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Abstract— In this paper we consider the problem of offering The problem of designing optimal WPP bidding strategies
wind power in a market featuring soft penalties,. i.e. penalies has been addressed in [3], [4], [5], [6], [7], and very rebent
are applied whenever the delivered power deviates from the in [8], where the authors derive explicit formulae for opim
nominal bid more than a given relative tolerance. The optima ’ - . .
bidding strategy, based on the knowledge of the prior wind contrac_ts in a market Where penalties are applied Whgnever
power Statistics’ is derived ana|ytica||y by max|m|z|ng the the de“Vered pOWer dEVIateS from the SChedu|e. MO“Vated
expected profit of the wind power producer. Moreover, the by the aforementioned Italian regulatory framework, as in
paper investigates the use of additional knowledge, represted  [8] we consider in this paper the problem of maximizing the
by wind speed forecasts provided by a meteorological sené¢ — oyhacted profit of a WPP, but in a market where a tolerance

to make more reliable bids. The proposed approach consists . . -
in exploiting wind speed forecasts to classify the day of the interval around the nominal value of the bid is allowed, and

bidding into one of several predetermined ciasses. Then, ¢h Penalties are applied if the delivered power falls outshs t
bids are represented by the optimal contracts computed for interval. We derive analytically the optimal bidding sagy
the selected class. The performance of the optimal bidding pased on the knowledge of the prior wind power probability
strategy, both with and without classification, is demonstated distribution, and show that the optimal contract in [8] c&n b

on experimental data from a real Italian wind farm, and df hen the tol tends t
compared with that of the naive bidding strategy based on recovered from ours when the tolerance tends to zero.

offering wind power forecasts Computed by p|ugg|ng the wind The second contribution of this papel’ is to inVeStigate the

speed forecasts into the wind plant power curve. use of additional information, represented by wind speed
forecasts provided by a meteorological service, to derive
. INTRODUCTION better suited day-ahead bids. Although wind speed forscast

In recent years, the interest in generating power frormay be inaccurate for wind power prediction (see the survey
renewable energy sources (RES) has grown rapidly, pushedper [9] for a review of techniques for wind speed and wind
by the expected benefits both in environmental and econonfiower forecasting), still they can give a rough indication
terms (mainly reduction of COemissions and energy marketabout the wind conditions of the next day (e.g. windy or still
prices [1]). On the other hand, RES integration in the gridiay, implying high or low wind power generation). We show
is causing serious problems to transmission and distdbuti how to use such information to classify the next day into one
system operators [2]. Due to the intrinsic RES intermityencof several energy classes and then size the optimal contract
and variability, system operators need to procure large aiy using theconditionalwind power probability distribution
costly quantities of reserve power in order to guaranteef the selected class.
robust network operation. This may hinder the expectations The paper is organized as follows. In Section Il we for-
of cheaper final prices applied to consumers. mulate the bidding problem and derive the optimal bidding

One possible way to mitigate the uncertainty of REStrategy. The use of wind speed forecasts to make more
generation is to require that producers provide day-ahe#eliable bids is investigated in Section Ill, where the agmh
generation profiles, and to apply penalties if the deliveredombining classification and the optimal bidding strategy
power differs from the nominal bid. In other words, RESof Section Il is described. Section IV reports experimental
producers will be soon called to take part of the risk inidns results obtained under different pricing scenarios wittada
in the uncertainty of the intermittent production. In Italyfrom a real Italian wind farm. Finally, conclusions are draw
a regulatory framework with soft penalties is active sincén Section V.

