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Abstract— The ever-growing penetration of low carbon tech-
nologies is causing important modifications of standard power
flow patterns in electricity distribution grids. As a consequence,
low voltage networks are frequently experiencing over- and
undervoltages, resulting in a poor voltage quality at customers’
premises. In this context, energy storage is deemed a key
technology to meet power quality requirements. In this paper, a
voltage control algorithm based on a receding horizon scheme
is developed to operate the energy storage systems deployed in
a low voltage network. The proposed procedure requires few
measurements to forecast the future state of the network and
anticipate possible voltage problems. The algorithm is applied
to real data from an Italian low voltage network, consisting
of demand and generation profiles which determine over- and
undervoltages in the absence of voltage control. The obtained
results highlight the potential of the proposed approach to
reduce the amount of voltage violations over time.

I. INTRODUCTION

Over- and undervoltages are becoming frequent in low

voltage (LV) networks due to the growing penetration of

low carbon technologies such as distributed generation (DG),

electric vehicles and heat pumps. These are indeed causing

significant modifications of typical power flows, resulting

in a degradation of the quality of supply at consumers’

premises. Therefore, maintaining voltage between specified

limits has become one of the main issues currently faced

by distribution system operators (DSOs). A radical solution

consists of replacing existing cables and/or transformers with

new equipments. The use of on-load tap changers (OLTC)

at secondary substations to cope with voltage rise caused

by increasing penetration of photovoltaic (PV) systems is

proposed in [1]. In [2], different voltage control schemes

involving active and reactive power control of DG inverters

are compared. However, depending on technical, economic

and/or regulatory issues, these solutions may not be imple-

mentable in practice. In this context, an alternative which

is receiving increasing attention is represented by energy

storage systems (ESSs), see, e.g., [3]-[6] and references

therein. Pros of the use of ESSs are that voltage problems

are solved locally, thus limiting the impact on the medium

voltage (MV) network, and no curtailment of renewable

generation is required.

Irrespective of the solution adopted, most of the ap-

proaches proposed in the literature address voltage support

without any prediction of the future state of the network.

This is mainly due to the poor availability of measurements

in LV networks, making state reconstruction and forecasting
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a challenging problem. Since a full information, centralized

approach would require complete monitoring of the network,

some authors have studied different partial information se-

tups to make voltage control both viable and reliable. In

[7] the performance of an OLTC control logic is assessed

under three different remote monitoring schemes, namely

measurements taken at the middle, end, or middle and end of

each feeder. The coordinated control scheme in [3] exploits

a centralized controller, deciding which ESSs are to be

activated upon the occurrence of a voltage problem, and

dedicated decentralized controllers, one for each ESS, having

visibility only of local voltage measurements. However,

when ESSs are used, lack of predictive capability may turn

out into sending the control signals with delay and without

the guarantee that ESSs are ready for the required actions

(e.g., battery levels are low when power supply to the

network is required).

The approach taken in this paper is to use forecasts of

demand and generation to “anticipate” the occurrence of

voltage issues, and counteract them in advance. To this aim,

predicted demand and generation are exploited in a suitable

multi-period optimal power flow (OPF) problem with voltage

constraints, whose solution returns the control policy for each

ESS over the considered prediction horizon. In order to cope

with uncertainties such as inaccurate forecasts, a receding

horizon scheme is applied. At each time step, the multi-

period OPF is solved over the whole prediction horizon, but

only the control inputs for the first time step are applied. ESS

control based on a receding horizon scheme is considered

in [8], [9] for grid-connected microgrids. Differences with

respect to our work mainly consist in the adopted network

model and the formulated optimization problem. In our

approach, simple predictive models are built to forecast

demand and generation at each bus of the network. To this

aim, only the power exchanged with the MV network and

some meteorological variables (e.g., outdoor temperature and

solar irradiance) are assumed to be measured in real-time at

the MV/LV substation.

