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Abstract— In this paper, we study the limit cycle oscillations
of multiple double integrators with coupled dynamics, subject to
a constant disturbance term and switching inputs. Such systems
arise in a variety of control problems where the minimization of
both fuel and number of input transitions is a key requirement.
The problem of finding the minimum switching limit cycle,
among all the fuel-optimal solutions satisfying given state con-
straints, is addressed. Starting from well known results available
for a single double integrator, two suboptimal solutions are
provided for the multivariable case. First, an analytic upper
bound on the number of input switchings is derived. Then, a
less conservative numerical solution exploiting the additional
degrees of freedom provided by the phases of the limit cycles
is presented. The proposed techniques are compared on two
simulation examples.

I. INTRODUCTION

Relay feedback systems are a classic topic in control
theory (see e.g. [1], [2], [3] and references therein). It is well
known that a large class of relay feedback systems presents
limit cycle oscillations and a huge number of results are
available in the literature concerning existence and stability
conditions for such limit cycles. However, most of the
literature deals with single-input single-output systems, while
relatively few results are available for the multivariable case
[4], [5], [6].

In recent years, a significant effort has been devoted to
the study of limit cycles in more general classes of systems,
such as piecewise affine systems or hybrid systems [7], [8],
[9]. For many practical applications, limit cycles are indeed
a feasible solution, but it is required to keep the number
of input transitions as low as possible, due to technological
limitations or to the need of maximising the lifetime of the
actuators. Consequently, the performance objective is often
modified in order to penalise in some way the number of
input transitions, which in turn affect the switching among
the modes of the system. Applications of such problems can
be found in power electronics [10], air conditioning systems
[11], boiler control systems [12], attitude control [13].

Explicit solutions to minimum switching control problems
with state constraints have been derived only for very simple
systems. One notable example, that is indeed useful in many
applications, is the double integrator subject to a constant
forcing term. This system has been studied in detail, for
instance, for the single-axis attitude control problem with
on/off actuators, and the limit cycle corresponding to the
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fuel/switch-optimal steady state solution has been fully char-
acterised [14], [15]. More recently, this case study has been
thoroughly analysed in the context of event-based control
[16].

The aim of this paper is to address a minimum switching
control problem for a multivariable system consisting of
n coupled double integrators, subject to a constant forc-
ing term and controlled by n switching actuators. One of
the motivating applications is a multi-axis attitude control
problem in which non orthogonal thruster configurations are
adopted, in order to maximize the generated torque or to
satisfy constraints deriving from the spacecraft layout. In
this context, the minimisation of the frequency of thruster
firings is a key requirement, especially when electric thrusters
are employed for attitude control [13]. The contribution
of the paper is twofold. First, an analytic upper bound to
the minimum number of switchings is derived, by suitably
extending the single-axis results of [14], [15] to the mul-
tivariable case. Since the corresponding solution does not
depend on the relative phases of the single-axis trajectories, a
less conservative solution is found numerically by exploiting
these further degrees of freedom. The benefits of the latter
approach are demonstrated by means of two simulation
examples.

The paper is organized as follows. Section II introduces
the minimum fuel and minimum switching control problems
for a single-axis double integrator, and briefly reviews the
solution of such problems. Then, Section III addresses the
multivariable problem, for a system of coupled double in-
tegrators, and provides the main results of the paper. The
numerical examples are presented in Section IV, while some
concluding remarks are given in Section V.

II. SINGLE-AXIS PROBLEM FORMULATION

Consider the forced double integrator

ẋ1(t) = x2(t)
ẋ2(t) = u(t) + k ,

(1)

where

u(t) ∈ {−1, 0, 1} (2)

and k 6= 0 is a known constant forcing term, such that |k| < 1
to ensure controllability of the system. The objective of the
control system is to guarantee that

|x1(t)| ≤ δ, (3)



where δ is a known bound. Then, the fuel-optimal control
problem can be formulated as

min
u

Jf (u) = lim
T→∞

1

T

∫ T

0

|u(t)| dt

s.t. (1), (2), (3).

(4)

The following proposition is a standard result from optimal
control theory.

