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Abstract— This paper analyzes two classes of consensus
algorithms in presence of bounded measurement errors. The
protocols taken into account adopt an updating rule based
either on constant or vanishing weights. The bounded error
assumption allows one to cast the consensus problem in a
set-membership framework, and to study the team agreement
in terms of the evolution of the feasible state set. It is
shown that consensus cannot be guaranteed with respect to all
possible noise realizations. Moreover, bounds on the asymptotic
difference between the states of the agents are explicitly derived,
in terms of the bounds on the measurement noise and the
eigenvalues of the weight matrix.

I. INTRODUCTION

In recent years, consensus algorithms have received in-

creasing interest within the context of multi-agent systems.

The ability of a team of interacting agents to reach an

agreement on some quantity of interest is often a key issue

for the solution of many problems in different application

domains, like cooperative control of autonomous vehicles,

information fusion, distributed sensor networks (see [1]

and reference therein). Several solutions to the consensus

problem have been proposed by now and nice theoretical

results are available both in case of stationary and time-

varying communication networks (e.g., see [2],[3],[4] and

the survey [5])

Compared to the huge amount of papers analyzing how the

topology of the communication graph affects the convergence

properties of the consensus protocols, relatively few ones

have addressed the behavior of consensus algorithms in

presence of noisy measurements. In [6] classical consensus

algorithms are shown to be input-to-state stable, thus im-

plying that small disturbances do not completely disrupt the

team agreement. A consensus protocol mimicking stochastic

approximation algorithms with a decreasing step size has

been proposed in [7]. The authors show that in case of noisy

measurements, the adoption of vanishing weights guarantees

the convergence in probability of the agents’ states to the

same value. A different description of the uncertainty is

adopted in [8], where the measurement noise is only as-

sumed to be bounded. A rule for selecting an estimate of

the neighbors’ state among all those compatible with the

measurements and the noise bound is presented. The overall

consensus protocol ensures the convergence of the states in

a tube whose radius depends on the maximum amplitude of

the measurement noise.

In this paper we analyze two classes of consensus algo-

rithms in a set-theoretic framework. Under the assumption of

unknown but bounded measurement errors, the feasible state

set (i.e. the set of all states compatible with the bounds on the

noise) is explicitly derived. This kind of sets naturally arise in

the context of the set-membership estimation theory, which

was originally developed for dynamic system identification

and filtering problems, with the specific purpose of guar-

anteeing a worst case bound in the estimation of the model

parameters or of the state vector [9],[10]. The evolution of the

feasible state set is used to evaluate the asymptotic level of

agreement of the team. Linear consensus protocols adopting

both constant weights and vanishing weights are considered,

in case of undirected and stationary communication graph.

It is shown that for both types of protocols, asymptotic

consensus cannot be guaranteed with respect to all possible

noise realizations, and bounds on the asymptotic difference

of the agents’ states are explicitly derived, as a function of

the bounds on the measurement errors and the eigenvalues

of the weight matrix.

The paper is organized as follows. Section II presents

an overview of the consensus protocols to be analyzed. In

Section III the consensus problem is formulated in a set-

membership framework, under the assumption of bounded

measurement errors. The main contributions of the paper are

presented in Section IV, where the asymptotic difference

among the agents’ states is related to the bounds on the

measurement noise and to the weights used in the consensus

protocol. Section V presents some numerical results illus-

trating the behavior of the algorithms for different noise

realizations. Finally, in Section VI some conclusions are

drawn and future directions of research are outlined.

II. MOTIVATION AND RELATED WORK

Consider a system of n agents V = {1, . . . , n} com-

municating among them according to an undirected graph

G = (V, E), where V denotes the vertex set and E ⊆ V × V
is the edge set. An edge (i, j), i 6= j, belongs to E if and

only agents i and j can communicate. Since G is undirected,

if (i, j) ∈ E then also (j, i) ∈ E . A path between two

vertices i, j ∈ V is a sequence of edges (lk, lk+1) ∈ E ,



k = 1, . . . , s − 1 such that l1 = i and ls = j. The graph G
is connected if there exists a path between any two nodes

i, j ∈ V . The valence matrix D of G is the n × n diagonal

matrix whose i-th entry on the diagonal corresponds to the

degree of vertex i, i.e. to the number of edges incident on i.
The adjacency matrix A of G is the n×n matrix whose ij-th

entry is 1 if (i, j) ∈ E , 0 otherwise. The Laplacian L of G is

the n× n matrix L = D −A. Finally, we denote by Ni the

set of neighbors of agent i, i.e. Ni = {j ∈ V : (i, j) ∈ E}.

