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Abstract— This paper addresses the problem of optimal
placement and sizing of distributed energy storage devices
in a low voltage network. The objective is to find the con-
figuration which minimizes the total cost of storage devices,
which depends both on the number of storage devices and on
their size. The optimal power flow framework is adopted for
formulating the overall optimization problem. Since the exact
problem turns out to be intractable in realistic applications,
we adopt a semidefinite programming relaxation for the power
flow constraints and different heuristics for circumventing the
combinatorial problem of selecting the most appropriate buses
where to allocate the storage devices. The overall procedure is
tested on a real application involving a portion of an Italian
low voltage network.

I. INTRODUCTION

Energy storage systems (ESS) have been recognized since

several years as an instrumental tool in modernizing elec-

tricity grids in view of the numerous benefits they bring,

such as stable and robust operation of the network, increased

penetration of renewables, reduction of emissions (see [1],

[2] for general surveys). Most of the recent papers dealing

with optimal allocation and sizing of ESS in the network

tackle the problem as the optimization of a cost function,

subject to the non convex power flow constraints (see [3],

[4] and references therein). Since the resulting problem is

NP hard, three classes of approaches have been developed

to reduce its complexity.

The first one adopts the linearized DC power flow (DC

OPF), which is an approximation of the true power flow,

especially useful when dealing with high voltage networks

[4], [5], [6]. Contributions within the second class consider

the full AC power flow (AC OPF) and look for appropriate

convex relaxations of the non convex exact problem to

circumvent the NP hardness issue [3], [7], [8], [9]. The

main advantage of these approaches consists in an acceptable

computational burden when dealing with scenarios of interest

in real applications, in spite of the fact that the storage

dynamics correlates the OPF problems at each time instant

of the considered horizon. The third class of approaches

formulate the optimal placement and operation of ESS by

adopting the full AC OPF, either in a deterministic or

stochastic setting, and propose procedures for the solution

of the NP hard problem based on genetic or particle swarm

optimization algorithms [10], [11]. These approaches provide

good quantitative results for specific problems, while they
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can incur prohibitive computational burden in more general

realistic applications.

In this paper, we deal with the problem of optimal place-

ment and sizing of ESS in a Low Voltage (LV) network.

The structure of LV networks makes DC OPF approaches

not appropriate for tackling the problem. On the other hand,

the typical high number of nodes involved in a LV network

would make unfeasible the application of techniques based

on the full non convex AC OPF. For this reason, our

contribution falls in the second class of approaches described

above. One peculiarity of the proposed approach is to look

for the ESS configuration which minimizes the overall cost,

which depends both on the number of devices to be installed

and on their sizes. In doing this, we optimize the operation of

the ESS by minimizing a cost function which also accounts

for the cost of line losses. Since the exact problem translates

to a mixed integer nonlinear programming problem, which

is clearly intractable for realistic applications, we devise a

heuristic strategy for facing the combinatorial nature of the

problem, while using convex relaxations based on semidefi-

nite programming for approximating the exact OPF problem.

The devised algorithm is applied to a real example involving

a portion of an Italian LV network.

The paper is organized as follows. Section II introduces

the network model. In Section III we formulate the con-

sidered placement and sizing problem, and describe the

proposed heuristic approach to cope with the computational

complexity of the optimization problem. Section IV reports

experimental results on a real LV network, while conclusions

are drawn in Section V.

II. NETWORK MODEL

We consider LV distribution networks with radial layout,

which is the most common situation in LV public distribution

systems of many countries worldwide. The corresponding

network model is described in this section, including equa-

tions and constraints characterizing loads, distributed gener-

ators and storage units connected to the network.

