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Abstract— The growing level of autonomy of unmanned space the coordination of multiple spacecraft does indeed regoir
missions has attracted a significant amount of research in track the (relative) true longitude, the techniques dgwetb
the aerospace field towards feedback orbit control. Existig to this purpose often rely on linearization assumptiong, [15

Lyapunov-based controllers can be used to to transfer a spae . . e
craft between two elliptic orbits of given size and orientaton, [16], [17], [18]. Therefore, their applicability is limiteto

but do not consider the stabilization of the spacecraft phas Spacecraft separated by a very short distance.
angle along the orbit, which is a key requirement for applicdion A unified approach has been presented in [19]. By using
to formation flying missions. This paper presents a controlaw  hackstepping and forwarding techniques (see, e.g., [28]),
Rgiﬁdaoni\ﬁgﬁ (t)rrl?ét?l)ﬁleitnl]ggt ﬁgra;“?;graetr'%g' Wr?éﬁ'; I:ma?leejto authors derived a passivity-based controller able to teack
additiongto the paramegt]ers describing the refergnce orbit%apne given true longitude, n a_ddltlon to f|ye modified equ_lnobtl_a
and orientation. A numerical simulation of an orbital rendez- ~ Orbital elements describing the orbit shape and oriertatio
vous demonstrates the effectiveness of the proposed appaoba  Nevertheless, the obtained results are limited to the chse o
perfectly circular reference orbits, which leaves out many
scenarios of theoretical and practical interest. It is kmow
for instance, that low altitude orbits cannot have zero ecce
A fundamental research topic in astrodynamics deals WiWicity, due to the asymmetry of the Earth’s gravity field.
tranSferring a Spacecraft between two elllptIC orbits.totis In this paper, a nonlinear control law is proposed which
ically, this problem has been tackled by using optimizatiogsymptotically stabilizes the six modified equinoctial-ele
techniques [1], [2], [3], [4], or feedback stabilizationtheds ments, including the true longitude, of any closed orbite Th
[5], [6], [7], [8]. In the former approach, no closed-formse|ution is arrived at by using a design procedure inspired
SO|uti0n iS a.Vaila.bIe in general a.nd a tWO—pOint boundarhy backstepping and damp|ng control techniques_ The Simp|e
value problem is solved numerically to get the optimal openstrycture of the controller makes it suitable for a number of
loop thrusting profile. The related computations are lepgthspace missions involving orbit reconfiguration and foroati
thus making this approach not suitable for applicationfiying maneuvers. A numerical simulation of a rendez-vous
requiring on-line computation of the control signals, sash maneuver is performed to illustrate the proposed approach,
formation flying or rendez-vous. Existing Lyapunov-base@ng to validate the obtained theoretical results.
stabilization methOdS, on the other ha.nd, pI‘OVide Simp|e The paper is Organized as follows. In Section ||’ a brief
feedback controllers, but usually do not consider the fEans jntroduction to the orbital element parametrization isegiv
time and the injection point on the final orbit. and the considered orbit control problem is formulated.
Most of the literature available on the orbit Stab”izationSection 11l is devoted to the design of the Controner, which
problem describes the trajectory of an orbiting body either s demonstrated by the numerical simulation in Section IV.

terms of cartesian position and velocity or by an equivalerdome concluding remarks are outlined in Section V.
set of variables introduced by Kepler, known as the orbital

elements. The latter parametrization is useful becausapit ¢ Notation

tures the constants of the orbital motion. References 3], [ The notation is fairly standardk™ is the realn—space;
[8] developed nonlinear orbital element feedback schemegr a real vector or matrix, v” denotes its transpose. To
based on the Jurdjevic-Quinn conditions [9]. Similar resul save space;os(-), sin(-) are abbreviated with(e) and §-),
have been derived in [6], by using the cartesian coordinatgspectively. Moreover,

representation of the orbital elements. Such techniques ha

proven to be effective in low-thrust applications [10], [11 R(¢) = [ c(¢) —s(o) ]