January 1, 2013. In this framework, penalties are applied
whenever the delivered power deviates from the nominal bid
more than a given relative tolerance. In a first phase, 20% In this section, the problem of optimizing the bids of wind
tolerance is allowed, while in a second phase the toleranpewer for a market featuring soft penalties is formulatefte T
will be reduced to 10%. This calls for the development obptimal solution is then derived, in terms of the wind power
suitable bidding strategies enabling the producers ta tiife  statistics and the imbalance penalties.
right amount of power without incurring penalties. In this Let w,,, m = 1,...,M, be a discrete-time random
paper, we address the above problem in the case of Wiptiocess denoting the average active power generated by
Power Producers (WPPs). the wind power plant during then-th sampling interval

of the day. LetC,, denote the corresponding bid of active

The authors are with the ‘Dipa‘rt‘imqntq di Ingegneria défitmazione power for the same interval and letbe the sampling time
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ltaly.  {gi anni trapani, paol etti, vicino}@ii.unisi.it, (typically h = 1 hour). DefiningP as the nominal power
zarrilli.donato@mail.com of the wind plant (i.e. the maximum power the plant may

II. OPTIMAL BIDDING STRATEGY



generate), it turns out that,, € [0, P] andC,, € [0, P], C, boils down to)M scalar optimization problems

for all m = 1,..., M. Denote byw = [wy,...,wy]’ and . B
C = [Cy,...,Cy]7T the vectors containing the generated Cr = arg cotipl I (Cn)s m=1,....M, (2)
power and the offered contracts for a whole day. ere

It is assumed that the WPP is remunerated according \t/\éh
the actual generated powerand its deviation from the bid ~ Jm (Crm) = hEprm — qmax{(1 —t)Cy, — wp,, 0}
C in the following way. Letp denote the unitary price at -
which the WPP sells its energy, be the unitary penalty — Amax{wy, — (1 +t)cm’0})]

for energy shortfall anc?\.be the unitary penalty for energy gjnce the optimal solution to (2) depends on the wind power
surplus. The WPP receivgsunits of money for each unit gatistics over the considered interval, I8}, (w) denote

of delivered energyiw,,. Lett € [0,1] represent a given e cymulative distribution functioncdf) of the random
relative tolerance on the deviation of the delivered powefsrigple u,,, i.e. F(w) = Prlwn < w), and f(w) be

from the nominal bid. For instance, according to the regentk,o probability density functionpglf) of w,, wherever the
introduced regulations, in Italy 20% toleranfe= 0.2) is  yerivative of F(w) exists. Moreover, for3 € [0,1], let
currently allowed, while in a second phase such a tolerangergl(ﬁ) = inf{w € [0,P] : F(w) > B} be the quantile
will be reduced to 10%t = 0.1). In case the delivered f,nction. N

powerw,, is smaller than a fractioh — ¢ of the nominal bid Assumption 2:The cdf F,,(w) is continuous and differ-

Crp, 1.8 wpn < (1 —1)Cry, the WPP is penalized by units  gptiaple for allw € (0, P). Thepdf f,, (w) is integrable over
of money for each unit of energy shortagé&1 — ¢)C,, — (0, P).

w ). Similarly, if the delivered powemw,,, is greater than a The gptimal solution to (2) is given by the following result.
multiple (1+¢) of the nominal bidC,, i.e.wy, > (141)Cin, Proposition 1: Under the Assumptions 1 and 2, a contract
a penalty of\ units of money for each unit of energy surplusc;kn is a solution to the optimization problem (2)-(3) if and
h(w., — (1 +1t)Cy,) is applied. Hence, the net daily profit only if it satisfies the equation:

®3)

amounts to 3
G Fyy (1-)C3) = A1) [1 = Fon (14+6)C5)] - (4)
M
II(C,w) =h Z (pwm — gmax{(1 — t)Cp, — wp,0} The optimal expected profit is given by
m=1 1) . I
— Amax{wy,, — (1+1)Cp,, 0}) I (Cr,) = h(p,um + q/o F. ' (o)da
P (5)
' ieg and X - / F;I(a)da),
Throughout the paper the prigeand the penaltieg and A P (0)C )

are supposed to be constant and known beforehand.
Assumption 1:The pricep and the penaltieg and\ are
such thatp > 0, ¢ >0 andp > A > 0.

