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Abstract— This paper studies the connectivity maintenance
problem in linear and nonlinear cyclic pursuit, when different
control gains are assigned to each agent. Feasibility/infeasibility
conditions for this problem are established in both the linear
and nonlinear scenarios using geometric arguments. These con-
ditions elucidate the role played by the control gains, initial
conditions and communication radius of the agents, on the
connectivity of the robotic network.

I. INTRODUCTION

Multi-agent systems and distributed control are nowadays
topics of increasing popularity. As several recent surveys
and books have witnessed [1]–[3], research on these themes
is no more in its infancy, but it entered a maturity stage.
Multiple factors, such as, e.g., the recent technological ad-
vances in wireless networks, processor design and sensor
integration, have contributed to the vigorous growth of this
multidisciplinary research area, that is at the intersection
of system theory, robotics, telecommunications, computer
science and biology.

Cyclic pursuit is a prototypal distributed control problem
in which a group of agents are labeled from 1 to n, and
agent i pursues agent i + 1 modulo n. Different kinematic
models for the agents have been investigated in the literature.
By far, the most extensively studied is the single-integrator.
In [4], the authors have considered single-integrator agents
in cyclic pursuit as one of three possible strategies for
rendezvous. The problem of accelerating the convergence
rate has been addressed in [5] using a hierarchical scheme.
In [6], the authors have proposed a generalization of the
linear cyclic pursuit law by assigning different control gains
to each agent and shown that the rendezvous point can be
controlled by suitably tuning the gains. In [7], the classic
cyclic pursuit strategy has been extended by letting each
agent chases its leading neighbor along the line of sight
rotated by a common offset angle. Recently, in [8], the au-
thors have explored how interconnection topology influences
symmetry in agents’ trajectories and shown that a circulant
communication structure preserves rotation, and in particular
instances, dihedral group symmetries.

Besides the single-integrator, the unicycle model has also
had considerable success in the literature. In the seminal
paper [9], the possible equilibrium formations of unicycles
in cyclic pursuit have been studied. Further results have been
presented in [10] where each unicycle’s forward velocity is
proportional to the distance between its leading neighbor
and itself. In [11] the authors have generalized the results
in [9] to unicycles with different speeds and control gains,
and established a necessary condition for the existence of
equilibria. Other extensions have been recently proposed
in [12], where the collective circular motion of a team
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of unicycles around a virtual reference beacon is studied,
and in [13], where each vehicle’s linear and angular velocity
is chosen to be proportional to the projection of its prey’s
position on its forward and lateral direction, respectively.

An underlying assumption in all the previous works is
that each vehicle can always communicate with its lead-
ing neighbor (from which it receives the position or an-
gular information necessary to compute its control input).
However, since real robots have a limited communication
range (typically modelled as a disk of finite radius centered
at them), this does not always occur in practice. Although
the connectivity maintenance problem is well-known in the
multi-agent systems literature and several original solutions
(most of whom aim at controlling the algebraic connec-
tivity of the underlying communication graph) have been
recently proposed (see, e.g., [14]–[16] and the references
therein), little attention has been devoted to the cyclic pursuit.
In particular, a challenging problem consists in studying
the role played by the control gains, initial conditions and
communication radius of the agents, on the connectivity of
the robotic network. A first step towards this direction has
been taken in [17] for linear cyclic pursuit, where the solution
of the corresponding dynamical system has been analyzed.

Following the general framework proposed in [6], [11],
in this paper we assume different control gains for each agent
and study the connectivity maintenance problem in linear and
nonlinear cyclic pursuit. A detailed characterization of the
single-integrator case is provided and feasibility/infeasibility
conditions for the connectivity maintenance problem are es-
tablished in both the linear and nonlinear scenarios, in terms
of robots’ control gains, initial conditions and communica-
tion radius, using purely geometric arguments.

The rest of the paper is organized as follows. In Sect. II
some background material is presented. The main body of
the article is divided into two parts: we study the connectivity
maintenance problem for single-integrators in Sect. III and
for unicycles in Sect. IV. Simulation results are discussed
in Sect. V. Finally, in Sect. VI, conclusions are drawn and
future research directions are highlighted.