Proposition 1: A necessary condition for u∗(t) to be a
solution to problem (4) is

u∗(t) ∈ {0, −k̄}, (5)

where k̄ = sgn(k). Moreover,

Jf (u
∗) = |k|. (6)

Proof: By (1)-(3), x2(t) is bounded. Then

lim
T→∞

1

T

(

x2(0) +

∫ T

0

(u(t) + k) dt

)

= 0,

which gives

lim
T→∞

1

T

∫ T

0

u(t) dt = −k. (7)

Hence, the solution to (4) is also a minimizer of problem

min
u

Jf (u)

s.t. (2), (7).
(8)

It is straightforward to check that u(t) ∈ {0, −k̄} is a neces-
sary condition for the optimal solution of (8). By enforcing
this condition in (7), it follows that Jf (u) = |k|.

Among all the fuel-optimal input sequences satisfying (3),
we aim at finding the one which minimizes the average
number of input transitions, i.e. the one solving the problem

min
u

Js(u) = lim
T→∞

1

T

∫ T

0

|u̇(t)| dt

s.t. (1), (3), (5).

(9)

The solution to (9) can be found by using phase plane argu-
ments, as described next. According to (5), u(t) ∈ {0, −k̄}.
The trajectories obtained for u(t) = 0 and u(t) = −k̄ in (1)
are reported in the phase plane in Fig. 1, where it has been
assumed k̄ = 1 (the reasoning is analogous for k̄ = −1).
From (3) and (5), it follows that fuel-optimal state trajectories
are bounded paths switching between the curves in Fig. 1,
which differ in amplitude and number of input transitions.

Let

ψu = {(x1, x2) : k̄x1 = 1
2(|k|−1) x

2
2 + δ, x̄1 ≤ k̄x1 ≤ δ}

ψk = {(x1, x2) : k̄x1 = 1
2|k| x

2
2 − δ, −δ ≤ k̄x1 ≤ x̄1},

where x̄1 = δ(1 − 2|k|). Then, the following result charac-
terizes the unique fuel-optimal solution that is also switch-
optimal [14], [15].

Proposition 2: The fuel/switch-optimal solution to (9) is

u∗(t) =

{

−k̄ if (x1(t), x2(t)) ∈ ψu

0 if (x1(t), x2(t)) ∈ ψk
(10)

x1

x2
u = −k̄

u = 0

Fig. 1. Trajectories of (1) for u = 0 (solid) and u = −k̄ (dashed).

Proof: It follows by integration of system (1) with
either u = 0 or u = −k̄ and by taking the solution
which maximizes the time between two consecutive input
transitions, while satisfying constraint (3).

Fig. 2 shows the fuel/switch-optimal solution provided by
Proposition 2, for k̄ = sgn(k) = 1. The trajectory of system
(1) along the double-switch periodic limit cycle ψu∪ψk can
be expressed as

x1(t) = a f(t/p+ φ)
x2(t) = ẋ1(t)

a = p2 γ
γ = |k| (1 − |k|)/16,

(11)

where a = δ is the amplitude, p is the period, φ ∈ [0, 1] is
the phase of the limit cycle, and f(ξ) is a periodic function
given by

f(ξ) =







k̄
(

1− 8
|k| (λ− |k|

2 )2
)

0 ≤ λ ≤ |k|

−k̄
(

1 + 8
|k|−1 (λ− |k|+1

2 )2
)

|k| ≤ λ ≤ 1

λ = mod (ξ, 1).
(12)

From (10) and (11), it follows that the optimal input signal
u∗(t) is pulse-width modulated with period p∗ =

√

δ/γ and
duty cycle |k|.

x1

x2

ψk ψu

−δ δ

Fig. 2. Fuel/switch-optimal solution to problem (9).

Notice that Proposition 2 provides a minimum switching
and fuel-optimal trajectory for system (1), under the con-
straint (2) and (3), in terms of a limit cycle in the phase
plane. In order to steer the system state to this limit cycle



from any initial condition, the following control law can be
employed

u(t) =

{

−k̄ if (x1(t), x2(t)) ∈ R1 ∪ ϕu

0 if (x1(t), x2(t)) ∈ R2 ∪ ϕk

where R1 and R2 are the open portions of the phase plane
separated by the curves ϕu and ϕk, shown in Fig. 3 for the
case k̄ = 1.

x1

x2

R1

R2

−δ δ

ϕk

ϕu

Fig. 3. Fuel/switch-optimal switching curve.