Assumption 1 serves to rule out meaningless scenarios. B _ [A7)Cm
Notice thatA > p means that the net profit for an energyjm(cm) - h<p“m B q/o (1 =1)Cn = ] fm(w)dew

where i, = E[wy,].
Proof: From the definition (3) one gets

surplus exceeding the threshold is actually negative. &vhil P

such a scenario could be of interest in general, we can still - [w— (14 t)Om]fm(w)dw>.
assume\ < p without loss of generality if the WPP has (1+1)Cm

curtailment capabilities. Under regularity assumptions on tpelf f,,,(w), the appli-

Remark 1: The market scenario considered in this workcation of the Leibniz integral rule yields
can be seen as a generalization of that addressed in [8], _, B
[10]. As a matter of fact, whent = 0, i.e. there is no T (Cm) = h(_q(l_t)Fm((l_t)Om)

. . : . ~ (6)
toIerar_1ce interval around _the nomlnal_bld, W|t_h a proper FAE)[ - Fm((l—i—t)Cm)]).
selection of the penalty prices, the profit (1) coincideshwit
that considered in those papers. Besides, the second derivative §f, takes on the form

Since the profitll(C,w) is a stochastic quantity due " - _ 9
to the uncertainty on the generated wind power the Tn(Cm) = h(_ A=) fm (1 = 1)Com) )
optimal bidding problem consists in determining the bitl —A1+8)2 0 (1 + t)Cm)).
maximizing the expected profif (C) = E[II(C,w)], i.e.
C* = argmaxc J(C). Notice that the bid’,,, offered by the From Assumption 1, it follows that
WPP for them-th time interval depends only on the expected J(0)>0 and J.(P)<0. ®)

energy generated during the same period. Hence, twoids
andC}, i # j, related to different intervals are independenSince J/,(x) is a continuous function under Assumption 2,
from each other [8]. As a result, the previous optimizationthere exists a stationary point € [0, P], i.e. J! (z) = 0.
problem, involving anM -dimensional optimization variable Moreover, from (7),J,,(x) is concave. Therefore],,(x)



attains its maximum ovefo, P] in z, i.e. C;, = 7. Con- 2r
dition (4) follows from (6), while, as in [8], equation (5)
follows by evaluatingJ,,, at a pointC;;, satisfying (4). =
Notice that Assumption 2 is a technical condition to permit L5¢
differentiation under the integral sign when deriving etipra
(6) (see, e.g., [11]). The previous results can be generhliz
to the scenario where the penalties are stochastic vasiable
independent of the generated powerby replacingg and A
in (4)-(5) with their respective mean value. Given the mono-
tonicity of (6), numerical computation of the optimal catt 051
C; can be performed very efficiently through bisection.
The following corollary of Proposition 1 establishes the

generated power [MW]

connection between our result for= 0 and the analogous of ‘ ‘ ‘ ‘
. 0 5 10 15 20 25
result found in [8] wind speed [m/s]
Corollary 1: Whent = 0, the optimality condition (4)
boils down toF,,,(C*,) = 2 Fig. 1. Generated power vs wind speed for a 2 MW wind turbiregl (r
m a+A points), and power curve (10) fitted to the data (solid blueveu

IIl. EXPLOITING WIND FORECASTS

In the previous section, contracts were determined assum i im wind speed at which the wind turbine generates
ing to know the prior wind power statistics. In this section,its nominal power). Between the rated and the-off wind
we assume that additional information is available, namelgpeed (i.e. the wind speed at which protections are activate

the wtmd slpe_ed lforecgsfs?, nZh:dL : tr; Mt;_grO\;ldedtby nd shut down occurs), the turbine operates at its nominal
a meteorological sefvice Ior the day the bid Telers 10, anGq, e Generated power is zero out of the range between
investigate how to exploit these forecasts in the biddin