II. MATHEMATICAL BACKGROUND

A. Positive, nonnegative and irreducible matrices

The following definitions recall the notions of positive,
nonnegative, essentially nonnegative and irreducible
matrix [18, pp. 26, 146, 27].

Definition 1 (Positive and nonnegative matrices): A ma-
trix B ∈ IRn×n is positive if all its entries are positive, and
nonnegative if all its entries are nonnegative. �

Definition 2 (Essentially nonnegative matrices): Let I be
the n × n identity matrix. A matrix B ∈ IRn×n is essen-
tially nonnegative if B + σI is nonnegative for all real σ
sufficiently large. �



Definition 3 (Irreducible matrices): A matrix B ∈ IRn×n

is cogredient to a matrix E if for some permutation matrix P,
P B PT = E. B is reducible if it is cogredient to E =

[
C 0
F D

]
,

where C and D are square matrices, or if n = 1 and B = 0.
Otherwise, B is irreducible. �

The following lemma is drawn from [18, p. 146, Th. 3.12].
Lemma 1: Let B ∈ IRn×n be an essentially nonnegative

matrix. Then, for all t ≥ 0, eBt is nonnegative. Moreover,
eBt is positive for some (and hence all) t > 0 if and only if
B is irreducible.

B. Positively invariant sets
The material of this section is drawn from [19, Ch. 4].

Consider the following autonomous system,

ξ̇(t) = f (ξ(t)). (1)

Suppose that (1) is defined in a proper open set O ⊆ IRn

and there exists a globally defined solution (i.e., for all t ≥ 0)
for every initial condition ξ(0)∈O.

Definition 4 (Positive invariance): The set S ⊆ O is said
to be positively invariant with respect to (1), if every solution
of (1) with initial condition ξ(0) ∈ S is such that ξ(t) ∈ S
for t > 0. �

Definition 5 (Bouligand’s tangent cone): Given a closed
set S, the tangent cone to S at ξ is defined as TS(ξ) =
{z ∈ IRn | lim infτ → 0

1
τ dist(ξ + τ z, S) = 0} where

dist(ξ + τ z, S) � infy∈S ‖ξ + τ z − y‖. �
Note that if S is a polyhedral set and its descrip-

tion in terms of hyperplanes S = {z∈ IRn |wT
i z ≤

ζi, wi ∈ IRn, i ∈ {1, 2, . . . , �}}, is available, then the
tangent cone to S at ξ is simply given by TS(ξ) =
{z∈ IRn |wT

i z ≤ 0 for all i such that wT
i ξ = ζi}.

Theorem 1 (Nagumo): Consider system (1) and assume
that for each initial condition ξ(0) in an open set O, it admits
a unique solution defined for all t ≥ 0. Let S ⊂ O be a
closed set. Then S is positively invariant for system (1) if and
only if the velocity vector satisfies the following condition:

f(ξ) ∈ TS(ξ), ∀ ξ ∈ S. (2)

Note that condition (2) is meaningful only for ξ ∈ ∂S,
since for ξ ∈ int{S}, TS(ξ) ≡ IRn, (∂S and int{S} denote
respectively the boundary and the interior of the set S).

III. LINEAR CYCLIC PURSUIT

Consider n > 2 mobile robots Ri, i ∈ {1, 2, . . . , n} in
the plane, and suppose that robot i pursues the next i + 1
modulo n (all robot indices i + 1 are henceforth evaluated
modulo n). We will assume that the motion of robot i is
modelled by the dynamics,

ṗi(t) = ui(t), i ∈ {1, 2, . . . , n}, (3)

where pi(t) = [xi(t), yi(t)]
T denotes the position of robot i

at time t and ui(t) its control input. Following the exten-
sion to the classic cyclic pursuit proposed in [6], we will
suppose that,

ui(t) = ki(pi+1(t)− pi(t)), (4)

where the scalar ki �= 0 is the control gain of robot i.
Note that a special case of the control law (4) was considered
in [9, Sect. 3], where the gains of the robots are assumed to
be positive and all identical. The xi- and yi-coordinates of

robot i evolve independently, hence they can be decoupled
into two identical linear systems of the form:

q̇(t) = A q(t), (5)

where

A =

⎡
⎢⎢⎢⎢⎣

−k1 k1 0 · · · 0 0
0 −k2 k2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −kn−1 kn−1

kn 0 0 · · · 0 −kn

⎤
⎥⎥⎥⎥⎦
,

and q = [x1, x2, . . . , xn]
T or q = [y1, y2, . . . , yn]

T.
Before addressing the connectivity maintenance problem,

that is the main focus of this paper, we present a suite of
results that are useful to gain some insight into the geometric
properties of system (5). The next proposition has been
proved in [6, Th. 4].

