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Abstract— This paper presents an algorithm for solving the
simultaneous localization and map building (SLAM) problem, a
key issue for autonomous navigation in unknown environments.
The considered scenario is that of a mobile robot using range
scans, provided by a 2D laser rangefinder, to update a map of
the environment and simultaneously estimate its position and
orientation within the map. The environment representation
is based on linear features whose parameters are extracted
from range scans, while the corresponding covariance matrices
are computed from the statistical properties of the raw data.
Simultaneous update of robot pose and linear feature estimates
is performed via extended Kalman filtering. Experimental tests
performed within a real-world indoor environment demonstrate
the effectiveness of the proposed SLAM technique.

I. I NTRODUCTION

Simultaneous localization and map building (SLAM) is
a challenging problem in mobile robotics that has attracted
the interest of more and more researchers in the last decade.
Self-localization of mobile robots is obviously a fundamental
issue in autonomous navigation: a mobile robot must be able
to estimate its position and orientation (pose) within a map
of the environment it is navigating in. However, in many
applications of practical relevance (like exploration tasks or
operations in hostile environments), a map is not availableor
it is highly uncertain. Therefore, in such cases the robot must
use the measurements provided by its sensory equipment to
estimate a map of the environment and,at the same time, to
localize itself within the map.

Several techniques have been proposed so far to tackle the
SLAM problem. The main difference between them concerns
basically the environment representation and the uncertainty
description (see [1] for a comprehensive review of map
building techniques). A wide variety of localization and
mapping techniques relies on environment representations
consisting of a set of characteristic elements detectable by
the robot sensory system (feature-basedmaps). A typical
scenario is that of a robot measuring its relative range and/or
bearing with respect to pointwise landmarks. In this setting,
localization algorithms with known landmarks and SLAM
techniques have been devised both for a statistical description
of the sensor uncertainty (e.g. [2], [3]) and in a bounded-error
framework (e.g. [4], [5], [6]).

Lines and segments are another class of commonly used
features [7]. They are especially suited for indoor appli-
cations as they can be effectively extracted from range
scans and then exploited for localization and/or mapping

purposes. An algorithm for computing the relative displace-
ment between two different robot poses by aligning the
corresponding range scans has been presented in [8]. In
this context, fitting lines are instrumental to the solution
of the point-to-point correspondence problem. A method
for building a line-based map, accounting for both robot
pose and measurement uncertainty, can be found in [9]. An
alternative mapping technique has been proposed in [10].
It is based on an improved line extraction scheme, which
explicitly takes into account each point uncertainty in the
computation of the line parameters. However, both [9] and
[10] do not explicitly address the SLAM problem. Recently,
a segment-based SLAM algorithm exploiting 3D laser scans
has been proposed in [11]. It builds a 2D map of the
environment, which is at same time used for localizing the
robot, by projecting on the horizontal plane readings of a 3D
laser range finder.

In this paper we present a SLAM algorithm based on range
scans delivered by a 2D laser rangefinder and adopting a line-
based description of the environment. The problem is cast as
a state estimation problem for an uncertain dynamic system,
whose state vector includes both the robot pose and the
line parameters in a global reference frame. The covariance
matrices associated to the parameters of the linear features
are explicitly computed from those of the raw data delivered
by the sensors, and then fed into an Extended Kalman Filter
(EKF) which simultaneously estimates the current robot pose
and updates the map. In order to facilitate data association,
the EKF is enhanced by keeping track of segments associated
to line features.

The paper is organized as follows. The SLAM problem
is formulated in Section II. The EKF-based algorithm is
briefly reviewed in Section III. Section IV describes the
line extraction technique, as well as the computation of
the covariance matrix of the line parameters from those
of the raw data. Feature matching and map management
are discussed in Section V. Results of experimental tests
performed in a real-world indoor environment are reported
in Section VI, while conclusions and future lines of research
are outlined in Section VII.