A. Network equations and constraints

Consider a radial LV network described by a tree (N , E),
where N = {1, 2, . . . , n} is the set of nodes (buses) and

E is the set of edges (lines). The admittance-to-ground at

bus i is denoted by yii, while the line admittance between

nodes i and j is denoted by yij . Obviously, yij = yji. If

(i, j) /∈ E , i.e. buses i and j are not connected by a line,

yij = 0. The network admittance matrix Y = [Yij ] ∈ C
n×n



is a symmetric matrix defined as

Yij =

{

yii +
∑

h 6=i yih if i = j

−yij otherwise.
(1)

Consider discrete time steps denoted by t = 1, 2, . . . . The

complex voltage and current injection at bus k and time t are

denoted by Vk(t) and Ik(t), respectively. Moreover, Sk(t) =
Pk(t) + Qk(t) denotes the complex power injection at bus

k and time t, where  is the unit imaginary number, and

Pk(t) and Qk(t) are the active and reactive power injections,

respectively. The power balance equation at bus k reads as

Sk(t) = Vk(t)I
∗
k(t) = Vk(t)

n
∑

j=1

V ∗
j (t)Y

∗
kj , (2)

where (·)∗ denotes the complex conjugate operator, and

Ik(t) =
∑n

j=1 YkjVj(t).
Bus 1 is assumed to be the slack bus, representing the

interconnection with the MV network. The slack bus is

characterized by fixed voltage magnitude and phase. Voltage

magnitude and phase at all other buses in the set NL =
{2, . . . , n} are determined by the network. For k ∈ NL,

voltage quality requirements impose the voltage magnitude

to remain within specified limits, i.e.

vk ≤ |Vk(t)|
2 ≤ vk, (3)

where vk < vk are given bounds.

B. Loads, distributed generators and storage units

The active and reactive power demand at bus k and time t
are denoted by PD

k (t) and QD
k (t), respectively. Similarly,

the active and reactive power generation at bus k and time t
are denoted by PG

k (t) and QG
k (t). The set of buses having

generation is denoted by G ⊆ NL. A storage unit can be

also connected to a bus k ∈ NL. Let ek(t) be the energy

level of the storage device placed at bus k and time t. The

storage level dynamics is modelled by the following first-

order difference equation:

ek(t+ 1) = ek(t) + rk(t)∆t, (4)

where rk(t) is the average active power pumped into the

storage unit at time t, and ∆t is the time step. Note that

rk(t) can take both positive and negative values (charging

and discharging, respectively). The initial condition for the

storage level is assumed to be known:

ek(1) = e1k. (5)

Moreover, both rk(t) and ek(t) are bounded as follows:

Rk ≤ rk(t) ≤ Rk (6)

0 ≤ ek(t) ≤ Ek, (7)

where Rk < 0 and Rk > 0 are the ramp rate limits, and Ek

is the storage capacity installed at bus k. Similarly to (6),

bounds Bk < Bk can be imposed on the average reactive

power bk(t) exchanged by the storage unit:

Bk ≤ bk(t) ≤ Bk. (8)

The set of buses having storage is denoted by S ⊆ NL.

For a bus k having loads, generators and storage units

connected to it, the active and reactive power Pk(t) and

Qk(t), corresponding to the real and imaginary parts of (2),

respectively, have the following general expressions:

Pk(t) = PG
k (t)− PD

k (t)− rk(t) (9)

Qk(t) = QG
k (t)−QD

k (t)− bk(t). (10)

For k ∈ NL\G, PG
k (t) = QG

k (t) = 0, while for k ∈ NL\S ,

rk(t) = bk(t) = 0. For the slack bus, it is assumed that

PD
1 (t) = QD

1 (t) = r1(t) = b1(t) = 0, (11)

while PG
1 (t) and QG

1 (t) are determined by the active and re-

active power balance in the network. In general, for k ∈ NL,

the quantities PD
k (t), QD

k (t), PG
k (t) and QG

k (t) are assumed

to be independent of the network state, and considered as

exogenous inputs to the power flow problem. Recall that

generators in LV networks are mostly of photovoltaic (PV)

and micro-wind type. These small generators are typically

connected to the network through grid-tie inverters. High-

quality modern grid-tie inverters feature a fixed power factor

close to 1, so that QG
k (t) ≃ 0. This justifies the fact that,

except for the slack bus, buses with generation are treated in

this paper as load buses1.

III. PROBLEM FORMULATION AND SOLUTION

STRATEGIES

A comprehensive analysis for planning the deployment

of distributed storage systems in the grid should consider

simultaneously the optimal number, placement and size of

ESS units in the distribution network. In order to reduce the

complexity of the problem to be tackled, the analysis can be

accomplished through two nested loops. In the inner loop,

for a given ESS location, the size of each storage unit is

computed by solving an OPF problem. In the outer loop, the

optimal number and placement of storage devices is derived

by taking into account the network topology, as well as the

relative weight of their fixed and variable costs.