Proposition 1: Consider system (3) with control input (4).
Then we have,

n∑
i=1

1

ki
pi(t) =

n∑
i=1

1

ki
pi(0), ∀ t > 0. (6)

If the control gains are all strictly positive, as we hence-
forth suppose, it follows immediately from (6) that the robots
eventually rendezvous at the point (see Fig. 1),

pren =
n∑

i=1

1

ki
∑n

j=1
1
kj

pi(0).

Note that pren represents the weighted mean of the initial po-
sitions pi(0) of the robots with weights Wi =

∏n
j=1,j �=i kj ,

i ∈ {1, 2, . . . , n}.
It has also been shown in [6, Th. 5] that if ki > 0 for all i,

a point p∗ is a rendezvous point if and only if p∗ ∈ co{D}
where D � {p1(0), p2(0), . . . , pn(0)} and co{D} denotes
the convex hull of the set D. In the next proposition we shed
further light into this property by characterizing the locus of
trajectories of the n robots.

Proposition 2 (Locus of trajectories): Consider system
(3) with control input (4) and let ki > 0 for all i.
Then, we have:

pi(t) ∈ int{co{D}}, ∀ t > 0, i ∈ {1, 2, . . . , n}. (7)

Proof: Condition (7) is verified if and only if eAt

satisfies,
eAt 1 = 1, ∀ t > 0, (8)

and
eAt is positive, ∀ t > 0, (9)

where 1 denotes the vector of n ones. In fact, note that

pi(t) =
n∑

j=1

(eAt)ij pj(0), ∀ t > 0, i = {1, 2, . . . , n},

(10)
where (eAt)ij denotes the (i, j)-th entry of matrix eAt.
To prove condition (8), it is sufficient to rewrite eAt as
its power series expansion and to note that A1 = 0.
Condition (9) easily follows from Lemma 1: in fact, matrix
A is irreducible, and essentially nonnegative if ki > 0 for all
i ∈ {1, 2, . . . , n}.
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Fig. 1. Trajectory of 4 robots with gains k1 = 1, k2 = 3, k3 = 4 and
k4 = 2, rendezvousing at pren. The sides of the quadrilaterals with vertices
p1(t), p2(t), p3(t), p4(t) are drawn every 0.5 seconds (gray).

The following Prop. 3 characterizes the time evolution of
the area of the convex hull of the positions of the n robots,
and the time evolution of the perimeter of the polygon whose
vertices are represented by the positions of the n vehicles
(see Fig. 1). The next lemma is instrumental in proving
Prop. 3 and shows that if the robots are not collinear at the
initial time, they will never be collinear.

Lemma 2 (Collinearity of the robots): If p1(0), p2(0),
. . . , pn(0) are not collinear, then p1(t), p2(t), . . . , pn(t)
are not collinear for every t > 0.

Proof: By contradiction, suppose that there is a time
instant t̄ > 0 at which the robots are collinear. This means
that there exists a vector b ∈ IR2 and a scalar c ∈ IR
such that,

pi(t̄)
T b = c, i ∈ {1, 2, . . . , n}. (11)

Define si � pi(0)
T b and s � [s1, s2, . . . , sn]

T . Owing
to (10), the equations in (11) can be rewritten in matrix
form as,

eAt̄ s = c1. (12)

Since a matrix exponential eX is always invertible and(
eX

)−1
= e−X, the unique solution of (12) is,

s = c e−At̄ 1 = c1, (13)

where we have exploited the fact that e−At̄ 1 = 1. Recalling
the definition of s, equation (13) means that pi(0)

T b = c,
i ∈ {1, 2, . . . , n}. Hence, the robots are initially collinear,
thus contradicting the hypothesis.