Th e h Id b ftor th ut-in and cut-off speed.
strategy. The most intuitive approach would be to ofer the g ¢ gyt several expressions for sigmoid functions. The

forecasted wind power profile computed using wind spee(Sine considered in this paper has the following form:
forecasts. We will discuss this approach, and show on the

basis of both theoretical arguments and experimentalteesul Py(v) = b+ (a—b) (1 g )d7 ©)

that offering wind power forecasts may lead to unsatisfgcto

performance for the WPP. With this motivation, we prowherea >0, b <0, ¢ <0, d < 0 andvy > 0 represent the

pose an alternative approach which combines classificatigmrameters of the sigmoid function. By using (9), the power

methods and the optimal bidding strategy of Section licurve of a wind turbine can be expressed as:

V\_/inql fqrecasts are exploited to cla_ssify the day of the min(max(0, By (v)), P) if v < vy;

bidding into one of several predetermined classes. Then, th P(v) = { 0 otherwise

bid is represented by the optimal contract computed as in '

Proposition 1 for the selected class. where P and v,y are the nominal power and the cut-off

wind speed of the wind turbine, respectively. Note that the

cut-in and rated wind speed do not appear explicitly in (10),
Wind power forecasting is a challenging problem whictbeing implicitly determined by thenin and max functions.

has recently attracted increasing attention from reseasch The nominal power and the cut-off wind speed can be found

The main difficulty is represented by the inherent intermitin wind turbine data sheets, while the parameters, ¢, d

tency of wind, which makes the prediction task very hardandv, are generally estimated from recorded measurements.

The interested reader is referred to the survey paper [9] If wind speed forecasts,,, m = 1,..., M, are available,

for a review and categorization of different approaches. Ithe bid can be formed by offering the wind power forecasts

many cases, the focus is on wind speed forecasts, whicbmputed using,, and (10):

are then converted to power through the power curve of a .

wind turbine. Since we assume that wind speed forecasts Cm = P(0m), m=1,...,M. (11)

are provided by a meteorological service, in this section WRote that, in this case, the bid is different every day,

only focus on describing mathematically the power curve dfepending on the wind forecasts for that day.
a wind turbine.

By plotting the powerw generated by a wind turbine B. Day classification based on wind forecasts
versus the wind speed, it can be observed that the plot- The bidding strategy based on offering wind power fore-
ted points can be very well approximated by a sigmoidasts has a number of drawbacks. First, inaccurate wind
function (see Fig. 1). The range of validity of the sigmoidspeed forecasts may induce unacceptable errors when pre-
approximation is limited below by theut-in speed (i.e. the dicting wind power through the power curve (10). This will
minimum wind speed at which the wind turbine generatelse shown in the experimental results of Section IV. Second,
usable power) and above by thated wind speed (i.e. the and most importantly, the bids do not take into account the

(10)

A. Offering wind power forecasts



penalties and \. This implies that offering these forecasts 5
may not be the best one can do. For instance, consider the

limit case ¢ = 0, i.e. power shortfalls are not penalized.

Clearly, under this assumption the optimal strategy is ferof 15f

Cn = P, m = 1,...,M, thus having all the generated

power remunerated at prige Similarly, if A = 0, i.e. power §
surplus is remunerated at the same price as the bids, then & 1f
the optimal strategy is to offef,,, =0, m =1,..., M. g
Motivated by the above discussion, in this paper we
0.5