A. Storage sizing

Assume that the set S is given, i.e. the number and

location of ESS units in the network have been decided.

The idea is that, in the planning phase, one looks for the

minimum total storage capacity allowing one to satisfy the

voltage constraints (3) over a time horizon T = {1, . . . , T}.

Optimization variables in this problem are the storage ca-

pacity Ek and the real and reactive power rk(t) and bk(t)
exchanged by each storage unit. Conversely, demand and

generation profiles are assumed to be known.

In order to take into account line losses, which are of

primary interest in distribution networks, we consider the

cost function

J(CS , CL) = γCS + (1− γ)CL, (12)

1In the power flow literature, generator buses would be typically char-
acterized by the fact that generated active power and voltage magnitude
are prespecified, while generated reactive power and voltage phase are
determined by the network state.



where CS =
∑

k∈S Ek is the total installed storage capacity,

CL =
∑

t∈T

∑

k∈N Pk(t) represents the total line losses and

γ ∈ [0, 1]. Hence, the storage sizing problem can be casts

a:

min
P1(t),Q1(t),Vk(t),rk(t),bk(t),Ek

J(CS , CL) (13)

s. t. (3) − (11), k ∈ NL, t ∈ T .

Problem (13) is non convex, and therefore difficult to

solve. A standard way to proceed is to compute an ap-

proximated solution through convex relaxations based on

semidefinite programming (see, e.g., [12]).

B. Storage placement

In this section, we propose a procedure for finding the

“best” allocation of a given number of storage devices

in a radial distribution network, based on clustering and

sensitivity analysis (CSA). The underlying idea consists in

splitting the network into nc independent subnetworks and

then, if needed, finding the most appropriate bus within each

cluster in which to deploy an ESS. The proposed placement

algorithm can be summarized in the following three steps.

CSA algorithm

1) Network clustering. The objective is to partition the

original network Υ = (N , E) into nc disjoint sub-

networks Υi = (Ni, Ei), i = 1, . . . , nc, where Ei ⊆
E ,

⋃

Ni = N and Ni ∩ Nj = ∅, if i 6= j. To

this aim, one of the many available graph partitioning

algorithms can be used. In this work we adopt a spectral

method for graph clustering, which minimizes the sum

of the weights associated to each broken line [13]. The

clustering algorithm is run on an auxiliary weighted

graph Υ̃ = (Ñ , Ẽ), consisting of a complete graph

built over the same node set of Υ, i.e. Ñ = N and

Ẽ = N × N . In order to associate a weight to each

edge (h, k) ∈ Ẽ , we introduce the sensitivity matrix

Ψ ∈ Rn×n whose entries are defined as

Ψhk = ∂|Vk|/∂Ph, h, k ∈ N . (14)

The value Ψhk is a measure of how much the voltage

at bus k is sensitive to injection of active power at

bus h. The rationale behind this choice is that the

graph partitioning algorithm will tend to group together

buses which are tightly coupled, while edges connecting

nodes with low effect of power injection on voltage

variation are likely to be removed. The outcome of the

clustering algorithm is a partition Ni, i = 1, . . . , nc, of

the node set N , from which the desired subnetworks

Υi = (Ni, Ei) can be constructed by taking as edge set

Ei ⊆ E all the pairs (hi, ki) ∈ E such that both hi ∈ Ni

and ki ∈ Ni.

2) Candidate buses. For each subnetwork Υi, i =
1, . . . , nc, a set Ωi of candidate buses is identified

including all the buses where ESS can be allocated.