[12], but do not address the stabilization of the spacecraft s(¢)  c(®)

phase angle along the orbit. This angle is often referred {8 the counter-clockwise rotation operator by an anglia

I. INTRODUCTION

as the true longitude. RR2. The continuous time index is denotedtas R .
Motivated by the increasing number of distributed space
missions, the orbit control problem is also widely discasse Il. PROBLEM FORMULATION

in the formation flying literature. The interested reader is Classical orbital elements are commonly used as a
referred to [13], [14] for a survey on recent results. Whilgyarametrization of the positione R* and velocityr € R?

The authors are with the Dipartimento di Ingegneria deitmazione .Of .arlj] Or?n::g tE)Oc;jy, Sm.ce thiy prov[de a Clea.r phyS|caI
e Scienze Matematiche, Universita di Siena, Siena, Ita#mai: NSIGNt of the body motion. T € semi-major axis > 0.
{leomanni,giannibi,garulli,giannitrapgr@dii.unisi.it. and eccentricitye € [0, 1] define the shape of the orbit.



The inclinationi € [0, 7], longitude of the ascending node

Q2 € [0,27] and argument of perigee € [0, 2x] define the b= f(@) + g(¥)u, )
orientation of the orbital plane with respect to a given fiagr

right-handed reference frame centered at the central boghhere the vector fieldg (v) andg(v) are given by

(e.g., the Earth). The true anomalyt) € [0, 27| defines the .
instantaneous angle at which the spacecraft is locatetiveela _ o 2

to the perigee position, as illustrated in Fig. 1. F@w) = { \/175’(1 +ox)7 00000 } G
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Fig. 1. Orbital elements. qx = Y3+ (2+ CX) c(t1)
Qv = Ya+ (2+Cx)3(w1)
It is well known thatw is indeterminate for circular orbits
. L X . n = 5 S(1) — e (1)
(i.e., whene = 0) and Q2 is indeterminate for equatorial 5
h* = ¢5 + 7/)67

orbits (i.e., wheni = 0). These singularities can be avoided
by adopting a different parameterization of the orbit usin

the modified equinoctial elements— [ ... v]7, defined %nd i is the gravitational parameter of the central body.

Notice that(y does not affect the system dynamics.

as [21] The control objective is to track the reference trajectory
vy = L = Q4w+v specified by the orbital elements
Yo = p = a(l—¢€?)
1/13 = ex = e - C(Q—i—w) (1) ¢T(t) - Wf(t)vw;albngszgalbg]Ta
= e = e - S(+w
ii _ hi _ tan(g/Q) c(f)l) which are the solution to equation (2) with= 0, i.e.,

In this parameterization/. is the true longitude shown
in Fig. 1, p is the orbit semi-parametee,y, ey are the corresponding to the given initial condition
components of the eccentricity vector, ahg, hy are the

components of the inclination vector. Notice that any abse Pr(0) = [L7(0), p", €, ey,

Keplerian orbit is such that, = p > 0. Moreover, the ~ .
P by = p Let » = ¢ — )" denote the tracking error. Then, the error

escape to parabolic orbits (i.ee, = 1) is not possible . : dind to the i . ‘
with continuous feedback [22], which is the case considereqyn‘am'CS evolves according to the time-varying system

in this paper. Therefore, in the following we restrict our

Y, Wyt e v,

attention to the case < 1. Hence, the state vectar must Y=L g+ 9, (©)
belong to the set where f(¢; ") = f(¢ + ") — f(4"). The orbit control
U={peRS: ¢n>0, 2492 <1}, problem considered in this paper can be formulated as

follows.