The paper is organized as follows. Section II presents

the network model and the formulation of the optimal ESS

operation problem, whose receding horizon implementation

is then described in Section III. Load and generation forecast-

ing is addressed in Section IV. Section V reports simulated

results on a real Italian LV network, and conclusions are

drawn in Section VI.

II. PROBLEM FORMULATION

In this section, we first describe the power flow model

of a LV network equipped with ESSs. Then, we introduce



an OPF problem for optimal operation of these ESSs. In

the following, for a fixed sampling time ∆T , the value

of a variable x at time t∆T is denoted by x(t), where

t = 0, 1, . . . is the discrete time index. The h-step ahead

prediction of the variable x, based on the information avail-

able at time t, is denoted by x̂(t + h|t), with h being a

positive integer. Moreover, the real part, imaginary part and

complex conjugate of z ∈ C are denoted by Re(z), Im(z)
and z∗, respectively.

A. Network model

Consider a LV network described by a graph (N , E),
where N = {1, 2, . . . , n} is the set of nodes (buses) and E is

the set of edges (lines). The admittance-to-ground at bus i is

denoted by yii, while yij = yji denotes the line admittance

between nodes i and j. If (i, j) /∈ E , yij = 0. The network

admittance matrix Y = [Yij ] ∈ Cn×n is a symmetric matrix

defined as

Yij =

{
yii +

∑
h 6=i yih if i = j

−yij otherwise.
(1)

Let Vk(t), Pk(t) and Qk(t) denote the complex voltage,

active power injection and reactive power injection at bus k
and time t, respectively. These quantities are linked by the

power balance equations

Pk(t) = Re
(
Vk(t)

∑

j∈N

V ∗
j (t)Y

∗
kj

)
(2a)

Qk(t) = Im
(
Vk(t)

∑

j∈N

V ∗
j (t)Y

∗
kj

)
. (2b)

Bus 1 is assumed to be a slack bus, characterized by fixed

voltage magnitude and phase, i.e. V1(t) is known for all t.
Conversely, complex voltages Vk(t) at buses k ∈ NL =
{2, . . . , n} are determined by the power flow equations. For

them, voltage quality requirements impose the magnitude to

remain within specified limits, i.e.

v2k ≤ |Vk(t)|
2 ≤ v2k, (3)

where vk ≤ vk are given bounds. The real power flow from

bus i to bus j can be also bounded to reflect the physical

properties of the lines. This implies the constraint

Re
(
Vi(t)

[
Vi(t)− Vj(t)

]∗
y∗ij
)
≤ P ij , (4)

whose left-hand side is the real power transferred from bus

i to bus j at time t, and P ij = P ji is a given upper bound.

Let S ⊆ NL be the set of buses equipped with ESSs. For

s ∈ S, es(t) denotes the storage level at bus s and time t.
Moreover, rs(t − 1) and bs(t − 1) are the average active

and reactive power exchanged by the ESS between t − 1
and t. The dynamics of es(t) are modelled by the first-order

difference equation es(t) = es(t− 1)+ rs(t− 1)∆T , whose

solution is given by

es(t) = es(t0) +

t−1∑

τ=t0

rs(τ)∆T, (5)

with es(t0) being the initial storage level, which is assumed

to be known. The storage level es(t) is bounded as follows

0 ≤ es(t) ≤ Es, (6)

with Es being the storage capacity installed at bus s. Both

rs(t− 1) and bs(t− 1) are also bounded to reflect the ESS

technology adopted, namely

Rs ≤ rs(t− 1) ≤ Rs (7a)