Let xi(t) ∈ R be the state of agent i at time t ∈ N. At

the same time instant, agent i is given a noisy information

of the state of all its neighbors

y
(i)
j (t) = xj(t) + v

(i)
j (t), i = 1, . . . , n, j ∈ Ni. (1)

The quantities y
(i)
j (t) can be thought of as measurements

taken by agent i on the state of its neighbors, or as informa-

tion sent to agent i through the communication network. In

both cases, it is realistic to assume that each agent does not

have access to the actual value of its neighbors’ state. The

term v
(i)
j (t) models the uncertainty affecting the knowledge

of the state of agent j, from agent i’s viewpoint.

Each agent updates its state according to the equation

xi(t + 1) = xi(t) + ui(t), i = 1, . . . , n,

where ui(t) is the input of the i-th agent. If we denote

by Y (i)(t) = {y
(i)
j (t)}j∈Ni

all the information available

to agent i at time t, the objective of a consensus algo-

rithm is to find for each agent a control law ui(t) =
f

(

xi(t), Y
(i)(t)

)

, i = 1, . . . , n, ensuring the convergence

of the agents’ state to a common value, i.e. such that

lim
t→∞

|xi(t) − xj(t)| = 0, i, j = 1, . . . , n.

In the ideal case of noiseless information (i.e., when

v
(i)
j (t) = 0, ∀t), a number of different solutions have been

proposed, both for stationary and time-varying topology of

the communication network, as well as for directed and

undirected communication graphs [1],[5]. The vast majority

of the proposed algorithms adopt a feedback control law

f(·) which is a linear function of the agent states, the so

called linear consensus protocols. When the topology of

the communication graph is stationary, a linear consensus

protocol takes on the form

xi(t + 1) = xi(t) +
∑

j∈Ni

wij(xj(t) − xi(t)), (2)

for i = 1, . . . , n. If we stack the states of all agents into a

single vector x(t) = [x1(t) . . . xn(t)]′, equations (2) can be

rewritten as

x(t + 1) = (I + W )x(t) (3)

where the entry (i, j) of the matrix W is given by

[W ]ij =



















wij if j ∈ Ni

wii = −
∑

j∈Ni

wij if i = j

0 otherwise

(4)

One may think to the coefficient wij as a weight associated

to the edge (i, j). In this case, the matrix W is symmetric

(since the graph is undirected). Clearly, the communication

graph determines the structure of W . It is well-known that if

the graph is connected then there exist many possible choices

of the weight matrix ensuring consensus, and if in addition

W is symmetric the consensus value is simply the average of

the initial agents’ states (average consensus problem [11]).

A typical example of such a matrix is

W = −
1

n
L, (5)

where L denotes the Laplacian of the communication graph.

When the true state is not accessible, and noisy measure-

ments like in (1) are used to replace the actual state value,

the updating rule (2) becomes

xi(t+1) = xi(t)+
∑

j∈Ni

wij(xj(t)−xi(t))+
∑

j∈Ni

wijv
(i)
j (t) (6)

for i = 1, . . . , n. Let

v(t) = [v(1)(t), . . . , v(n)(t)]′, v(i)(t)=
∑

j∈Ni

wijv
(i)
j (t), (7)

then equations (6) can be rewritten in matrix form as

x(t + 1) = (I + W )x(t) + v(t). (8)

Due to the presence of the forcing term v(t), consensus

cannot be guaranteed anymore. However, using input-to-

state stability arguments, it can be shown that the maximum

difference between any two states remains bounded provided

that the measurement noise v
(i)
j (t) is bounded, and asymp-

totically vanishes if v
(i)
j (t) tends to zero [6].

