
limits the applicability of the proposed distributed algorithm
to scenarios in which the structure of the measurement sets is
such that the intersection in (4) can be efficiently computed.

IV. ASYNCHRONOUS IMPLEMENTATION

An asynchronous version of the considered distributed
set membership estimator can be recovered as a special
instance of Algorithm (4)-(6). Consider N nodes connected
over a network with static topology, modelled as a strongly
connected graph G = (V, E). Nodes interact according to a
communication setup in which each node wakes up when
a local timer triggers. Similarly to the scenario considered
in [19], when a node is awake it gathers local estimates from
its neighbors and performs steps (4)-(6). Then, it switches to
an idle mode in which it can only send its estimate xi upon
request of other nodes.

From a global perspective this asynchronous model can
be treated as a synchronous one in which, at each iteration
k, only a subset of edges E(k) = {(j, i) | i ∈ V(k), j ∈
N in

i } ⊆ E is active, with V(k) ⊆ V being the set of nodes
that are awake at iteration k and N in

i denoting the set of
neighbors of node i in the communication graph G. If we
assume that the time between two consecutive triggering
events of any node is uniformly bounded by a constant
T , the graph sequence G(k) = (V, E(k)) clearly satisfies

k k + 1 k + 2

Fig. 1. Asynchronous algorithm. At each iteration k, nodes in V(k) and
edges in E(k) are depicted in blue, while inactive ones are shaded. After 3
iterations, the union of the graphs is strongly connected.

Assumption 2 with constant T . If at iteration k node i is
idle (i.e., i /∈ V(k)), then its measurement set in (1) is
taken as Mi(k) = Rn and its weights satisfy aii(k) = 1
and aij(k) = 0 for all j 6= i. This asynchronous setup
fits Algorithm (4)-(6). A graphical illustration is depicted
in Fig. 1 for a simple network. Clearly, the above discussion
can be further extended to asynchronous communication
protocols over time-varying graphs with a similar reasoning.

V. NUMERICAL EXAMPLE

In order to illustrate how the proposed distributed set
membership estimator works, in this section we tackle two
numerical problems: linear regression and target localization
in a sensor network. In particular, we tested algorithm (4)-
(6) with two different communication protocols, as described
below.

SDIA: Synchronous Distributed Interpolatory Algorithm.
The topology of the communication graph is static
(i.e., E(k) = E) and it is used to simulate a
synchronous communication protocol, similar to
the setup considered in [12].

ADIA:Asynchronous Distributed Interpolatory Algorithm.
The topology of the communication graph is time-
varying (i.e., E(k1) 6= E(k2)) and it is used to
simulate the asynchronous implementation of (4)-
(6) described in the previous section.

A. Linear regression

At iteration k, the node i ∈ V(k) takes a measurement
ψi(k) ∈ R of an unknown parameter θ? ∈ Rn, according to

ψi(k) = φ>i θ
? + ξi(k). (27)

In (27), φi ∈ Rn is a regressor vector associated to node i
and ξi(k) ∈ R is an UBB noise satisfying

|ξi(k)| ≤ εi, ∀k, (28)

with εi ≥ 0. Without loss of generality, assume ‖φi‖ = 1,
for all i. From (27) and (28), each measurement set is a strip
in the parameter space, i.e.

Mi(k) = {θ ∈ Rn : |φ>i θ − ψi(k)| ≤ εi}. (29)



From (4) and (29), the local feasible set for node i at time
k can be easily computed as

Xi(k) =
{
θ ∈ Rn :

max
h≤k
{ψi(h)} − εi ≤ φ>i θ ≤ min

h≤k
{ψi(h)}+ εi

}
,

(30)

which requires just to store the maximum and minimum
value of the measurements ψi(k).