propose a different approach to mitigate the effects of
inaccurate wind speed forecasts and, simultaneously, take
explicitly into account the imbalance penalties. The ideti ‘ ‘ ‘
combine the optimal bidding strategy described in Section | 1 6 12 18 24
with a suitable classification strategy based on wind speed time [hour]
forecasts. Roughly speaking, the proposed approach ¢$>n5||§g 2. Bids made with the bidding strategy OB in Scenarig k= 0
in training a classifier which maps a day (represented by theiid), ¢ — 0.1 (dashed) and = 0.2 (dot-dashed).
corresponding wind speed forecasts) to one of severaledass
associated to different levels of daily generated energgnT
the bid made for that day is the optimal contract computetain a classifierd : 7 — C which, given a featurg¢ € F,
as in Proposition 1, but using theonditional wind power returns a clas#/(f) € C. Several approaches can be adopted
probability distribution of the corresponding class. to estimate the functiod [12]. In this paper, since the
Denote byE = 24P the maximum amount of energy that features are scalar, we adopt the approach based on pairwise
the wind power plant may generate daily, and partition theeparation and Robust Linear Programming (RLP) [13].
interval [0, E) into s contiguous, non overlapping intervals Having the classifierdd available, the last step is to
& =[Fi-1,E;),i=1,...,s, such that determine the optimal bidding strategy for each of the elass
_ C; € C. This boils down to substituting thedf F,,,(-) in (4)
O0=FE<Er< - <BE_<BE=E  (12) \in the conditionalcdf Fy.(w|C;) = Prwn, < w|Ci) for

restricted only to those days belonging to the cldss

ED =h Z w?, (13) IV. EXPERIMENTAL RESULTS

In this section, the bidding strategies previously introetli
wherew';) denotes the average wind power generated duringre validated on experimental data taken from a real Italian
the m-th sampling interval of dayl. Then, the classification wind farm. We denote by OB the optimal bidding strategy of
rule is defined as: Proposition 1. The bidding strategy described in Section |1

deC o EDeg i=1.. . (14) A, which uses wind speed_forecasts and plant power curve
to compute (and offer) wind power forecasts is denoted
where(; represents thé-th day class. Clearly the delivered by WF+PC. The bidding strategy proposed in Section IlI-
daily energyE(?) can be computed only a posteriori. HenceB, which combines the use of wind speed forecasts for
since the bids must be made in advance, dig/classified a classification and Proposition 1 is denoted by WF+OB.
priori on the basis of the corresponding wind speed forscast The considered wind farm is composed of 35 wind tur-
oD = 1,..., M. To this aim, we train an automatic bines with nominal poweP = 2 MW. For each turbine, the

m

classifier, which takes as inputs the wind speed forecad@lowing data are available:

and returns the class the day will likely belong to. Training . generated powezm(d)

is performed by creating a training set from past data of , wind speedu

generated power and wind speed forecasts. First, eachi day , \ind speed forecas@g)

of the training set is assigned to the corresponding trusscla Wherem = 1,... M, d=1,...D, M — 24 and D —

(d _
fCea)tufef‘f(@ éc}’ C Rcfo}r gg;ilr?smgoxp(l}ti)d den a SC"’II"’“L’)O is the number of days spanned by the data set (about
= 5 months of recordings). The data set is split into a training
3 set composed of the data of the first 100 das (= 100)
FO = Z (171(5)) : (15)  and a validation set containing the data of the remaining 50
m=1 days.
This choice is motivated by the fact that total wind energy For the bidding strategy OB, the training set is used to
flowing through a given section is proportional to the cubestimate theedfs ., (-) by building the empiricatdfs with
of the wind speed. The paifC(¥), f(4)), d = 1,...,Dy, the generated power.?. Then, for fixed penaltieg and \
where Dr is the cardinality of the training set, are used taand tolerance, the bidsC,,, are computed using (4). These
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Fig. 3. Example of forecasted (solid) and generated (dashidi power Fig. 4. Bids made with the bidding strategy WF+OB for= 0.1 in
profiles. Scenario |: classe§; (solid), C2 (dashed) and’s (dot-dashed).

bids are repeated every day in the validation phase. Figurdatie classeg,, C, andCs contain days characterized by low,
shows three bid profiles for different values of the tolemncmedium and high energy generation, respectively. Note that
t. Note that, as the toleranc¢es increased, the bids becomebids are always the same for days associated to the same
higher and higher. Indeed, from (4).titends to 1(,,, tends class, while they change from one day to another according
to P for all indexesm. to the different classes the days belong to.