Bs ≤ bs(t− 1) ≤ Bs, (7b)

where Rs < 0 and Rs > 0 are the ramp rate limits, and

Bs < Bs are fixed bounds. Although in principle a battery

could be completely discharged, it is advisable to avoid full

discharge in order to prolong battery life. To this aim, let the

depth of discharge (DOD) of the storage at bus s and time

t be defined as Ds(t) = 1 − es(t)/Es. For a fixed critical

DOD value Ds < 1 at bus s, we consider the soft constraint

Ds(t) ≤ Ds + δs(t), (8)

where the slack variable δs(t), satisfying

δs(t) ≥ 0, (9)

enables to exceed the critical DOD value at bus s and time t,
if needed. In this way, full discharge can be limited by

minimizing some specific function of δs(t).
For a generic bus k ∈ NL having loads, generators

and ESSs connected to it, Pk(t) and Qk(t) in (2) can be

decomposed as

Pk(t) = PG
k (t)− PD

k (t)− rk(t− 1) (10a)

Qk(t) = QG
k (t)−QD

k (t)− bk(t− 1), (10b)

where the superscript G refers to generation and the su-

perscript D refers to demand. The following additional

constraints apply to buses not equipped with ESSs:

rh(t− 1) = bh(t− 1) = 0, h ∈ NL\S. (11)

The quantities PD
k (t), QD

k (t), PG
k (t) and QG

k (t) are consid-

ered as known inputs in (10). In case no load or generator is

connected to bus k, the corresponding demand or generation

are assumed to be zero.

B. Optimal ESS operation

In the following problem formulation, we provisionally

assume that future demand and generation, i.e. the quantities

PD
k (t), QD

k (t), PG
k (t) and QG

k (t), are known. We will

remove this assumption in the next section.

To define a suitable cost function to be optimized, we

recall that the major amount of losses in a power system

(estimated around 70% of the total) is in distribution lines.

This suggests that minimizing line losses should be a primary

objective in the operation of distribution networks. Moreover,

battery degradation, depending on both usage and DOD,

is another issue to take into account. Hence, the following

instantaneous cost incurred at time t is introduced:

C(t) = CL(t) + γUCU (t) + γDCD(t), (12)



where γU , γD,≥ 0 are suitable weights, and

• CL(t) represents the total real losses in the network,

CL(t) =
∑

k∈N

Pk(t)∆T, (13)

• CU (t) is a measure of the battery usage,

CU (t) =
∑

s∈S

|rs(t− 1)|∆T, (14)

• CD(t) quantifies the violations of the critical DOD

values,

CD(t) =
∑

s∈S

δs(t). (15)

At time t0 and for a fixed control horizon H , the considered

control problem aims at finding an ESS operating policy such

that the sum of C(t) in (12) over T = {t0+1, . . . , t0+H} is

minimized, while satisfying the voltage magnitude and real

power flow constraints. This translates into the following

multi-period OPF problem, where the free variables are

represented by Vk(t), rs(t − 1), bs(t − 1) and δs(t) for all

k ∈ NL, s ∈ S and t ∈ T :

min
Vk(t),rs(t−1),bs(t−1),δs(t)

∑
t∈T

C(t) (16)

s. t. (2) − (11), k ∈ NL, s ∈ S, (i, j) ∈ E , t ∈ T .

In the following, the values of the control variables rk(t0)
and bk(t0) at the optimum of problem (16) will be denoted

by r∗k(t0) and b∗k(t0).
Since problem (16) is non-convex, and therefore difficult

to solve, a common approach adopted in the literature is

to compute an approximated solution through convex relax-

ations based on semidefinite programming (SDP), see, e.g.,

[10], [11]. In general, the relaxation provides a lower bound

to the optimal cost of (16), but it is shown empirically in

[12] that it works particularly well for networks with radial

layout, which are frequent in LV public distribution systems

of many countries worldwide. Necessary conditions under

which the relaxation is exact, are provided in [13].

III. RECEDING HORIZON IMPLEMENTATION

The practical implementation of problem (16) struggles

with the fact that future demand and generation are unknown

at time t0. For this reason, the values PD
k (t0+h), QD

k (t0+h),
PG
k (t0+h) and QG

k (t0+h), are replaced in practice with their

forecasts computed at time t0, namely the values P̂D
k (t0 +

h|t0), Q̂D
k (t0 + h|t0), P̂G

k (t0 + h|t0) and Q̂G
k (t0 + h|t0),

h = 1, . . . , H .