On the other hand, in order to make the effect of a

persistent noise tend to zero, the measurements y
(i)
j (t) should

be weighted lesser and lesser over time. Let a(t) be a positive

function such that limt→∞ a(t) = 0. If the weights wij in (6)

are replaced by a(t)wij , the updating rule becomes

x(t + 1) = (I + a(t)W )x(t) + a(t)v(t). (9)

In this case the agents’ states evolve according to a time-

varying linear system, fed by a vanishing input. If the mea-

surement disturbances are modeled as independent stochastic

variables, with zero mean and finite variance, then choosing

a(t) ∼ 1
tr , 0.5 < r ≤ 1, ensures that the state of all agents

converges in probability to the same limit [7].

Driven by the aforementioned observations, the objective

of this paper is twofold. Suppose W is selected so as to

guarantee consensus in the noise-free case (see equation

(3)). Moreover, assume that the measurement noise v
(i)
j (t)

is bounded. The first goal is to quantify the difference

between the states as a function of the noise bound, in case

constant weights are used (equation (8)). The second goal

is to study the achievement of consensus when vanishing

weights are adopted (equation (9)). Also in this case, should

consensus not be guaranteed, the relation between state

disagreement and noise bound will be pursued. The bounded

error assumption naturally leads to cast these problems in a



set-membership framework, as it will be shown in the next

section.

III. SET-THEORETIC CONSENSUS

Let the state x(t) be updated according to equation (8),

where the input v(t) is given by (7). Assume that the

measurement noise is unknown-but-bounded (UBB), i.e.

|v
(j)
i (t)| ≤ ǭ, i = 1, . . . , n, j ∈ Ni, ∀t, (10)

where ǭ > 0 is a known quantity. The UBB assumption on

the measurement noise immediately reflects on the possible

values taken by the disturbance v(t), i.e.

|v(i)(t)| ≤ ǫi, (11)

where

ǫi = ǭ
∑

j∈Ni

wij = ǭ|wii|. (12)

For a given initial condition x(0), it is possible to define the

feasible state set (FSS) XC(t) through the recursion

XC(0) = {x(0)}

XC(t + 1) = (I + W )XC(t) + DǫB∞
(13)

where B∞ denotes the unit ball in the ∞-norm, defined as

‖x‖∞ = maxi |xi|, and Dǫ is the diagonal matrix whose i-th
entry on the diagonal is equal to ǫi. Algebraic operators in

(13) are to be intended as set operators, i.e. given the sets

S,S1,S2 ⊆ R
n, and a matrix M ∈ R

n×n

MS = {y ∈ R
n : y = Sx, x ∈ S},

S1 + S2 = {y ∈ R
n : y = x1 + x2, x1 ∈ S1, x2 ∈ S2}.

The set DǫB∞ is a box in R
n and contains all the possible

realizations of the disturbance v(t) which satisfy the UBB

assumption (10). Consequently, the set XC(t) contains all the

states at time t compatible with the initial condition x(0) and

the error bounds (10). By expanding the recursion (13), it can

be checked that the feasible state set at time t can be written

as

XC(t)={x∈R
n :x=xc(t)+T(t)α, α∈R

tn, ‖α‖∞≤1} (14)

where

xc(t) = F tx(0), (15)

T (t) = [T1 T2 . . . Tt] ∈ R
n×tn, (16)

and

F = I + W, (17)

Ti = F t−iDǫ ∈ R
n×n, i = 1, . . . , t. (18)

The set XC is a parpolygon in R
n, with center xc and edges

parallel to the columns si of T = [s1 . . . stn]. All the

elements of XC can thus be obtained by adding to xc a linear

combination of the segments identified by the columns si of

T [10].

Similarly to the case of constant weights, if the state

evolves according to equation (9), under the UBB assump-

tion (10) the feasible state set XV (t) at time t is given by

XV (0) = {x(0)}

XV (t + 1) = (I + a(t)W )XV (t) + a(t)DǫB∞
(19)

Hence the feasible state set is still a parpolygon like (14),

but with different center and edges

XV(t)={x∈R
n :x=xc(t)+T(t)α, α∈R

tn, ‖α‖∞≤1} (20)

where

xc(t) = Φ(t, 0)x(0), (21)

T (t) = [T1 T2 . . . Tt] ∈ R
n×tn, (22)

and

F (t) = I + a(t)W, (23)

Φ(t2,t1)=F (t2−1)F (t2−2) . . . F (t1), 0≤ t1 <t2, (24)

Φ(t, t) = I, (25)

Ti = a(i − 1)Φ(t, i)Dǫ ∈ R
n×n, i = 1, . . . , t. (26)

Since the states of the agents at time t are constrained

to belong to the parpolygon X(·)(t), the achievement of

consensus can be established by studying the time evolution

of X(·)(t). Specifically, consensus is reached if and only if all

the segments defining X(·)(t) (the columns of matrix T (t))
eventually align with the vector 1 = [1 1 . . . 1]′ ∈ R

n, i.e. if

and only if the parpolygon degenerates into a line. Moreover,

should this not happen, a measure of the disagreement of

the team is given by the maximum size of the projection of

X(·)(t) on the subspace orthogonal to 1, denoted by S1
⊥

.