Concerning the bidding strategy WF+PC, data points The performance of the bidding strategies OB, WF+PC
(v,(,‘f),w,(,f)) in the training set are used to estimate the poweand WF+OB has been evaluated using the validation data
curve (10) of each wind turbine by solving a nonlineaiset under two possible scenarios described in the following
least squares problem. Figure 1 shows the power curve .
fitted to the data for one of the considered wind turbined): Scenario |
In the validation phase, the estimated power curve and theln the first scenario, we set= 72 €/MWh, and assume
wind speed forecass? are used to compute the bids, thatthe power exceeding the upper bound is not remunerated
through (11). Recall that, in this case, the bids are differe at all, i.e. A = p. Note that latter choice corresponds to the
from one day to another since they depend on the winghme price scenario considered in [10]. Moreover, we set
speed forecasts. Figure 3 shows an example of bid profiie= 0.2p. The average daily profits for the three bidding
compared with the corresponding actual wind power profilestrategies and for different values of the toleraricare
It can be seen that the wind power forecasts (used as bidsported in Fig 5. By comparing the solid with the dashed
underestimate the actual wind power. This is quite commdine of the figure, it is apparent that WF+OB performs
in the considered data set, and is due to the fact that tiséggnificantly better than OB for all considered valuestof
available wind speed forecasts are inaccurate for the §ite dhis is not surprising and due to the fact that additional
interest (they are averaged at regional level). As a mafter mformation provided by wind speed forecasts makes it
fact, statistically reliable wind forecasts for lead tinfesm possible to offer bids that are closer to the actual reatinat
24 to 36 hours are very difficult to obtain. of the wind power process. Moreover, looking at the dot-

In the case of the bidding strategy WF+OB, the energglashed line of the figure, the unsatisfactory performance of
range [0, E), with £ = 24P = 48 MWh, is partitioned WF+PC is unguestionable. As described above and shown
into three intervals by choosing= 3, £, = 4 MWh and in Figure 3, this is due to the fact that available wind
E, = 12 MWh in (12). Training data are then used to trainspeed forecasts typically underestimate the actual wirddp
a classifierH and to determine the bids,, for each of the acting on the blades of the wind turbines, thus resulting
three classeg;, C, andCs, as described in Section IlI-B. into an underestimate of the generated power. Since the
The resulting classifier has the form: power exceedingl + ¢)C,, is not remunerated at all in

¢ it f<f the f:onsidered scenario, this _explains why fche averagg dail
H(f) = Cl it f < } y (16) profit guaranteed by WF+PC is so low. Notice that WF+PC
2 = 2 yields average profits which are smaller than WF+OB (which
Cs 1 f=f uses the same wind speed forecasts for day classificatidn) an
where f; and f, are thresholds depending on the windeven than OB, which does not use wind forecasts at all. These
turbine (average values afe = 534 and f, = 2802), and the results also suggest that the classification strategy geixpo
featuref is computed from wind speed forecasts accordingn Section Il1I-B is able to extract sufficient informatiorom
to (15). Figure 4 shows the bid profiles for the three classemaccurate wind speed forecasts to improve consistendly th
Differences are apparent and consistent with the fact thhaidding strategy.
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Fig. 5. Average daily profit in Scenario I: OB (solid), WF+OBaghed)

and WF+PC (dot-dashed).

B. Scenario Il

In the second scenario, we spt= 72 €/MWh, and [1]
assume that the power exceeding the upper bound is pe-
nalized, but nevertheless remunerated.ap, i.e. A = 0.5p. 2]
Moreover, we seff = 0.2p as in Scenario |. The average
daily profits for the three bidding strategies and for difer
values of the toleranceare reported in Fig. 6. By comparing
again the solid with the dashed line of the figure, it is
apparent that WF+OB performs significantly better than o4
for all considered values of, thus confirming the benefits
of the classification strategy based on wind speed forecasts]
on performance. Different from Scenario I, also WF+PC
performs better than OB for most of the considered valuegg)
of ¢. In fact, the delivered power exceedirity + ¢)C,, is
remunerated at half the prigein Scenario Il, and this occurs 7
very often since typicallyw,, > C,,. However, WF+OB
always performs better than WF+PC, which confirms the
better use of the additional information made by the formerS!
bidding strategy.