III. COUPLED DOUBLE INTEGRATORS

The aim of this paper is to generalize the results in
Section II to the multivariable system defined by

ẋ = Ax +Bu+Bdd, (13)

where

A =

[

0 I
0 0

]

, B =

[

0
Bv

]

, Bd =

[

0
I

]

,

x = [xTr , x
T
v ]

T , xr, xv ∈ R
n, u ∈ {−1, 0, 1}n, d ∈ R

n

and ‖B−1
v d‖∞ < 1. These equations describe a system of n

double integrators, controlled by n switching inputs, which
are coupled through the n × n matrix Bv. In this case, the
constraint (3) can be generalized to

‖W xr(t)‖∞ ≤ 1, (14)

where W = diag(δ1, . . . , δn)−1. If Bv is diagonal, the
double integrators in (13) are decoupled and the results of
Section II can be applied separately to each input channel.
The nontrivial case in which Bv is not diagonal is addressed
next.

Under the assumption that Bv is full-rank, we define the
new state variables y = T−1x, with

T = blockdiag(Bv, Bv). (15)

Hence, system (13) can be rewritten as

ẏ = Ay +Gu+Gdd , (16)

where y = [yTr , y
T
v ]

T , G= [0, I]T and Gd = [0, (B−1
v )T ]T.

Similarly, the constraint (14) takes the form

‖C yr(t)‖∞ ≤ 1, (17)

where C =WBv. Notice that, in the formulation (16)-(17),
the n double integrators have been decoupled, but the state

constraints (17) are now coupled. In fact, while the feasible
set for xr in (13) is a box, that of yr in (16) is a parallelotope.

For the systems (13) and (16), the minimum-fuel condi-
tions (5)-(6) become

Jf (u
∗) =

n
∑

j=1

Jf (uj) = ‖k‖1

u∗j (t) ∈ {0,−k̄j} j = 1, . . . , n ,

(18)

where k = B−1
v d and k̄j = sgn(kj). The minimum switching

problem (9) can be generalized to the considered multivari-
able system, by suitably adapting the cost Js(u). Since we
are interested in reducing as much as possible the number
of input transitions per actuator, this amounts to minimize
the maximum Js(ui) over all inputs ui, i = 1, . . . , n. This
corresponds to solving the problem

min
u

max
j

Js(uj)

s.t. (16), (17), (18).
(19)

Problem (19) is hard to solve if all feasible solutions y(t) are
considered. Therefore, taking inspiration from the optimal
solution (11) of the single-axis problem, we restrict our
attention to solutions of the form

yj(t) = aj f(ξj)

ξj = t/pj + φj
aj = p2j γj

γj = |kj | (1 − |kj |)/16 j = 1, . . . , n,

(20)

where f(ξj)∈ [−1, 1] is given by (12) and the input signals
turn out to be

uj(t) =

{

−k̄j if 0 ≤ mod (ξj , 1) ≤ |kj |
0 if |kj | < mod (ξj , 1) ≤ 1.

(21)

The input signals u1, . . . , un in (21) satisfy (18), hence they
are fuel-optimal. Being these signals double-switch periodic,
one has

Js(uj) =
2

pj
. (22)

Moreover, (17) is equivalent to

max
i

max
t

|si(t)| ≤ 1, (23)

where

si(t) =

n
∑

j=1

cij yj(t) (24)

and the coefficients cij are the entries of C. By enforcing
(20) and replacing (17) by (23), problem (19) becomes

min
p, φ

max
j

2

pj

s.t. (20), (23), (24)
0 ≤ φj ≤ 1
p ≥ 0,

(25)

where p = [p1, . . . , pn], φ = [φ1, . . . , φn]. Notice that the
solution of problem (25) does not change if all phases φi
are shifted by the same quantity. Hence, without loss of



generality, in the sequel we will enforce φ1 = 0. So far,
the dynamic optimization problem (19) has been converted
into a static optimization problem, where the decision vari-
ables are p and φ. Note, however, that the problem is still
difficult, being non-convex in the decision variables p and φ.
Consequently, some simplifying assumptions will be made in
order to obtain a sub-optimal solution.

In order to derive an upper bound to the solution of
problem (25), we observe that

max
t

| si(t) | ≤ max
t

n
∑

j=1

|cij | |yj(t)| ≤
n
∑

j=1

|cij | aj , (26)

and hence (23) can be enforced by imposing

|C| a ≤ 1, (27)

where |C| = {|cij |}, a = [a1, . . . , an]
T and 1 denotes a

column vector whose components are all equal to one. From
(20), it follows that

pj =
√

aj/γj . (28)

By replacing (23) with (27) and substituting (28) in (22),
problem (25) boils down to

min
a

max
j

2

√

γj
aj

s.t. |C|a ≤ 1

a ≥ 0.

(29)

By (26), the solution of (29) is an upper bound to that of
(25). It turns out that problem (29) can be solved analytically,
as stated by the following theorem.