Empirical evidence shows that when only under-voltage

problems are present in a passive radial network, the

buses featuring the maximum sensitivity are the leaf

nodes. This is in agreement with the intuition that in

a passive network, the best placement for a storage

device is at the end of the distribution lines, where

larger voltage drops are experienced. Similarly, when

only over-voltage problems have to be compensated for,

e.g., due to the presence of renewable generators in the

network, the most effective ESS placement strategy is

to install the storage devices directly on the same buses

as the generators. In this sense, leaf nodes and generator

nodes can be regarded as critical nodes. However, when

both kinds of contingencies occur and/or only a small

number of ESS can be deployed, a trade-off has to be

found. From the above observations, we introduce the

following definition. A node is a candidate bus if either

it is a critical node or it lies on the path connecting

a pair of critical nodes. Formally, let Li ⊆ Ni be the

set of nodes in subnetwork Υi which are leaf nodes

in the original network Υ. Let Gi ⊆ Ni be the set of

renewable generator nodes in subnetwork Υi. Then, the

set of candidate buses for the i-th subnetwork is

Ωi = Li ∪Gi ∪{ki : ∃li ∈ Li, ∃gi ∈ Gi, ki ∈ Π(li, gi)},

where Π(li, gi) denotes the path connecting nodes li and

gi in Υi. Notice that, there may exist pairs of critical

nodes which are not connected by a path completely

contained in Υi, since the resulting subnetworks may

have more than one connected component. Moreover,

the set Ωi can be empty, if Υi does not contain any

critical node.

3) Bus selection. For each subnetwork Υi, i = 1, . . . , nc,

such that Ωi 6= ∅, a criterion to select the best

node among all candidate buses needs be defined. The

sensitivity matrix (14) comes in handy once more,

by suggesting several alternative options. For instance,

adopting a worst-case approach, one may want to max-

imize the minimum effect that a power injection at

a given node has on the voltage of all other buses

belonging to the same subnetwork, in order to increase

the controllability of the voltage in the system. This

amounts to place the ESS for subnetwork Υi at the

node

k∗i = argmax
ki∈Ωi

min
hi∈Ni\{ki}

Ψhiki
. (15)

The above procedure aims at covering the whole network,

i.e., implicitly assumes that under- or over-voltage problems

may occur at any bus. This is not typically the case, since

in actual networks some buses are more prone than others

to voltage fluctuations, depending on the network topology

and the load profiles. Of course, if any of the subnetworks

resulting from the clustering phase should not contain any

node affected by voltage problems, that cluster can be safely

left without ESS, thus skipping steps 2 and 3 in the above

procedure. This observation, together with the fact that

some Ωi can be empty due to the lack of critical nodes

in the corresponding subnetwork, leads to the conclusion

that the final number of ESS ns selected at the end of the



CSA algorithm is not larger than the number of clusters nc,

i.e. in general ns ≤ nc (usually, strictly smaller).

The clustering algorithm takes the parameter nc as input.

In view of the previous discussion, this can be seen as

an upper bound on the final number of ESS that will be

deployed in the network. As such, nc must be selected by

trading-off fixed and variable costs of ESS deployment. A

small number of devices results in smaller installation and

maintenance costs, but typically requires a larger total energy

capacity to be installed in order to face all possible network

contingencies with fewer storage systems. In this respect,

a possible tuning strategy for the number of clusters is to

repeat the CSA algorithm for increasing values of nc, find

the optimal size of each device by solving problem (13) and

then evaluating the corresponding total deployment cost as

CT (nc) = cfns + cvJ, (16)

where ns is the number of ESS resulting from running the

CSA algorithm with nc number of clusters, J is the cost

function defined in (12), cf accounts for the fixed cost related

to a single device and cv is the unitary cost associated to J .

Remark 1: The sensitivity matrix Ψ is at the heart of the

proposed procedure. Typically, the expression of the bus

voltages as a function of the power injected at each node

cannot be computed analytically. Hence, a good estimation

of Ψ is key for the success of the algorithm. One possibility

is to resort to numerical simulation for approximating (14).

To this aim, nominal power injections at each bus can be

computed by averaging available load and generation profiles

over time. Then, the voltage variation at node k after a unit

power injection at node h can be computed by solving a

power flow problem. While it is true that the single values

of (14) do depend on the particular load profile considered,

it turns out that the relative weight of the entries of Ψ is

pretty much independent of the load and determined mostly

by the network topology and admittances of the lines.