As a matter of fact, let P 1⊥ = I − 11
′

n
be the projector of a

vector of R
n on S1

⊥

. Then the projection of X(·)(t) on S1
⊥

is given by

X 1
⊥

(·) (t) = {x1
⊥

∈ R
n : x1

⊥

= P 1⊥x, x ∈ X(·)(t)}.

and

r(·)(t) = max
x∈X1⊥

(·)
(t)

‖x‖2 (27)

is the maximum deviation from consensus (in the 2-norm)

at time t.

IV. CHARACTERIZATION OF THE FEASIBLE STATE SET

Let the weight matrix W be defined as in (4), with wij =
wji > 0, ∀i, j, and

∑

j∈Ni
wij < 1, ∀i. Assume that the

communication graph is connected. From now on, let λX
i

denote the i-th largest eigenvalue of a symmetric matrix X .

We are now ready to present the main results of the paper.

A. Constant weights

Let us suppose that the state of the agents evolves accord-

ing to the stationary dynamic model (8). By construction F
(defined in (17)) is a symmetric, doubly stochastic matrix

F1 = 1, 1
′F = 1

′, (28)



and λF
i = 1 + λW

i , i = 1, . . . , n. If the communication

graph is connected, then 1 is the only eigenvalue of modulus

one, with all other ones having modulus strictly smaller than

one

−1 < λF
n ≤ λF

n−1 ≤ · · · < λF
1 = 1, (29)

and hence −2 < λW
n ≤ λW

n−1 ≤ · · · < λW
1 = 0.

Proposition 1: The feasible state set XC given by (14) is

asymptotically unbounded along the direction identified by

the vector 1.

Proof: Denote by X 1

C(t) the orthogonal projection of

XC(t) on the subspace spanned by 1, i.e.

X 1

C(t) = {x1 ∈ R
n : x1 =

11
′

n
x, x ∈ XC(t)}.

Let us consider the state x̂(t) ∈ XC(t) such that x̂(t) =
xc(t)+T (t)α̂, with α̂ = [1 1 ... 1]′ ∈ R

tn. Then, from (14)-

(17) and exploiting (28), its projection x̂1(t) on 1 is given

by

x̂1(t) =
11

′

n
x̂(t) =

11
′

n
(xc(t) + T (t)α̂)

=
1

n
(1′x(0) + [1′Dǫ 1

′Dǫ . . .1′Dǫ]α̂)

=
1

n
(1′x(0) + t

n
∑

i=1

ǫi)

By construction x̂1(t) ∈ X 1

C(t), and its norm tends to infinity

lim
t→∞

∥

∥x̂1(t)
∥

∥

2
= +∞,

which concludes the proof.

Proposition 1 states that in case of constant weights, when

consensus is achieved, the consensus value is not necessarily

bounded. This means that even when the difference among

the agents’ state vanishes, the state of each agent can diverge.

Proposition 2: The set X 1
⊥

C (t) is bounded for all t. More-

over, rC(t) in (27) satisfies

max
i=2,...,n

δi

1 − |λF
i |

≤ lim
t→∞

rC(t) ≤
δ

1 − λF
M

,

where δi = ǭ ‖diag(W )ei‖1 , δ = max
v∈DǫB∞

∥

∥

∥
P 1⊥v

∥

∥

∥

2
, λF

M =

max{λF
2 ,−λF

n }, diag(W ) is the diagonal matrix whose i-th
diagonal entry is wii, and ei is the unitary eigenvector of F
associated to λF

i .