The dynamics of the orbital elements in (1), in the Problem 1. Find a continuous state feedback control law
presence of forcing inputs, are described by Gauss's vaii- = u(¢;4") such that the error system (6) is globally
ational equations. Let us introduce the control input vectaasymptotically stable, which in turn guarantees that
u = [ug u, up]’, whereug, u,, andu;, denote the along-
track, radial and cross-track components of the accelera- tlggo 1/)( ) =
tion, respectively. The resulting dynamics can be expresse
as [23]: for any initial condition(0), " (0) € ¥



IIl. CONTROL SYSTEM DESIGN

In order to derive a solution to Problem 1, we firs

introduce a diffeomorphic coordinate transformation=
x(v;9") in system (6), defined as follows

1 =1 (7)
o = “ + z—z -1 (8)
¥y
|:$3 :|: 1l~)2+111§ O¢r R(’l/ll—f—’l/il)[ 1/}3+1/}3:| (9)
Xrq /m ’L/J
o r
- ; T
R ] [CQ}
x5 = 15 (10)
T = 12}61 (11)
where

(] men] )

Note that, by virtue of the properties of the considered

{oroblem, all F5; and G;; are positive functions ofy and

", except forFs33 and Fy3. The vectorH (z;¢") in (12)
can be computed as
Ox
H(x;y" = + 13
(z;9") = awgh(w Y, (13)

wheregy, () denotes the third column af(-) in (4), and the
right hand side of (13) can be expressed in termg @id
" by inverting the coordinate transformation (7)-(11). The
expression oﬁx/ai) is reported in Appendix (a).

The structure of system (12) allows one to tackle the
control design problem in a two-step procedure.

Sepl
In the first step, we assumeg, = 0 and derive a feedback
stabilizer for the fourth order subsystem
. r r ug
x=F(><;w)+G(><;w)[ur} (14)
using the inputsug and w,.. The stabilization of the full

system will be addressed afterwards, using the input
For system (14), let us first introduce the following non-

A similar transformation is used in [19] for the case ofSingular transformation in the input variables

circular reference orbits (i.e¢y, = ¢} = 0). System (6)
in the new coordinate set has the form

— {FE));;ZW)] + {G(());,:ﬁr)} [ur] + H(z;9") up,

(12)
wherey = [z ...24]T and
[0 Fip Fi3 0
0 O 0 0
Fotd =10 0 —my —my X
| 0 Fio Fio+Fy3 0
[0 0
oy | G210
G(X,?/} ) - 0 0 )
| 0 Ga

being

Fip = 1/_1:3 (23 +14C%)°
V5

_ H r

Fi3 = ?(9634—2-1-24)()
(O

F42 = %(xg—i—Z) (CC3+1+C;()3
(2

F33 = Fi3(y

Fy3 = Fi3(x
vy 1

Gop = ()22~

2 po(xs+14+C%)
Gao = (|2

1

Uy = : (1) — F12k1x1) (15)
1

Uy = G (U) F43£C3) (16)
42

wherev and w are the new input variables arid is any
given positive constant, to be treated as a design parameter
Hence, system (14) becomes

71 = Frowe + Fizws 17)
Ty = —Fiokiz1 +v (18)
T3 = —F33203 — Floxy (19)
T4 = Fyoxo + Fioxs + w. (20)
Let 1
7} = v (Fiskiky'zy — Fyzas + A3) (21)

where ks > 0 is constant and\s(x1, z2, 23) iS any given
continuous function such that sga) = sgr(z3). Similarly

to backstepping control design, we usgas a virtual input

for system (17)-(19), and consider the transformed state
vector

[t1 z2 23 (x4 —23)]7.  (22)

In the new coordinates, equations (17)-(20) read

z=|z1 22 23 24]T =

21 = Flozo + Fizzs (23)

2’2 = —Flgklzl +v (24)

23 = —Flgklkglzl — F1224 — )\3 (25)

24 = F4222 + F1223 +w — IZ (26)
Consider the Lyapunov function candidate
kl L2 1 .2 kz L2 ko 2



The time derivative of (27), along the trajectories of (23)whered is a given positive scalar continuous function,