IV. EXPERIMENTAL RESULTS

We demonstrate the strategy for ESS placement and sizing

described in Section III, on a representative portion of a real

LV network whose topology was provided by the largest

Italian DSO. The test network is shown in Fig. 1. It consists

of 17 buses and 16 lines. A total of 26 loads and 4 PV

power generators are connected to the network. For all loads

and generators, five typical days of active and reactive power

profiles, with sampling time ∆t = 15 min, are extracted from

the available data. These profiles are perturbed to originate

both over- and under-voltage problems. This means that,

in the absence of storage units installed in the network,

voltage magnitudes violate the voltage quality constraints (3)

at certain buses and time steps. The objective of the ESS

placement and sizing problem is to determine the minimum-

cost ESS configuration which allows one to satisfy voltage

quality constraints at all buses over the considered time

horizon.
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Fig. 1. Test LV network with 17 buses.

A. Simulation parameters

For all buses k ∈ NL, 10% tolerance around the nominal

rated voltage is allowed in both directions, i.e. vk = 0.9 pu

and vk = 1.1 pu. Storage units installed at different buses

are assumed to be characterized by the same technical

parameters. Ramp rate limits in (6) are chosen such that

Rk = −Rk = 25 kW, whereas the bounds Bk and Bk in

(8) are set to keep the angle shift between -10 and +10 deg.

The initial storage level is assumed to be zero for all ESS

units, i.e. e1k = 0 kWh.

B. ESS placement and sizing

The sensitivity matrix Ψ needed by the CSA algorithm

of Section III-B is computed numerically as described in

Remark 1. For fixed number of clusters nc, a suitable number

of storage units ns to be installed and the corresponding

locations are determined by applying the CSA algorithm.

Table I shows the results obtained for nc = 6. It can be

observed that clusters Υ1, Υ3 and Υ4 do not contain critical

buses, and therefore no ESS unit is assigned to them. The

same holds for cluster Υ2, in spite of the fact that it is

composed by a single critical bus, namely bus 3. This is

motivated by the fact that bus 3 is never affected by voltage

problems, and therefore it can be reliably left without ESS.

The procedure ends with ns = 2 storage units allocated at

buses 7 and 11, selected from the sets of candidate buses Ω5

and Ω6 through (15). The number of ESS ns as a function

of the number of clusters nc is shown in the bottom part of

Fig. 2. It can be observed that ns is typically strictly less than

nc. When each node in NL forms a cluster, i.e. nc = 16,

only 8 buses are deemed worth hosting an ESS.

For fixed nc, once the CSA algorithm has provided a

suitable number ns of ESS units to be installed in the

network and a corresponding set of locations S , the capacity

of the storage units has to be determined. To this aim,

a convex relaxation of the OPF problem (13) based on



TABLE I

RESULTS OF THE APPLICATION OF THE CSA ALGORITHM FOR nc = 6.

Subnetwork Ni Li ∪ Gi Ωi k∗
i

Υ1 {2} ∅ ∅ –

Υ2 {3} {3} {3} –

Υ3 {4} ∅ ∅ –

Υ4 {5} ∅ ∅ –

Υ5 {7, 8, 9, 10} {7, 10} {7, 10} 7
Υ6 {6, 11, 12, 13, 14, 15, 16, 17} {11, 12, 14, 15, 17} {6, 11, 12, 13, 14, 15, 16, 17} 11

semidefinite programming is implemented in the modelling

toolbox CVX [14] and solved using SeDuMi [15]. The

choice γ = 1/2 is made in the cost function (12). In order

to reduce the computational burden, a practical approach is

to solve the convex relaxation of (13) separately for every

day in the available data set, and then take for each ESS

the largest storage capacity determined in the different runs.

The proposed approach is justified by the fact that load

and renewable power generation profiles often exhibit daily

cyclic behavior. In order to link coherently consecutive days,

additional constraints are added in (13), imposing storage

levels at the beginning and the end of the day to be equal:
∑

t∈Td

rk(t) = 0, ∀k ∈ S, (17)

where the time horizon Td covers one day. Note that the

original OPF problem (13) could be infeasible, if the ESS

units allocated in S do not help solving voltage problems

arising in the network for any value of the storage capacity.

If this is the case, the day for which the optimization problem

is solved is termed infeasible. The number of infeasible days

provides useful information for the final decision on the ESS

units to be placed in the network.