Note that the assumption of strictly positive control gains
is not mandatory for Lemma 2. In the next proposition
we will use the symbol A(V) to denote the area of the convex
polygon V ⊂ IR2.

Proposition 3: Let us suppose that p1(0), p2(0), . . . ,
pn(0) are not collinear and let ki > 0 for all i. Then, the
following properties hold for t → +∞:

i) A(co{p1(t), . . . , pn(t)}) monotonically decreases
to zero.

ii) The perimeter P(t) of the polygon with vertices p1(t),
p2(t), . . . , pn(t) monotonically decreases to zero.

Proof: Owing to Prop. 2, at a generic time instant
t1 > 0 robot i lies in the interior of the convex hull
of the initial positions of the n agents, i.e., pi(t1) ∈
int{co{D}}, ∀ t1 > 0, i ∈ {1, 2, . . . , n}. This means
that co{p1(t1), . . . , pn(t1)} ⊂ co{D}, ∀ t1 > 0. As a
consequence, if we consider a second time instant t2, with
t2 > t1, it easily follows that,

co{p1(t2), . . . , pn(t2)} ⊂ co{p1(t1), . . . , pn(t1)}, ∀ t2 > t1.
(14)

Since by hypothesis p1(0), p2(0),. . . , pn(0) are not collinear,
then, by Lemma 2, p1(t), p2(t),. . . , pn(t) are not collinear
for every t > 0, and A(co{p1(t), . . . , pn(t)}) �= 0
for every finite time t. Therefore, inclusion (14) implies
A (co{p1(t2), . . . , pn(t2)}) < A (co{p1(t1), . . . , pn(t1)}),
for all t2 > t1, from which part i) of the statement follows.

Let us now prove part ii). The perimeter of the polygon
with vertices p1(t), p2(t), . . . , pn(t) is given by,

P(t) =
n∑

i=1

‖pi(t)− pi+1(t)‖. (15)

The time derivative of (15) along the trajectories of sys-
tem (5) is,

Ṗ =

n∑
i=1

ki+1
(pi − pi+1)

T(pi+1 − pi+2)

‖pi − pi+1‖
− ki ‖pi − pi+1‖

=

n∑
i=1

ki+1

‖pi − pi+1‖
[
(pi − pi+1)

T(pi+1 − pi+2)

−‖pi − pi+1‖ · ‖pi+1 − pi+2‖
]
,

which is always nonpositive by the definition of scalar
product. Note that Ṗ(t) = 0 only if all the robots are aligned
at time t > 0, but this can never happen by our hypothesis of
non-collinear agents at time t = 0 and by Lemma 2. Hence,
P(t) is monotonically decreasing.

Note that for n = 3, the area A(t) of the triangle with
vertices p1(t), p2(t) and p3(t), decreases to zero according
to the simple formula A(t) = e−(k1+k2+k3)t A(0).

In order to make our cyclic pursuit model more realistic,
let us now introduce suitable connectivity constraints among
the robots.

Definition 6 (Connectivity constraints): Let us suppose
that robot Ri+1 has a communication set modeled as a
disk of finite radius r. Ri+1 is said to be connected with
robot Ri at time t (to which it transmits the position
information pi+1(t) necessary for the computation of the
control input ui(t)), if Ri is within its communication disk
at time t, i.e.,

‖pi(t)− pi+1(t)‖ ≤ r. (16)
�

If the robots have limited communication capabilities, then
there will exist trajectories in which the connectivity of the
robots is preserved and “critical trajectories” leading to a
connectivity loss. Note that the fulfillment of condition (16)
for all t ≥ 0 and for all i, depends upon three factors:
the control gains ki of the robots, the initial positions pi(0),
and the communication radius r.

In the next theorem, the main result of this section,
we adopt a geometric viewpoint and show the role played
by these factors on the connectivity of the robotic network.