26), reads
(20) WValwvr) _ [OVilzvr)
V1 (Z, ﬂJT) = (U+F42k224)22 — kQAng + (’LU—SCZ)]{ZQZ4 8:0 aX ° 61>
(28)

In order to rendet; in (28) negative semidefinite, we makeand Fhe expression Qﬁvl(.Z; wr)/0x 1S reportegl n Ap-_
. X . pendix (b). With this particular choice, (37) is negative
the following choice for the inputs andw

semidefinite and vanishes if and onlyzf = 23 = 24 = 0
and u;, = 0. Then, according to the previous analysis,
lim; ,~ x(t) = 0. Using this fact and observing that and

zg are constant for, = 0, it can be verified from (13), (34)
where \2(z) and \4(z) are continuous functions such thatand (38)-(39) that the largest invariant set in which= 0
sgn\2) = sgnzz) and sgii\y) = sgn(zs), respectively. is the trivial onex = 0. Hence, the proposed control law
With this particular choice, (28) boils down to renders the equilibrium point of the full system (34) gldpal
asymptotically stable with the Lyapunov function (36).

Summarizing, the feedback control law definedugyand
u, given by (32)-(33), combined with;, as in (38), is a
solution to Problem 1.

Remark 1: The proposed method for the solution of Prob-
lem 1 actually provides the parameterization of a class
of stabilizing controllers via the tunable design paramsete
k1, k2, A2, X3, \x and d. It can be foreseen that such
parameters can be exploited to enforce further control-spec
ifications or to optimize suitable performance indices. One
such specification concerns the magnitude of the controls
in (32), (33) and (38). For circular reference orbits, ifer,
ﬁ F33 = Fy3 = 0, it turns out that the magnitude of the control
Go1 inputs can be made arbitrarily small locally by scaling the
A (33) tuning parameters of the controller. This is not guaranteed
G’ however, for eccentric reference orbits, since in this ¢ase
term (Fysx3 — @) in (33) requires the exact cancellation of
a part of the system dynamics (without further assumptions
on A2, A3 and \4). A systematic method for exploiting the

Sep 2
The stabilization of the full system can be tackled bydeS|gn parameters for performance is out of the scope of the

introducing the previously derived control inputs, w,. in present paper and is the subject of current investigation.
1 T

(12) and rewriting the resulting dynamics as

(39)

(29)
(30)

v = —Fyokozy — Ao

w = .%"Z—/\4,

Vi(z) = —Xaz — kodszs — kadaza (31)

which is indeed negative semidefinite. Clearly, (31) va@sésh
inthe sef{z : zo = 23 = 24 = 0}. Notice from (23) that; is
constant in this set. Moreover, it follows from (24)-(25ath
%9 # 0 and z3 # 0 for z; # 0. Hence, the largest invariant
set in whichV; = 0 is 2z = 0. Sincey = 0 for z = 0, one
can conclude that the equilibrium poigt = 0 is globally
asymptotically stabilized by the proposed control law.

The final expression of the control inputg and u,. is
obtained from (15)-(16), (22) and (29)-(30) as

1 X
ug (X; wr):—: [Frokiz1+ Faoko(xza—a))] —

1 .
UT(XH/)T):—G—42 (Faz w3z — a) —

with z} given by (21).

(32)

IV. NUMERICAL SIMULATION
Consider the problem of transferring a spacecraft from

i = [Fcl(x; W)] + H(z;0") un (34)
O2x1 ’ ’ a near-circular equatorial orbit to an higher altitudepid
where orbit, with a prescribed longitude (i.e. phase) along thalfin
orbit. This problem may occur, for instance, in formation
Falx:v") = FOs ") + GO y™) {UG(XW:)] . (35) flying applications, in which an actively controlled chaser
ur(X;97) spacecraft is required to intercept a passive target spatec