Proof: If x(t) ∈ XC(t) then x(t) satisfies (8), with the

initial condition x(0). Hence its projection evolves as

x1
⊥

(t + 1) = Fx1
⊥

(t) + P 1⊥v(t), (30)

with the initial condition x1
⊥

(0) = P 1⊥x(0). In (30) it

has been exploited P 1⊥F = FP 1⊥ = F − 11
′

n
, from (28).

Since F is symmetric it admits an orthogonal decomposition

F =
∑n

i=1 λF
i eie

′
i where ei is the eigenvector related to the

eigenvalue λF
i , and e′iej = 1 if i = j, zero otherwise. Since

e1 = 1√
n
1, the vectors {e2, . . . , en} form an orthonormal

basis of the subspace S1
⊥

. Hence
∥

∥

∥
Fx1

⊥

(t)
∥

∥

∥

2
≤ λF

M

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
, (31)

where λF
M = max{λF

2 ,−λF
n } denotes the modulus of the

second largest (in modulus) eigenvalue of F . From the UBB

assumption (10)-(12), the disturbance vector v(t) belongs

the box DǫB∞; hence its projection P 1⊥v(t) belongs to the

projection P 1⊥DǫB∞ and
∥

∥

∥
P 1⊥v(t)

∥

∥

∥

2
≤ δ. (32)

Let z(t)
△
=

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
. From (30)-(32) it follows

z(t + 1) ≤ λF
Mz(t) + δ. (33)

By (33), one gets

z(t) ≤ (λF
M )tz(0) +

t−1
∑

k=0

(λF
M )t−k−1δ

△
= µ(t).

Since 0 ≤ λF
M < 1 from (29), then

lim
t→∞

µ(t) =
δ

1 − λF
M

.

Hence, limt→∞ rC(t) ≤ δ
1−λF

M

.

In order to find an asymptotic lower bound for rC(t),

notice that z(t) ≥ max
i=2,...,n

|e′ix
1
⊥

(t)|. Let νi(t)
△
= |e′ix

1
⊥

(t)|

and δi

△
= max

v∈DǫB∞

|e′iv|, i = 2, . . . , n. From the definition of

DǫB∞ and recalling (12), one has

δi = e′iDǫsgn (ei) = ǭ ‖diag(W )ei‖1 (34)

where sgn (ei) has to be intended componentwise. Now, if

we consider a noise realization such that

vi(t) = sgn (e′ix
1
⊥

(t))Dǫsgn (ei), (35)

from (30) and (34) one gets

e′ix
1
⊥

(t + 1) = λF
i e′ix

1
⊥

(t) + e′ivi(t)

= λF
i e′ix

1
⊥

(t) + sgn (e′ix
1
⊥

(t))δi.

Notice that by construction vi(t) in (35) belongs to DǫB∞.

As a result of this noise realization, the dynamics of νi(t)
becomes

νi(t + 1) = |λF
i |νi(t) + δi,

and therefore limt→∞ νi(t) =
δ

i

1−|λF

i
| . This concludes the

proof.

Remark 1: Proposition 1 and 2 state that asymptotically

the feasible state set XC is contained in an infinite cylinder

aligned with the vector 1, and whose radius rC is bounded

by max
i=2,...,n

δi

1 − |λF
i |

≤ rC ≤
δ

1 − λF
M

. Notice that the upper

bound is tight if the vector δeM belongs to P 1⊥DǫB∞, where

eM is the unitary eigenvector associated to the largest (in

modulus) eigenvalue of F . This means that there should exist

a feasible noise realization giving rise to a disturbance v̄
whose projection on S1

⊥

is P 1⊥ v̄ = δeM . In this case,

if x1
⊥

(0) = x0eM and v(t) = v̄, ∀t, then z(t) = µ(t),
∀t. However, this condition is not satisfied in general, being

dependent on the specific choice of W .