Regarding the choice of the control horizon H in problem

(16), on the one hand, the larger the control horizon H , the

more efficient the ESS operating policy in terms of line losses

and operation costs. On the other hand, prediction accuracy

typically gets worse for large lead times, and therefore the

ESS operating policy obtained by solving problem (16)

under predicted demand and generation will likely not be

optimal under the true realization of these quantities. More

importantly, it could also fail in satisfying the voltage mag-

nitude and real power flow constraints. This implies that

a suitable trade-off should be found when selecting H in

real applications. Values ranging from two to three hours are

deemed to be a realistic compromise for LV networks under

consideration.

One way to mitigate the effects of uncertainties such as in-

accurate forecasts, is to apply the receding horizon approach

which is typical of model predictive control [14]. The idea

is that problem (16) is solved at time t0 based on available

demand and generation forecasts. Then, only the values

r∗s (t0) and b∗s(t0) are applied. The same steps are repeated

at the next time instants by exploiting the updated demand

and generation forecasts that become available. The complete

receding horizon procedure is reported in Algorithm 1.

Algorithm 1 Receding horizon procedure for ESS operation

for t0 = 0, 1, . . . do
Acquire the current battery state es(t0) for all s ∈ S
Compute forecasts P̂D

k (t0+h|t0), Q̂
D

k (t0+h|t0), P̂
G

k (t0+
h|t0) and Q̂G

k (t0+h|t0) for all k ∈ NL and h = 1, . . . , H
Solve problem (16)
Apply control values r∗k(t0) and b∗k(t0)

end for

IV. LOAD AND GENERATION FORECASTING

The performance of the receding horizon approach for

ESS operation described in Section III depends, among

other factors, on the accuracy of demand and generation

forecasts. In order to reliably predict these quantities at

each bus of the network, measurements would be needed

in real-time. Unfortunately, the high cost of measurement

and communication infrastructures makes them unavailable

in most LV networks worldwide. Even when smart meters

are installed, recorded measurements are typically transferred

to data collectors in a batch way, e.g. monthly. Therefore,

these measurements can be used for estimating the models

of demand and generation, but cannot be assumed to be

available in real-time for network operation.

In this paper, we consider a measurement setting which

is deemed to be as realistic as possible. We assume that a

historical data set of load and generation at all the buses of

the LV network is available (e.g., from smart meters). This

data set is used to estimate (and update, as soon as new data

become available) the models of demand and generation in

the network. The requirement for real-time measurements

is limited to the active power P1 injected at the slack bus

and the meteorological variables useful to predict generation

from renewable energy sources. For instance, measurements

of solar irradiance I and outdoor temperature T are required

in case PV generation is present. To reduce the require-

ments for the communication infrastructure, meteorological

variables are measured at the MV/LV substation, where the

control logic is installed. This assumption is also practically

motivated by the fact that LV networks typically do not

cover large areas, and are therefore characterized by a limited

variability of meteorological variables.



In the following, the average active power P1 injected at

the slack bus between t−1 and t is decomposed in the form

P1(t) = PA(t)− PG(t) + PS(t), (17)

where PG(t) =
∑

k∈NL PG
k (t) is the aggregate gener-

ation of the network, PS(t) =
∑

s∈S rs(t − 1) is the

total active power exchanged by the ESSs, and PA(t) =∑
k∈NL PD

k (t) + PL(t) is the aggregate demand of the

network, including the losses PL(t) as a fictitious load. The

focus will be on how to predict PA and PG, and infer from

these predictions the forecasts of PD
k and PG

k for all k ∈ NL.

Then, the forecasts of QD
k and QG

k are obtained by applying

a fixed power factor, which is typically between 0.9 and 1

for loads, and almost 1 for PV generators connected to the

network through grid-tie inverters.