Given the structure of (34), it turns out that the origin offhe orbital elements of the initial and the reference ortat a

the full system can be globally stabilized via a damping‘jeported in Table I. The reference ecce_nfcricity and intiora
controller, as explained next. Consider the Lyapunov fionct Vectors correspond to a target eccentricity of 0.5 and atarg
) ) inclination of 35 deg.
Va(z;9") = Vi(z;9") + §I§ + 517%7
. . . o TABLE |

wherez is defined by (22). The time derivative of (36), along o

. . . RBITAL ELEMENTS OF THE INITIAL AND THE REFERENCE ORBIT
the trajectories of (34), can be written as

(36)

V- (:v 1/1T) Orbital element | Initial orbit Reference orbit
Vo(z;9") = Vi(z) + 277H(.T; V) up, (37) True longitude L(0)=244rad |L7(0)= 3.92 rad
O Semi-parameter p(0) = 6778 km p" = 19800 km
- . . _ . —4 T
whereV;(z) is given by (31). Eccentricity vector ex(0) =9.4-10 ¢x = —0.13
ey (0) =34-10"% | el =0.48
Let oV hx(0) =0 % = 0.30
" . = % =0.
un(z;9") = —d 2(771/’) H(x;47), (38) Inclination vector hy (0) = 0 WL = 0.08

ox
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Fig. 2. Orbital transfer trajectory. Fig. 4. Control input signals.

ot synchronization of the phase of the orbiting body along
02 (\/\ | a reference orbit. The stability of the closed loop system

' has been proved by standard Lyapunov arguments, and the
0.4 1 applicability of the proposed controller has been illutsda
06 by numerical simulation of a spacecraft rendez-vous maneu-

g ver. Several performance-related aspects still remaineto b

-08 1 investigated. Future work should be tailored to the evidnat

-1 1 of the controller performance with respect to metrics sueh a
ol the settling time, the fuel consumption and the magnitude of

' the control inputs.
1.4

APPENDIX

'1'60 05 1 15 5 25 The following expressions are used in the paper.

(a) The Jacobian of the coordinate transformation (7);(11)

Time (s) %x10° . T . . .
with respect to the original coordinates in (13) is
Fig. 3. True longitude tracking error. given by
roo1 0 0 0 O1x27
A numerical simulation relying on the dynamic model (6) 0 W 0 0 O1x2
has been performed to demonstrate the application of thg,. o o o o
proposed approach to the considered rendez-vous problerg; = oy~ Cx) gc(vn)  Estn) O |
and to validate the obtained theoretical results. To enaure - -
o _yr " "
fast convergence towards the reference orbit, the follgwin V7 Cx zng/f;w(y Vowa SW) —y/ 5o cd) O
tuning parameters have been empirically selected for the | o,,, 021 021 O2x1 Toxs |

nonlinear controllerk; = 107°, ko = 1074, Ay = 1074 25,
A3 =T- 10~4 z3, M =7~ 10~ za, andd = 10—,
The resulting trajectory is depicted in Fig. 4, in terms of

(b) The gradien®V; /0y of the Lyapunov functiorV; in
(39) is given by

cartesian coordinates. As expected, the asymptotic trgcki —k1Z1 B Ekl - ﬁ%a
of the reference trajectory is achieved. In Fig. 3, it can be Fiq Fi9 02
seen that the true IongltUQe tracking error is steered to zer Vi (z: zpr)T zo — _2_324
after a short initial transient, so that the correct phase is TX = Fip 0z )
acquired along the reference orbit. The control input dgina kozs + vkazy — ﬁ%a
are reported for completeness in Fig. 4. L Fiz 0z3

L 224 .

V. CONCLUSIONS

This paper has studied the trajectory tracking problem for
the class of reference trajectories consisting of unpeetdir v = o KT— ‘/\/F%S) %21 + Fi3 (\/%23—1)—7'@23}
closed orbits about a central body. A feedback control law 12
has been derived for this problem, which allows for the — and[z zz 23 24

where

T

T=[z; 23 23 (w4 — 2%
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