A Monte Carlo simulation has been carried out for the case
n = 5. For different values of the number of nodes N ranging
from 7 to 200, 1000 simulation runs have been performed.
The initial estimates xi(0) and the regressors φi in (27) are
randomly generated at each run. The measurement errors
ξi(k) are uniformly distributed in [−εi, εi], with εi = 0.1.
Each simulation run is stopped when the distance of the
estimates of all the nodes to X is smaller than a desired
accuracy δ = 10−3. A static complete graph has been used
for the SDIA. The same complete graph has been used as
underlying communication graph for the ADIA. In this case,
the asynchronous awakening of the nodes has been randomly
generated so that the resulting sequence of communication
graphs G(k) satisfies Assumption 2 with T = 2. The average
number of iterations required to reach the desired accuracy
is reported in Fig. 2. It can be seen that the larger the
network the smaller the number of iterations. Moreover, as
expected, the asynchronous version of the algorithm exhibits
a slower convergence rate when compared to its synchronous
counterpart.

A second set of simulations has been carried out in order
to highlight the role of the bound T . The ADIA has been
tested on two networks of N = 10 and N = 20 agents,
respectively. In both cases, the underlying communication
graph has a complete topology, as before. Different random
sequences of node awakenings have been simulated, resulting
in a sequence of graphs G(k) satisfying Assumption 2 with
different values of T . For each T ∈ {2, 3, . . . , 20}, 1000
simulation runs have been performed. The average number of
iterations is reported in Fig. 3. As expected, the convergence
rate of Algorithm (4)-(6) heavily depends on T since it
influences the rate at which the information is spread through
the network. The number of iterations roughly grows linearly
with T , with a growth rate that decreases as the network
becomes larger.

B. Target localization

In this example, the objective is to estimate the unknown
position p? ∈ R2 of a target in a sensor network. Similarly to
the problem considered in [20], we assume that at iteration
k each node i, located at position ci, takes a measurement
of the target bearing angle as

ψi(k) = atan2(di,2, di,1) + ξi(k), (31)

where di = [di,1, di,2]> = p? − ci and ξi(k) is a UBB
noise uniformly distributed in the range [−εi, εi] rad with
εi = 0.8. In this case, both Mi(k) and the feasible parameter
sets Xi(k), take on the form of sectors of R2 originating from
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Fig. 2. Comparison of SDIA and ADIA over an underlying complete
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the sensor locations ci. For example, assume N = 10 sensors
deployed as shown in Fig. 4. Let the actual target position
be p? = [0, 0]> and the initial estimates xi(0) be uniformly
distributed in [−4, 4]2. In this example, the underlying
communication graph has been randomly generated as an
Erdős-Rényi graph with probability p = 0.5. At each time
k, each node is awake with probability 0.4 and it is idle
with probability 0.6. The ADIA algorithm has been run for
k̄ = 100 iterations. Figure 4 depicts the feasible parameter
set at time k = 50.

Define the overall feasible set at iteration k as

X(k) =

N⋂
i=1

Xi(k).

It is the set of all the target locations compatible with the
information collected by all the nodes up to time k. Clearly,
X(k̄) represents an approximation of the asymptotic feasible
set X . Figure 5 shows the distances dist(xi(k), X(k̄)) of the
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Fig. 4. Target localization: feasible parameter sets (grey sectors) after 50
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Fig. 5. Target localization: distance of xi(k) from X(k̄) for all i.

sequence of estimates {xi(k)} from the set X(k̄). It can be
seen that the distances dist(xi(k), X(k̄)) are not necessarily
monotonically non increasing. This phenomenon is due to
the consensus step in (5) which can drive an agent estimate
faraway from the feasible set. However, in the long run all
the distances decrease and eventually tend to zero, according
to Theorem 1. Moreover it can be observed that for some i
the distance dist(xi(k), X(k̄)) remains unchanged for some
consecutive iterations. What typically happens during these
periods is that agent i is not awake, so that N in

i (k) = ∅ and
the estimate xi(k) remains the same.

VI. CONCLUSIONS

In this paper we have studied the properties of a distributed
set membership estimation algorithm, in the presence of
time-varying network topology. At each iteration, each agent
alternates a consensus step and a projection step over the
local feasible set in order to generate a sequence of estimates.
It is shown that when the union of communication graphs is
jointly strongly connected over finite-length time intervals,
convergence of the agents’ estimates to a common feasible

point is guaranteed. As a side contribution, it is shown how
to cast an asynchronous version of the considered algorithm
as an equivalent synchronous one, for which the convergence
analysis previously carried out applies.
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