The selection of the number of clusters leading to the

optimal number and locations of ESS, is carried out as

described in Section III-B. For the evaluation of the total

deployment cost (16), we choose cf = 8000 e and cv =
5 e. The total deployment cost (16) as a function of the

number of clusters nc is shown in the top part of Fig. 2

(blue dashed curve). In the same plot, the green solid curve

represents the percentage of infeasible days as a function of

nc. It is apparent that a convenient choice is nc = 6, to

which corresponds the minimum total deployment cost, and

no infeasible days occur. The corresponding number of ESS

units is ns = 2 (bottom part of Fig. 2). The two storage units

are placed at buses 7 and 11 (see Table I).

C. Comparisons with alternative heuristics

The proposed CSA algorithm is compared to two alterna-

tive storage allocation strategies, in terms of the total deploy-

ment cost cT . The first strategy, denoted by DS, consists in

optimizing the total storage capacity under the assumption

that a storage unit is available at each bus. This amounts

to solve problem (13) with S = NL. Since the optimal

solution computed by DS is typically not sparse, i.e. the

storage capacity Ek 6= 0 for most of the buses, the number
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Fig. 2. (Top) Total deployment cost (blue dashed) and percentage of
infeasible days (green solid) as a function of the number of clusters.
(Bottom) Number of ESS units as a function of the number of clusters.

of allocated devices is high and hence the resulting total cost

CT is usually prohibitive. Nonetheless, the performance of

DS provides a useful lower bound on the optimal value of

the cost function (12) that can be achieved, thus allowing

one to quantify the performance degradation incurred when

the CSA algorithm is used. In the considered case study, it

can be noticed (see Fig. 3) that nc = 6 (the smallest nc

corresponding to ns = 2) allows one to fill around 80% of

the gap between the lower bound and the cases in which

only one ESS is deployed in the network (nc ≤ 5). This

confirms that nc = 6 is a suitable choice in the considered

application. The second strategy, denoted by FB, exploits the

solution provided by DS in order to determine the placement

and sizing of a given number of storage devices. If ns storage

units have to be allocated, FB first builds the set of storage

buses SFB by taking the ns buses featuring the largest

storage capacity Ek in the solution given by DS. Then, the

optimal size of each storage unit is computed by solving

problem (13) with S = SFB . The total cost CT associated to

the DS strategy is equal to 201 ke and, as expected, greatly

exceeds that of the CSA solution, for nc = 6 clusters and

resulting in ns = 2 storage units. For ns = 2, strategy FB

yields a total cost CT = 99 ke and an average performance

index J(CS , CL) = 1.66 · 104, which have to be compared

with CT = 93.5 ke and J(CS , CL) = 1.54·104 provided by
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Fig. 3. Average value of the cost function J(CS , CL) for the CSA algo-
rithm for different values of nc (blue solid curve) and lower bound provided
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CSA algorithm. Strategies FB and CSA achieve comparable

results in terms of J and CT . However the storage placement

of FB (buses 6 and 15), results in 20% of infeasible days (one

out of the five considered), even for ns = 5. The main reason

is related to the fact that the FB placement process neglects

the network topology, leaving a subset of the network without

ESS. In the considered example, the subnetwork composed

of the buses {8, 9, 10}, which suffers from under-voltage

problems, can be helped only if an ESS is placed in one

of its buses. Unfortunately, the FB solution selects a storage

unit in the bus 10 only for ns > 5.

V. CONCLUSIONS

The paper addressed the problem of optimal placement

and sizing of distributed storage devices in a low voltage

electricity grid. The novel contribution presented consists

in a procedure allowing for the minimization of the total

cost of the storage systems rather than the global storage

capacity. From the optimization model viewpoint, this ex-

tension taking into account both the storage capacity and

the number of storage devices to be installed, translates to

a mixed integer non convex problem. A heuristic procedure

has been proposed to circumvent the integer nature of the

optimization problem, while a semidefinite programming

based relaxation was adopted to approximate the underlying

OPF. Application of the devised procedure on a portion of

a LV Italian network shows very interesting and promising

results. Ongoing work is devoted to investigating robustness

of the selected allocation strategy to unexpected load losses

or generator outages.
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