Theorem 1: A global minimum of problem (29) is at-
tained at

a∗ =
1

‖Q‖∞
Γ1 (30)

where Γ = diag(γ), Q = |C|Γ, and || · ‖ denotes the matrix
infinity norm.

Proof: Let x = Γ−1a. Then, problem (29) can be
rewritten as

min
β,x

β

s.t.
2

√
xj

≤ β, j = 1, . . . , n

Qx ≤ 1

x ≥ 0

(31)

The statement of the theorem is proven if x∗ = 1
‖Q‖∞

1,

β∗ = 2
√

‖Q‖∞ is a global minimum for problem (31). Let
x̂, β̂ be a feasible solution of (31). From feasibility, we get

x̂j ≥
4

β̂2
, ∀j = 1, . . . , n

and, being qij ≥ 0, ∀i, j,

1 ≥
n
∑

j=1

qij x̂j ≥
4

β̂2

n
∑

j=1

qij , ∀i = 1, . . . n.

Hence,

β̂ ≥ 2

√

√

√

√ max
i=1,...,n

n
∑

j=1

qij = β∗

which concludes the proof.
Remark 1: Since by (30) all the entries of Γ−1a∗ are

equal, it follows from (28) that

p∗1 = p∗2 = . . . = p∗n =
1

√

‖Q‖∞
. (32)

Similarly to the single-axis case, the optimal input u∗j is
pulse-width modulated with period p∗j and duty cycle |kj |.

In the relaxation (29) of problem (25), the additional
degrees of freedom provided by the decision variables φ
have not been exploited. In order to find a less conservative
relaxation, we enforce directly the property (32) into the
original problem (25). This leads to the new relaxed problem

max
p, φ

p1
2

s.t. (20), (23), (24)
0 ≤ φj ≤ 1
p1 = p2 = . . . = pn ≥ 0,

(33)

where φ1 = 0. Due to (32) and the fact that (23) is less
restrictive than (27), the solution of problem (33) is a lower
bound to that of (29), while still being an upper bound to
that of (25). By exploiting (20) and (24), we rewrite the
constraint (23) as

p21 σ(φ) ≤ 1 (34)

where

σ(φ) = max
i

max
0≤t≤p1

∣

∣

n
∑

j=1

cij γjf(t/p1 + φj)
∣

∣. (35)

Notice that σ(φ) in (35) does not depend on the actual value
of the period p1, because the peak values of the sums of
the p1-periodic functions f(t/p1 + φj), evaluated over the
period, are independent from the period itself. Hence, the
global maximum of problem (33) is attained at

p∗1 =
1

√

σ(φ∗)
, (36)

where
σ(φ∗) = min

φ
σ(φ). (37)

According to (21), the optimal input u∗j is pulse-width
modulated with period p∗j = p∗1, duty cycle |kj | and phases
φ1 = 0 for j = 1, and φ∗j for j = 2, . . . , n.

The unconstrained problem (37) is essentially a crest
factor minimization problem, which is known to be a hard
optimization problem, being σ(φ) a non convex function
(see [17] for a study of the crest factor problem in the
sinusoidal case). Nevertheless, for low dimensional cases,
such as n = 2 or n = 3, which are of practical interest in
several applications, a global minimizer of (37) can be found
by numeric search over the free phases φj . The benefits of
this approach over the solution provided by Theorem 1 are
demonstrated on two numerical examples, in the next section.
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Fig. 4. Trajectories y1(t) (solid) and y2(t) (dash-dotted) from the solution
to (29) (top) and (33) (bottom).

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented. We
will refer directly to system (16), the interpretation in terms
of system (13) being straightforward by means of (15).

A. Two-axis example

Let n = 2, W = I in (14) and

Bv =

[

cos(π/3) sin(π/3)
− sin(π/3) cos(π/3)

]

in (15). Then, C = Bv in (17). Moreover, assume that
k = [0.7, 0.1]T . In the following, the solutions to (29) and
(33) are compared. According to (30), the solution to (29) is
given by a∗ = [0.9257, 0.3967]T . From (32), it follows that
p∗1 = p∗2 = 8.4 and hence the maximum switching frequency
is Js(u∗) = 2/p∗1 = 0.238.