B. Vanishing weights

Let us suppose that the state of the agents evolves accord-

ing to the time-varying dynamic model (9). Let a(t) be a

sequence such that

0 < a(t) <
1

maxi |wii|
, t ≥ 0, (36)

lim
t→∞

a(t) = 0, (37)

∞
∑

t=0

a(t) = +∞. (38)

Examples of such functions are a(t) = 1/(t + γ)r, γ >
1, 0 < r ≤ 1. Condition (36) ensures that F (t), defined

in (23), is still a doubly stochastic matrix, satisfying (28), ∀t.
Under the assumption of connected communication graph,

the eigenvalues of F (t) are

−1 < λF (t)
n ≤ λ

F (t)
n−1 ≤ · · · < λ

F (t)
1 = 1, ∀t (39)

and λ
F (t)
i = 1 + a(t)λW

i . Condition (37) ensures that there

exists a time instant t̄, such that

λ
F (t)
i = 1 + a(t)λW

i > 0, ∀t > t̄, (40)

and hence

λ
F (t)
M = 1 + a(t)λW

2 > 0, ∀t > t̄, (41)

where λF
M (t) denotes the second largest (in modulus) eigen-

value of F (t). For example, t̄ can be the smallest time t
such that a(t) < 1/2, ∀t > t̄, and its existence is guaranteed

by (37).

Proposition 3: Let a(t) satisfy (36)-(38). Then, the feasi-

ble state set XV given by (20) is asymptotically unbounded

along the direction identified by the vector 1.

Proof: First note that by definition (24), and exploiting

(28), it holds

1
′Φ(t2, t1) = 1

′, 0 ≤ t1 < t2. (42)

Denote by X 1

V (t) the orthogonal projection of XV (t) on the

subspace spanned by 1

X 1

V (t) = {x1 ∈ R
n : x1 =

11
′

n
x, x ∈ XV (t)}.

and consider the state x̂(t) ∈ XC(t) corresponding to α̂ =
[1 1 ... 1]′ ∈ R

tn. Then, from (20)-(26) and exploiting (42),

its projection x̂1(t) on 1 is given by

x̂1(t) =
1

n
(1′x(0) +

n
∑

j=1

ǫj

t−1
∑

i=0

a(i)).

By construction x̂1(t) ∈ X 1

C(t) and its norm tends to infinity

by assumption (38), which concludes the proof.

The following proposition is the counterpart of Proposition 2

in case of vanishing weights.

Proposition 4: Let a(t) satisfy (36)-(38). Then, the set

X 1
⊥

V (t) is bounded for all t. Moreover, rV (t) in (27) satisfies

max
i=2,...,n

δi

1 − λF
i

≤ lim
t→∞

rV (t) ≤
δ

1 − λF
2

,

where δi = ǭ ‖diag(W )ei‖1 , δ = max
v∈DǫB∞

∥

∥

∥
P 1⊥v

∥

∥

∥

2
,

diag(W ) is the diagonal matrix whose i-th diagonal entry

is wii, and ei is the unitary eigenvector of F associated to

λF
i .

Proof: If x(t) ∈ XV (t) then, from (9), the dynamics

of its projection is

x1
⊥

(t + 1) = F (t)x1
⊥

(t) + a(t)P 1⊥v(t). (43)

Like in the proof of Proposition 2, we can resort to an

orthogonal decomposition of F (t) =
∑n

i=1 λ
F (t)
i eie

′
i, where

the eigenvectors ei do not depend on t, which leads to the

following upper bound for the 2-norm of x1
⊥

(t)

z(t + 1) ≤ λ
F (t)
M z(t) + a(t)δ, t ≥ 0,

where z(t)
△
=

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
. The main difference with respect

to the case of constant weights is that now the maximum

eigenvalue is time varying and the driving input on the

r.h.s. tends to zero. From (41), the inequality above can be

rewritten as

z(t + 1) ≤ (1 + a(t)λW
2 )z(t) + a(t)δ, t > t̄,

which makes the dependency of λ
F (t)
M on a(t) explicit. To

get an upper bound on z(t) let us consider

µ(t + 1) = (1 + a(t)λW
2 )µ(t) + a(t)δ, t > t̄

µ(t̄) = z(t̄) ≥ 0
(44)

Now, we will show that µe = − δ
λW

2
is an asymptotically

stable equilibrium point for system (44). To this end, let us

consider the candidate Lyapunov function

V (µ, t) =

(

µ(t) +
δ

λW
2

)2

. (45)

Computing (45) at time t + 1, one gets

V (µ, t + 1) = (1 + a(t)λW
2 )2V (µ, t), t > t̄.

This allows one to compute the evolution of V (µ, t) along

the solution of (44) as

V (µ, t) =

[

t−1
∏

k=t̄

(1 + a(k)λW
2 )

]2

V (µ, t̄).