II. PROBLEM FORMULATION

Let us consider an autonomous vehicle navigating in a
2D environment and letp(k) = [x(k), y(k), θ(k)]′ denote
its pose (i.e., the positionx(k), y(k) and orientationθ(k))
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Fig. 1. Line parameters[r, ψ]′ are expressed w.r.t. the global reference
frame. Line parameters[ρ, α]′ are expressed w.r.t a robot-centered reference
frames.[x, y, θ]′ denote the robot pose w.r.t. the global reference frame.

at time k, in a global reference frame. The environment
is described by static rectilinear features (like portionsof
walls, doors, shelves) detectable by the robot sensory system.
In this scenario, a suitable environment representation can
be given in terms of the lines underlying each feature. A
line li = [ri, ψi]

′ is parametrized by its distanceri ≥ 0
from the origin and the directionψi ∈ (−π, π] of the
normal passing through the origin (see Figure 1). Given
a robot kinematic model and a measurement equation, the
simultaneous localization and map building problem can be
cast as a state estimation problem for an uncertain dynamic
system. To illustrate the main ideas, let us suppose that the
agent pose evolves according to the simple linear model

p(k + 1) = p(k) + u(k) + w(k), k = 0, 1, . . . (1)

wherew(k) ∈ R
3 models the noise affecting the odometric

measurementsu(k) ∈ R
3. Nonetheless, more general kine-

matic models of the formp(k + 1) = ϕ(p(k), u(k), w(k))
can be dealt with in the proposed framework.

Assume that at each time instantk, the robot is able to
measure the distanceρi(k) and orientationαi(k) of the i-th
feature from its current posep(k) (see Figure 1). Letzi(k) =
[ρi(k), αi(k)]

′, i = 1, . . . , n denote the parameter measure-
ments of thei-th feature in a robot centered reference frame.
Then, zi(k) can be expressed as a functionµi(p(k), li) of
the current vehicle posep(k) and the parametersli of the
sensed feature in the global reference frame:

zi(k) = µi(p(k), li) + vi(k), (2)

where vi(k) ∈ R
2 models the noise affecting thei-th

measurement. Depending on whether the segment joining the
vehicle positionx(k), y(k) and the origin intersects or not
the line li, the measurement equation takes on the form:

µi(p(k), li) =

[

−ri + x(k) cos(ψi) + y(k) sin(ψi)
ψi − θ(k) + π

]

(3)

or

µi(p(k), li) =

[

ri − x(k) cos(ψi) − y(k) sin(ψi)
ψi − θ(k)

]

. (4)

Let us rearrange all the quantities to be estimated (i.e. the
robot posep(k) and the line parametersli) into a state vector
ξ(k) ∈ R

3+2n: ξ(k) = [p(k)′, l′i, . . . , l
′
n]′. Since static feature

are considered, from (1) the time evolution of the state vector
is given by:

ξ(k + 1) = ξ(k) + E3u(k) + E3w(k) (5)

whereE3 = [I3 03×2n]′ ∈ R
(3+2n)×3. Finally, if the mea-

surements taken at timek are stacked into a vectorz(k) =
[z1(k)

′, . . . , zn(k)′]′ ∈ R
2n, the measurement equation (2)

can be rewritten as:

z(k) = µ(ξ(k)) + v(k) (6)

where µ(ξ(k)) = [µ1(p(k), l1)
′, . . . , µn(p(k), ln)′]′ and

v(k) = [v1(k)
′, . . . , vn(k)′]′. Now, the SLAM problem can

be stated as follows.
SLAM problem. Let ξ̂(0) be an estimate of the initial
robot position and feature parameters. Given the dynamic
model(5) and the measurement equation(6), find an estimate
ξ̂(k) of the robot pose and feature parametersξ(k), for each
k = 1, 2, . . . .