Theorem 2 (Connectivity maintenance condition):
Consider system (3) with control input (4), and let ki > 0
for all i. Then, for every connected initial condition
(i.e., for every pi(0) such that ‖pi(0) − pi+1(0)‖ ≤ r,
i ∈ {1, 2, . . . , n}), the robots are connected for all t > 0,
if and only if

k1 = k2 = . . . = kn. (17)

Proof: Let us first prove the necessity of condition (17).
Consider the first pair of robots R1 and R2, and suppose
that they are in a critical connectivity configuration, i.e.,
‖p1 − p2‖ = r. We want to study under which conditions
on the gains k1 and k2, the following inequality holds:

d

dt

(1
2
‖p1(t)− p2(t)‖2

)
= k2(p1(t)− p2(t))

T(p2(t)− p3(t))

− k1 ‖p1(t)− p2(t)‖2 ≤ 0,
(18)

that is (p1−p2)
T(p2−p3) ≤ k1

k2
r2 being ‖p1−p2‖2 = r2.

By simple geometric arguments (see Fig. 2), we note that
the solution of the following problem,

max
p1, p2, p3 ∈ IR2

(p1 − p2)
T(p2 − p3)

s.t. ‖p1 − p2‖ = r, ‖p2 − p3‖ ≤ r,

is exactly equal to r2. Therefore, we obtain the following
condition on the gains k1 and k2:

k1 ≥ k2. (19)

By repeating the same procedure as above for the other n−1
pairs of robots (namely, R2 and R3, R3 and R4, . . . , Rn

and R1), we end up with the following additional constraints
on the controller gains:

k2 ≥ k3, . . . , kn−1 ≥ kn, kn ≥ k1. (20)

Putting (19) and (20) together, condition (17) is found.
For the sufficiency, let us suppose that k1 = k2 = . . . =

kn = k. Consider again the first pair of robots R1 and R2.
Condition (18) becomes in this case:

d

dt

(1
2
‖p1(t)− p2(t)‖2

)
= k

[
(p1(t)− p2(t))

T(p2(t)− p3(t))

−‖p1(t)− p2(t)‖2
]
.

(21)
If we now suppose that R1 and R2 are in a crit-
ical connectivity configuration, i.e., ‖p1 − p2‖ = r

R1

R2

R3

Rnp1 − p2

p2 − p3

p

Fig. 2. The projection of vector p2 − p3 onto p1 − p2 is the vector

p =
(p1 − p2)

T(p2 − p3)

r2
(p1 − p2).

βi

Ri

αi

ρiRi+1

Fig. 3. Parameters of the nonlinear cyclic pursuit model.

(and that ‖p2 − p3‖ ≤ r), then it turns out that (21) is
nonpositive. By repeating the same reasoning for the other
pairs of robots, we deduce that the agents are connected
for all t > 0.

Remark 1: It is worth emphasizing that condition (17)
of Th. 2 is necessary and sufficient for connectivity main-
tenance, for every connected initial condition. Note that if
the control gains are not identical, there will always exist a
connected initial condition and a finite time instant at which
at least one of the agents loses the connectivity. �

IV. NONLINEAR CYCLIC PURSUIT

In this section we extend the scenario studied in Sect. III,
to one in which each robot is an unicycle,

ẋi(t) = vi(t) cos(θi(t)),

ẏi(t) = vi(t) sin(θi(t)), i ∈ {1, 2, . . . , n},
θ̇i(t) = ωi(t),

where [xi(t), yi(t)]
T ∈ IR2 denotes the position of robot i

at time t, θi(t) ∈ IR its heading (note that θi(t) is allowed
to take values in IR in order to avoid discontinuities in the
angular control we will design later in this section), and
[vi(t), ωi(t)]

T its forward and angular velocities. In order
to write a relative model of robots’ dynamics, following [9,
Sect. IV], we introduce the three new variables ρi, αi and βi,
where ρi > 0 denotes the distance between robot Ri and
robot Ri+1, αi is the difference between the i-th robot’s
heading and the heading that would take it directly toward
its leading neighbor, and angle βi is defined as in Fig. 3.
After some algebraic manipulation, the following equations
in the new variables ρi, αi and βi are obtained [9, Sect. IVA]:

ρ̇i = −vi cosαi − vi+1 cos(αi + βi),

α̇i =
1

ρi

[
vi sinαi + vi+1 sin(αi + βi)

]
− ωi,

β̇i = ωi − ωi+1.