It is known that an infinite product of the form
∏∞

k=0(1−ak),
with 0 ≤ ak < 1, converges to a non zero value if and only if
∑∞

k=0 ak < +∞, [12]. This implies that if
∑∞

k=0 ak = +∞,

then
∏∞

k=0(1 − ak) = 0. Hence, by assumption (38)

lim
t→∞

V (µ, t) = 0,

for all V (µ, t̄). Since V (µ, t) = 0 implies µ(t) = − δ
λW

2
, then

we have

lim
t→∞

µ(t) = −
δ

λW
2

.

Notice that convergence is ensured for any initial condition

µ(t̄). Since by construction z(t) ≤ µ(t), t > t̄, and λW
2 =

λF
2 − 1, we can conclude that limt→∞ rV (t) ≤ δ

1−λF

2
.



Let us now turn the attention to the lower bound. As noted

in the proof of Proposition 2,

z(t) ≥ |e′ix
1
⊥

(t)|
△
= νi(t).

If we consider the noise realization vi(t), defined in (34)-

(35), ∀t > t̄, from (43) the dynamics of νi(t) becomes

νi(t + 1) = (1 + a(t)λW
i )νi(t) + a(t)δi, t > t̄.

Notice that for t > t̄, 1 + a(t)λW
i > 0 from (40). Hence, by

applying the same arguments used to prove the convergence

of µ(t), one gets limt→∞ νi(t) = −
δ

i

λW

i

=
δ

i

1−λF

i

. This

concludes the proof.

Remark 2: Proposition 4 shows that also in case of van-

ishing weights, the feasible state set does not shrink to the

line spanned by 1. This means that consensus cannot be

guaranteed, with respect to all possible noise realizations sat-

isfying the UBB assumption (10). Similarly to what happens

for constant weights, the feasible state set XV is contained

in an infinite cylinder aligned with the vector 1, and whose

radius rV is bounded by maxi=2,...,n
δ

i

1−λF

i

≤ rV ≤ δ
1−λF

2
.

Again, the upper bound is tight if the disturbance δe2 belongs

to P 1⊥DǫB∞.

C. Discussion

For the classes of consensus algorithms considered, it turns

out that if the updating scheme ensures the achievement of

consensus in the noise-free scenario, then the feasible state

set is asymptotically contained in an infinite cylinder aligned

with 1, and whose radius can be bounded by functions of

the eigenvalues of the weight matrix and of the maximum

amplitude of the measurement errors. It is worth remarking

that the radius does not depend on the initial state of

the agents. This means that the maximum deviation from

consensus, with respect to all possible noise realizations, is

independent of the initial disagreement of the team.

Both the upper and the lower bounds found in case

of vanishing weights are smaller than or equal to their

counterpart in case of constant weights. This means that an

algorithm like (9) could provide some improvement also in a

worst-case scenario, at least in principle. However, whenever

matrix W is such that λF
M = λF

2 (which is often the case,

see [11]) the upper bound is the same for both classes.

Moreover, it depends only on the second largest eigenvalue

of matrix F . It is known that such an eigenvalue determines

the convergence rate to the consensus value in absence of

measurement noise (the smaller meaning the faster [2],[11]).

Hence, a faster mixing network guarantees also a smaller

worst-case asymptotic difference among the agents’ states.

It is interesting to observe that the upper bound in case

of vanishing weights does not depend on the rate of conver-

gence of the weighting sequence a(t), as long as it satisfies

(38). Note that if a(t) is selected such that
∑∞

t=0 a(t) < +∞,

then
∏∞

t=t̄(1 + a(t)λW
2 ) > 0, and the limiting values of

the bounding sequences µ(t), νi(t) depend on the initial

conditions (see the proof of Proposition 4). As a side effect,

even if v(t) = 0, ∀t ≥ 0, i.e. in the noise-free scenario,

consensus cannot be reached. Nonetheless, an a(t) such

that its summation converge, would have the advantage of

bounding the feasible state set also along the direction 1 (see

the proof of Proposition 3). Hence, in a worst-case analysis it

could be of interest to choose a faster vanishing a(t), in order

to trade off boundedness of the agents’ states and maximum

asymptotic disagreement of the team.

Finally, it is worth remarking that the main reason why

protocols like (9) do not guarantee consensus in a set-

membership framework (differently from what happens when

measurement noise is modeled in a stochastic setting [7]) is

that the noise is only assumed to be bounded, and biased

noise realizations are allowed as well.