In order to exploit the additional degrees of freedom
provided by φ, problem (33) is solved using (36) and (37)
with φ1 = 0, where the solution of (37) is found numerically
through a one-dimensional search over φ2. The solution is
p∗1 = p∗2 = 9.53 and φ∗2 = 0.59, which gives Js(u

∗) =
2/p∗1 = 0.21. Hence, the optimal cost of (33) is lower than
the optimal cost of (29) by approximately 12%.

The trajectories y1(t), y2(t) of system (16) are obtained
by substituting the solutions p∗ and φ∗ in (20), for both
approaches. Since the solution of (29) holds for any φ,
without loss of generality one can assume φ∗1 = φ∗2 = 0
in the first approach. The resulting trajectories are reported
in Fig. 4 on a single period. The corresponding velocities
are reported in Fig. 5. The same trajectories are reported in
the y1 y2 plane in Fig. 6, together with the set defined by
(17) and the box |yi| ≤ a∗i . It can be clearly seen that the
control requirements (17) are met in both cases. However,
the trajectories satisfying (30) are constrained to lie inside
a smaller region, which, being the period proportional to
the square root of the oscillation amplitude, translates into a
higher frequency of input transitions.
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Fig. 5. Velocities ẏ1(t) (solid) and ẏ2(t) (dash-dotted) from the solution
to (29) (top) and (33) (bottom).
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Fig. 6. Trajectories in the y1, y2 plane of the solutions to (29) (dashed)
and (33) (solid), with constraints (17) (outer parallelogram) and |yi| ≤ a∗i
(inner box).

B. Three-axis example

In spacecraft attitude control problems with on/off actu-
ators, the model describing the three-dimensional rotational
dynamics of the attitude error with respect to the principal
axes of inertia of the spacecraft is typically approximated
by (13) [14]. Since the control accuracy requirements are
commonly specified as the maximum acceptable angular
error about the principal axes, one can assume that W = I
in (14). In order to maximize the torque generated by the
actuators and meet constraints coming from the spacecraft
layout, it is often the case that thruster configurations not
aligned to the principal axes are adopted, which implies that
Bv is not diagonal in (15). In this example, we consider

Bv =
1

1.393
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Moreover, let k = [0.1, 0.5, −0.2]T .
The solution to (29) is a∗ = [0.301 , 0.837, 0.536]T , which

corresponds to the period p∗1 = p∗2 = p∗3 = 7.32 and the
optimal cost Js(u∗) = 0.273. In order to solve (33) through
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Fig. 7. Value of σ(φ) as a function of φ2 and φ3.

(36), one has to search the 2-dimensional parameter space
φ2, φ3 for a global minimizer of (37). Notice that σ(φ) in
(36) is a non-convex function of the decision variables φ,
as can be observed in Fig. 7. The solution to (33) is p∗1 =
p∗2 = p∗3 = 9.5, φ∗2 = 0.17 and φ∗3 = 0.6, corresponding
to the optimal cost Js(u∗) = 0.21. As expected, when φ
is optimized, the pulse modulation scheme requires a lower
switching frequency, while the average fuel consumption
Jf (u

∗) = ‖k‖1 = 0.8 is the same for both solutions, by con-
struction. The optimal cost of (33) is lower than the optimal
cost of (29) by approximately 23%, which is a significant
performance improvement for the considered application.
The three-dimensional plot of the trajectories y1(t), y2(t)
and y3(t) is reported in Fig. 8, where it can be seen that
the control accuracy requirements (represented by the 3-
dimensional parallelotope) are satisfied.

V. CONCLUSIONS

The problem of finding the fuel/switch-optimal limit cy-
cles for coupled double integrators driven by switching
inputs, in the presence of a constant disturbance term, has
been addressed. Focusing on the class of periodic single-axis
trajectories featuring the same period, the problem is cast
as a static optimization problem. The limit cycles resulting
from the numerical solution of such a problem turn out to
perform significantly better in terms of number of input
transitions than an analytic suboptimal solution neglecting
the possibility of tuning the limit cycle phases. However,
an effective procedure to find a numerical solution for high
dimensional systems still needs a deeper investigation.

The opportunity of considering a larger class of periodic
single-axis trajectories, having commensurable (possibly dif-
ferent) periods, is under investigation. Moreover, an under-
lying assumption of this work is that in the multivariable
case the switch-optimal trajectories are still unimodal limit
cycles, as it occurs in the single-axis case. The question
whether more complex oscillations can actually provide a
lower switching frequency is still unanswered.
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Fig. 8. Trajectories of the solution to (29) (dashed) and (33) (solid), together
with constraints (17) (outer parallelotope) and |yi| ≤ a∗i (inner box).
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