A. PV generation forecasting

In this paper, for the sake of simplicity, we assume that

generation in the LV network is only of PV type, as is often

the case. Therefore, PG in (17) can be seen as the aggregate

PV generation in the network, which can be described as a

function of the solar irradiance I and the outdoor temperature

T through the PVUSA model

PG(t) = a I(t) + b I2(t) + c I(t)T (t), (18)

where a > 0, b < 0 and c < 0 are the model parameters [15].

The PVUSA model is linear-in-the-parameters, and therefore

parameter estimation can be performed very efficiently via

least squares [16]. Here we assume that a, b and c were

estimated from the available historical data set of generation,

solar irradiance and outdoor temperature.

Given (18), a strategy for predicting PG consists in using

the forecasts of I and T in the equation of the PVUSA

model. Forecasting models of solar irradiance, mainly based

on time series analysis and artificial neural networks, can be

found in the literature, see, e.g., [17], [18]. Modeling and

prediction of outdoor temperature can be addressed through

the use of seasonal time series models, see [19]. Then, the

forecast of PG can be split among buses with generation

proportionally to the power installed at each bus.

B. Load forecasting

Load demand exhibits strong seasonal behavior on differ-

ent time scales. In our setting, this applies to the aggregate

demand PA in (17), and therefore seasonal time series

models can be adopted for modeling and prediction of PA,

see [19], [20]. One practical issue to be considered here is

that measurements of PA are not available in real-time, and

hence pseudo-measurements P̃A should be used in place of

PA. These can be defined from (17) as

P̃A(t) = P1(t) + P̃G(t)− PS(t), (19)

where P̃G is the pseudo-measurement of PG computed by

substituting the measured values of I and T into (18). Note

that, in (19), both P1 and PS are known: the former is

measured, while the latter is decided by the ESS control

policy at time t− 1 (see Section III).
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Fig. 1. Italian LV test network.

Once a forecast of PA is available, the problem is how

to use this value to infer the load at each bus k ∈ NL.

To this aim, we introduce ωk(τ) as the average fraction of

the aggregate demand at bus k and time τ of the day, τ =
0, 1, . . . , Nd − 1, where Nd is the number of samples per

day. The value of ωk(τ) is computed on an estimation data

set as

ωk(τ) =
1

L

L−1∑

ℓ=0

PD
k (τ + ℓNd)

PA(τ + ℓNd)
, (20)

where L is the number of days in the data set. Given

the forecast aggregate demand P̂A(t + h|t), the prediction

P̂D
k (t+ h|t) of the load at bus k ∈ NL is obtained as

P̂D
k (t+ h|t) = ωk

(
(t+ h)modNd

)
P̂A(t+ h|t), (21)

where mod is the modulo operation. This is, for instance, the

method actually used by the main Italian DSO for monitoring

LV networks. In practice, it is also possible to make the

fraction ωk(τ) depend on the day of the week in order to

take into account different patterns of the aggregate demand,

e.g., in weekdays and weekends. Notice that
∑

k∈NL ωk(τ)
does not sum up to 1, in general, due to the fraction of active

power dissipated in the lines.

V. NUMERICAL RESULTS

The proposed ESS control algorithm has been tested on

real data from a real LV network, whose topology was

provided by the main Italian DSO. The test network, shown

in Fig. 1, consists of n = 17 buses, hosting 26 loads and

4 PV units. For all buses k ∈ NL, in accordance with

the European Norm 50160, a 10% tolerance around the

nominal voltage value is allowed in both directions, i.e.

vk = 0.9 pu and vk = 1.1 pu in (3). Bounds P ij on the

real power flow in (4) are all set to 20 kW. For all loads

and generators, three months of active and reactive power

profiles are available with time step of 15 minutes, therefore

we assume ∆T = 900 s and Nd = 96. Measurements of



solar irradiance and outdoor temperature are also available

with the same resolution.