(3]

[9]
V. CONCLUSIONS

In this paper, the problem of wind power optimal bidding;
has been addressed in a scenario where a fixed relative
deviation from the nominal bids is explicitly tolerated by
the energy market regulations. A stochastic optimizatiop y
approach has been adopted, and the optimal bidding stratggg]
has been derived. This strategy depends on the maximum
admissible tolerance and boils down to the optimal strategys;
known in the literature when the tolerance is zero. The
strategy has been embedded in a day classification approach
which exploits wind speed forecasts provided by a mete-
orological service to classify the plant working days. A
numerical comparison of different bidding strategies heesb
performed on real data from an Italian wind farm, showing
that the approach with classification enhances consigtentl
the performance of the bidding strategy, both with respect t
the case without classification and to the case in which bids
are computed simply by offering the wind power forecasts.
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Fig. 6. Average daily profit in Scenario II: OB (solid), WF+(QBashed)
and WF+PC (dot-dashed).

REFERENCES

E. Denny and M. O’Malley, “Wind generation, power syst@pera-
tion, and emissions reductionlEEE Trans. Power Systemsol. 21,
no. 1, pp. 341-347, 2006.

C. Baldi, F. Corti, G. Di Lembo, and F. Nebiacolombo, “Mtaring
and control of active distribution grid,” ifProc. CIRED Workshop
2012 Lisbon, 2012.

G. N. Bathurst, J. Weatherill, and G. Strbac, “Tradingidvigeneration
in short term energy marketslEEE Trans. Power Systemegol. 17,
no. 3, pp. 782-789, 2002.

J. Matevosyan and L. Soder, “Minimization of imbalanassttrading
wind power on the short-term power marketEEE Trans. Power
Systemsvol. 21, no. 3, pp. 1396-1404, 2006.

P. Pinson, C. Chevallier, and G. N. Kariniotakis, “Tnagli wind
generation from short-term probabilistic forecasts of dvipower,”
IEEE Trans. Power Systemeol. 22, no. 3, pp. 1148-1156, 2007.
J. M. Morales, A. J. Conejo, and J. Perez-Ruiz, “Shamrtérading for
a wind power producerlEEE Trans. Power Systemegol. 25, no. 1,
pp. 554-564, 2010.

C. J. Dent, J. W. Bialek, and B. F. Hobbs, “Opportunity doislding by
wind generators in forward markets: Analytical resul&EE Trans.
Power Systemsvol. 26, no. 3, pp. 1600-1608, 2011.

E. Y. Bitar, R. Rajagopal, P. P. Khargonekar, K. Poollad &. Varaiya,
“Bringing wind energy to market,”IEEE Trans. Power Systems
vol. 27, no. 3, pp. 1225-1235, 2012.

L. Ma, S. Luan, C. Jiang, H. Liu, and Y. Zhang, “A review on
the forecasting of wind speed and generated povRefiewable and
Sustainable Energy Reviewsol. 13, no. 4, pp. 915-920, 2009.

E. Y. Bitar, R. Rajagopal, P. P. Khargonekar, and K. RodiThe
role of co-located storage for wind power producers in cotigeal
electricity markets,” inProc. 2011 American Control Conf2011, pp.
3886-3891.

E. McShaneUnified integration Academic Press, 1983.

S. Boucheron, O. Bousquet, and G. Lugosi, “Theory o$siféication:
A survey of some recent advanceESAIM: Probability and Statistics
vol. 9, pp. 323-375, 2005.

K. P. Bennett and O. L. Mangasarian, “Robust linear paogming
discrimination of two linearly inseparable set®ptimization Methods
and Softwargvol. 1, pp. 23-34, 1992.