(22)

In analogy with (4) and similarly to [11, Sect. 2], let us
choose the following controls for robot i: vi = 1 and
ωi = ki αi, ki > 0. Substituting these controls into (22),
yields a system of n cyclically interconnected subsystems of
the form:

ρ̇i = − cosαi − cos(αi + βi),

α̇i =
1

ρi
[ sinαi + sin(αi + βi) ]− ki αi,

β̇i = ki αi − ki+1 αi+1.



Let ξi � [ρi, αi, βi]
T and ξ � [ξT

1, ξ
T
2, . . . , ξ

T
n]

T, then the
overall system will be of the form:

ξ̇ = f(ξ). (23)

The equilibria ξ̄ of (23) for ki = k, i ∈ {1, 2, . . . , n}, have
been studied in [9, Th. 5]. As in Sect. III, in order to make
our nonlinear cyclic pursuit model more realistic, we intro-
duce suitable connectivity constraints among the robots. In
the notation of this section, we will say that robot Ri+1 is
connected with robot Ri at time t if ρi(t) ≤ r (cf. Def. 6).
The following theorem sheds some light into the role played
by the control gains, initial pose and communication radius
of the unicycles, on the connectivity of the multi-agent
system. The proof is based on Th. 1.

Theorem 3: Consider the system (23). For every choice
of the positive control gains k1, k2, . . . , kn and for every
communication radius r, there always exist a connected
initial condition and a finite time t∗, such that ρi(t

∗) > r
for some i ∈ {1, 2, . . . , n}.

Proof: Let us define the following polyhedral set S:

S �
{
[ρi, αi, βi]

T | 0 < rm ≤ ρi ≤ r, |αi| ≤ Γα,

|βi| ≤ Γβ, i ∈ {1, 2, . . . , n}
}
,

(24)

where rm, Γα, Γβ are positive constants. Γα, Γβ are bounds
introduced to render S compact. Note that if we find at
least one point ξ∗ ∈ ∂S such that f(ξ∗) /∈ TS(ξ∗), then the
thesis is proved. The polyhedral set (24) admits the following
description in terms of hyperplanes,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
−1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 −1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · −1 0 0
0 0 0 · · · 0 1 0
0 0 0 · · · 0 −1 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
−rm
Γα

Γα

Γβ

Γβ
...
r

−rm
Γα

Γα

Γβ

Γβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us check condition (2) on vertex v =
[ r, −Γα, Γβ , r, Γα, Γβ, . . . , r, Γα, Γβ ]

T of S. It is
easy to verify that,

TS(v) =
{

z ∈ IR3n
∣∣

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0
0 −1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0...

...
...

...
. . .

...
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

z ≤

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0...
0

⎤
⎥⎥⎥⎥⎥⎦
}
,

(25)
and

f(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− cosΓα − cos(−Γα + Γβ)
1

r
[− sinΓα + sin(−Γα + Γβ) ] + k1 Γα

−Γα(k1 + k2)
...

− cosΓα − cos(Γα + Γβ)
1

r
[ sinΓα + sin(Γα + Γβ) ]− kn Γα

Γα(kn + k1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Combining (26) with (25) we obtain 3n inequalities, the last
of which is k1 ≤ −kn, that is never satisfied being all the
control gains positive by hypothesis.

Note that differently from the linear case, in nonlinear
cyclic pursuit there does not exist a choice of the control
gains that guarantees the connectivity among the robots at
all times, for every connected initial condition.

V. SIMULATION RESULTS

To illustrate Th. 2, simulation experiments have been
performed with a team of n = 4 robots. Fig. 4 shows
max t∈ [0, 10] ‖pi(t) − pi+1(t)‖, i ∈ {1, 2, 3, 4}, (black, red,
blue, green dots), for 20 random generated connected initial
conditions in a 6 × 10 m box, when k1 = . . . = k4 = 1.
The communication radius is r = 5 m, (dashed line). As it is
evident from the figure, all the dots lie below the dashed line,
thus confirming the sufficiency of condition (17), (i.e., if the
control gains are identical, the connectivity is preserved at
all times, for every connected initial condition).