V. NUMERICAL RESULTS

In this section we report some simulation results, involving

a team of six agents, whose communication graph is depicted

in Figure 1. The weight matrix W is selected as in (5). With

this choice, λF
M = λF

2 = 0.80 and λF
i > 0, i = 1, . . . , n.

The measurement noise is assumed to be bounded as in (10),

with ǭ = 0.1. The bounds on rC(t) and rV (t) provided by

Propositions 2 and 4 coincide and are given by

r = max
i=2,...,n

δi

1 − λF
i

=
δ2

1 − λF
2

= 0.45

r =
δ

1 − λF
M

= 0.62

In the updating rule with vanishing weights, the sequence

a(t) = 1
(t+5)0.6 is used.

Figures 2-3 summarize the results of 100 simulation runs,

starting from initial conditions x(0) randomly generated and

normalized such that

∥

∥

∥
x1

⊥

(0)
∥

∥

∥

2
= 1. The average and the

maximum of

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
are depicted at each time instant,

for both choices of the updating rule. The asymptotic upper

bound r (dash-dotted line) is also shown. In a first set

of experiments, the measurement noise v
(i)
j (t) is uniformly

distributed in the interval [−ǭ, ǭ]. When constant weights are

used, the average of

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
settles around 0.05, while

the maximum values oscillates around 0.1 (Figure 2). In

case of vanishing weights, the same quantities at the final

simulation time are one order of magnitude smaller. A second

set of simulations, where the measurement noise v
(i)
j (t) is

simulated by a white process taking the values ±ǭ with equal

probability, has been carried out. The behavior of

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
is basically the same as before, just larger values are observed

due to the different noise characteristics (Figure 3). In both

scenarios, the theoretical upper bound on the asymptotic

value of r(t) turns out to be quite conservative. However, it is

worth recalling that such a bound must hold for all possible

noise realizations satisfying (10). Even though the worst-

case noise v
(i)
j (t) is not easy to determine, some unfavorable

realizations can be figured out. In Figure 4,

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
is

shown when v
(i)
j (t) is generated such that v(t) = v2(t) as

defined in equation (35). In this case, the actual value of



replacements

1

2

3

4

5

6

Fig. 1. Communication graph used in the simulations.
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Fig. 2. Average value (a) and maximum (b) of

‚

‚

‚
x
1
⊥

(t)
‚

‚

‚

2

, over 100

simulation runs, in case of constant weights (dashed line) and vanishing
weights (solid line). Measurement noise is uniformly distributed.

∥

∥

∥
x1

⊥

(t)
∥

∥

∥

2
is eventually larger than r (lower dash-dotted line

in Figure 4), and the final value is the same for both choices

of the weights.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the asymptotic properties of two classes of

linear consensus algorithms have been analyzed, in presence

of bounded measurement errors. The consensus protocols

taken into account differ for the way the weighting matrix

is chosen, being either constant over time or vanishing as

time increases. Under the assumption of bounded errors the

consensus problem has been formulated in a set-theoretic

framework. By studying the evolution of the feasible state

set, a worst-case analysis on the asymptotic disagreement of

the team has been performed.

It has been shown that for both kinds of algorithms,

consensus cannot be guaranteed with respect to all possible

noise realizations, but the difference among the agents’ states

is asymptotically bounded. Both upper and lower bounds

have been derived, as a function of the bounds on the

measurement noise and of the eigenvalues of the weight

matrix.

There is a number of issues related to set-membership

consensus which are going to be addressed in future work.

One is the characterization of the noise realization giving

rise to the maximum disagreement of the team, in order to

achieve possible tighter bounds. Closely related to this topic

is the synthesis of the weight matrix minimizing the worst-

case asymptotic deviation from consensus. The possibility to

extend these results to the case of time-varying topology of

the communication network is also under investigation.
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Fig. 3. Average value (a) and maximum (b) of
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2

, over 100

simulation runs, in case of constant weights (dashed line) and vanishing
weights (solid line). Measurements noise is ±ǫ with equal probability.
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for noise realization (35), in case of constant

weights (dashed line) and vanishing weights (solid line). Dash-dotted lines
are the upper and lower bounds provided by Propositions 2 and 4.
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