Two ESSs are assumed to be installed in the network. ESS

locations and sizes are decided according to the procedure

described in [6]. In particular, the ESSs are placed at buses 7

and 11, with capacities equal to E7 = 15 kWh and E11 =
55 kWh, respectively. Active ramp limits in (7a) are chosen

such that Rs = −Rs = 15 kW, and the bounds Bs and Bs

in (7b) are set to keep the phase angle shift between -10

and +10 deg. Moreover, ESS levels lower then 30% of their

nominal capacity are penalized, i.e. D7 = D11 = 0.7 in (8).

The weights in the total cost (12) are set to γU = 0.1
and γD = 0.25 kWh, whereas the control horizon of

problem (16) is chosen to be H = 8 samples, corresponding

to 2 hours.

A. Performance of ESS control

First, the historical data sets of load and generation are

used to estimate the load fractions ωk(τ) in (21) and the

parameters of the PVUSA model (18), as well as of the time

series models of aggregate load, solar irradiance and outdoor

temperature, as described in Section IV.

Second, the control algorithm described in Section III

is tested on two challenging days featuring overvoltages

(day-1) and undervoltages (day-2) when no voltage control

is applied. At each time step t = 0, 1, 2, . . . , Nd−1, demand

and generation in the network are predicted for lead times h
ranging from one sample (15 min ahead) to eight samples

(2 hours ahead). Figure 2 shows an example of aggregate

demand (top), solar irradiance (middle) and outdoor temper-

ature (bottom) forecasts. Then, an SDP relaxation of problem

(16) is solved using the SeDuMi solver [21]. The actual effect

of the control inputs r∗s (t) and b∗s(t) is simulated through a

load flow at time t+1 under the true demand and generation.

In order to evaluate the benefits of using the ESSs to tackle

voltage problems, we define the total voltage violation at bus

k over the considered time horizon as

νk =
1

Nd

Nd−1∑

t=0

[vk − |Vk(t)|]
+ + [|Vk(t)| − vk]

+, (22)

where [x]+ = max(x, 0). Let νNk be (22) evaluated in the

case without ESSs, and νCk in the case with ESSs. We then

define the performance index

η =

(
1−

∑
k∈NL νCk∑
k∈NL νNk

)
· 100%. (23)

Assuming that the denominator of (23) is greater than zero

(i.e., at least one violation of the voltage bounds occurs

anywhere in the network over the considered time horizon),

η quantifies how much the ESSs succeed in preventing the

voltage problems. It turns out that η = 100% for day-1, i.e.

all voltages are kept within the bounds thanks to the use of

ESSs, whereas η = 98.2% for day-2, meaning that voltage

violations are almost completely avoided or mitigated. This

can be observed in Fig. 3 (top), showing the plots of voltage

magnitudes at all the buses of the network in the cases with
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Fig. 2. Examples of forecasts of aggregate demand (top), solar irradiance
(middle) and outdoor temperature (bottom) at time 12:00AM of day-1 with
prediction horizon of H = 8 samples (2 hours): actual (black dashed lines)
and predicted profiles (blue solid lines).

and without ESSs. From Fig. 3 (bottom), it can be also

observed that the ESS control manages to counteract voltage

problems while also reducing total line losses of more than

40% in both days. In particular, most of the reduction is

achieved during peak hours of PV generation.

Finally, Fig. 4 shows the plots of storage levels and active

power injected into the ESSs for both test days. It can be

noticed that the optimal control policy obtains to operate the

ESSs as little as possible. Indeed, the active power injected

into the ESSs is kept equal to zero for most of the time, thus

contributing to prolong battery life.

VI. CONCLUSIONS

This paper addressed the problem of controlling ESSs in

an LV electricity grid for preventing over- and undervoltages.

The proposed control algorithm borrows ideas from the clas-

sical receding horizon control approach. At each time step

a multi-period OPF problem is solved with the objective of

minimizing line losses and storage usage, while maintaining

the voltage magnitude at all buses within the specified limits.

Only the power exchanged with the MV network and some

meteorological variables are monitored in order to predict

the future state of the network and any potential voltage

rise/drop. The application to a data set from a real Italian

LV network shows the potential of the proposed approach to

enhance the voltage quality at customers’ premises.
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