Fig. 5(a) shows the trajectory of four robots moving from
a connected initial condition with control gains k1 = 1,
k2 = 2 k3 = 3, k4 = 4. Fig. 5(d) reports the time history
of ‖pi(t) − pi+1(t)‖, i ∈ {1, 2, 3, 4}: the communication
radius is r = 3 m (dashed line). From Fig. 5(d), we see the
connectivity is preserved at all times. The robots eventually
rendezvous at the point (0.22, 3.08). Fig. 5(b) shows the
trajectory of four robots moving from the same connected
initial condition as in Fig 5(a), but with control gains k1 =
0.1, k2 = 18, k3 = 0.5, k4 = 14, (as before, r = 3 m). From
Fig. 5(e), we observe that this time robots R2, R1 and R4,
R3 lose the connectivity respectively 5 ms and 8 ms after
the beginning of the simulation (cf. Remark 1). Note that to
improve the readability of Figs. 5(b), 5(e), we did not stop
the simulation when the connectivity between the robots is
lost: in fact, we assumed that the agents always receive the
position information from their leading neighbors.

In the simulation results shown in Figs. 5(c), 5(f), four
unicycles start moving with the same heading θi(0) =
π/2 rad, i ∈ {1, 2, 3, 4}, from the vertices of a square of
side 4 m centered at the origin. The communication radius
is r = 5 m, hence all the robots are initially connected.
Fig. 5(c) shows the trajectory of the four unicycles and
Fig. 5(f) the time history of ρi(t), i ∈ {1, 2, 3, 4}, when
k1 = . . . = k4 = 0.75. Note that differently from the linear
cyclic pursuit, in this case, even though all the control gains
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Fig. 4. Maxima of ‖pi(t) − pi+1(t)‖, t ∈ [0, 10], i ∈ {1, 2, 3, 4}
(black, red, blue, green dots), for 20 random generated connected initial
conditions: k1 = . . . = k4 = 1 and r = 5 m (dashed line).
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Fig. 5. First column: Trajectory of the four robots for k1 = 1, k2 = 2 k3 = 3, k4 = 4 and time history of ‖pi(t) − pi+1(t)‖, i ∈ {1, 2, 3, 4};
Second column: Trajectory of the four robots for k1 = 0.1, k2 = 18, k3 = 0.5, k4 = 14 and time history of ‖pi(t) − pi+1(t)‖, i ∈ {1, 2, 3, 4};
Third column: Trajectory of the four unicycles for k1 = . . . = k4 = 0.75 and time history of ρi(t), i ∈ {1, 2, 3, 4}.

are identical, robots R1 and R4 lose the connectivity at time
t∗ = 0.96s (see Fig. 5(f) and cf. Th. 3). As above, in order
to make Figs. 5(c), 5(f) clearly readable, we did not interrupt
the simulation when the connectivity between robots R1 and
R4 is lost. Thus, the unicycles eventually reach the equilib-
rium configuration ξ̄ = [2.4, π/4, π/2, . . . , 2.4, π/4, π/2]T

(see Fig. 5(c) and cf. [9, Sect. V]).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the connectivity maintenance
problem in linear and nonlinear cyclic pursuit, when different
control gains are assigned to the agents. In the single-
integrator case we have shown that for every connected initial
condition, the connectivity among the robots is preserved
at all times if and only if the control gains are identical
(Theorem 2). In the nonlinear scenario, Theorem 3 states
that for every choice of the positive control gains and for
every communication radius, there always exists a connected
initial condition from which the robots lose the connectivity.

Future research aims at extending our geometric analysis
of connectivity to robotic networks of general topology,
and at designing distributed control strategies for connection
recovery and connection loss prevention. We also plan to
study the effect of communication errors/delays on network’s
connectivity. In nonlinear cyclic pursuit, two research di-
rections are currently under investigation. The first one is
to determine the subset of connected initial conditions that
guarantee the connectivity of the robots at all times, for an
assigned set of control gains. Vice versa, the second is to
identify all the control gains that guarantee the connectivity
of the unicycles at all times, for a given subset of connected
initial conditions.
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