III. E XTENDED KALMAN FILTERING

The main advantage of the above formulation is that any
state estimation technique can be used to address the SLAM
problem. When a statistical description of the uncertainty is
adopted, the standard approach is that based on the Extended
Kalman Filter (EKF). Let the process disturbancew(k) and
the measurement noisev(k) be modelled as zero-mean,
white noise, with covariance matricesQ(k) ∈ R

3×3 and
R(k) ∈ R

2n×2n, respectively. Letξ̂(k|k) denote the state
estimate at timek, based on all the measurements collected
up to that time, and letP (k|k) be the covariance matrix of
the corresponding estimation error. The estimate update is
carried out in two stages as summarized below.
Prediction:

ξ̂(k + 1|k) = ξ̂(k|k) + E3u(k)

P (k + 1|k) = P (k|k) + E3Q(k)E′
3

Correction:

ξ̂(k+1|k+1) = ξ̂(k+1|k)+

+K(k+1)(z(k+1) − h(ξ̂(k+1|k)))

P (k+1|k+1) = P (k+1|k)+

−K(k+1)S(k+1)K(k+1)′

K(k+1) = P (k+1|k)H(k+1)′S(k+1)−1

S(k+1) = H(k+1)P (k+1|k)H(k+1)′+R(k+1)

whereH(k + 1) = ∂µ(ξ)
∂ξ

∣

∣

∣

ξ=ξ̂(k+1|k)
.

IV. FEATURE EXTRACTION

The EKF recursion is based on the measurementsz(k),
which are not directly available to the robot but must be
extracted from the readings provided by the robot sensory
equipment. The extraction of lines from range scans is a
widely studied problem and several solutions are available



(see e.g., [9], [10] and reference therein). The approach
adopted in this paper to obtain the measurementsz(k),
as well as the corresponding covariance matrixR(k), is
described in the following. The robot is supposed to be
equipped with a proximity sensor (e.g., sonar rings or laser
rangefinder) providingN range and bearing measurements:
[dj , φj ]

′, j = 1, . . . , N , where dj is the distance of the
point sensed along the directionφj . The sensor readings are
processed in order to extract the parameters[ρh(k), αh(k)]′

of the linear features present in the surroundings, by iter-
atively alternatingsegmentationand line fitting steps. The
segmentation phase aims at identifying the sensor readings
belonging to the same feature, while the line fitting algorithm
allows to compute the feature parameters given a set of
related points. In the following, for notational clarity the time
dependence will be omitted.

The pair [dj , φj ]
′ can be thought of as the polar coordi-

nates of thej-th point in a robot centered reference frame.
Let us denote by

pj = [xj , yj ]
′ = [dj cos(φj), dj sin(φj)]

′, (7)

the Cartesian coordinates of thej-th point referenced to the
same frame. The segmentation phase consists in partitioning
the sensor readings into subsetsSh (calledsegments) of “al-
most collinear” points:Sh =

{

p
(h)
1 , . . . , p

(h)
nh

}

, h = 1, . . . , q,

wherenh denotes the cardinality of theh-th segment. Each
set is built iteratively. All the pointspj are processed
sequentially, with the first two initializing the segmentS1.
Then, a pointpj , is added to the current segment if it satisfies
the following criterion:

• its normal distance from the current fitting line is below
a thresholdδ0, and

• its Euclidean distance from the last point in the current
segment is below a thresholdδ1.

When a new point is inserted in the current segment, the
parameters of the fitting line are recomputed on the basis of
the new set of points. IfNp consecutive points do not meet
the above criterion, the current segmentSh is assumed to
be completed, and a new oneSh+1 is instantiated, starting
from the next point with respect to the last one inserted into
Sh. Notice that, the condition which determines the end of
a segment allows to filter out spurious readings (outliers)
due to small projections, indentations or occlusions of a flat
surface. Moreover, in order to increase the robustness of the
extraction phase and reject false features, segments shorter1

than a minimum lengthL0 or made up of less thanN0 points
are deemed unreliable and are discarded.

Once a segmentSh has been identified, the parameters
of the corresponding linear feature[ρh, αh]′ are computed
by fitting a line through all the points belonging toSh. Let
p
(h)
i = [x

(h)
i , y

(h)
i ]′, be the coordinates of thei-th point in

Sh, i = 1, . . . , nh. The normal distance ofp(h)
i to the linel

described by the parameters[ρ, α]′ is given byd(p(h)
i , l) =

1The length of a segmentSh has to be intended as the distance between
the firstp(h)

1 and lastp(h)
nh

points inSh.

|ρ− x
(h)
i cos(α) − y

(h)
i sin(α)|. Then, the parameters of the

fitting line are computed by minimizing the cost function

[ρh, αh]′ = arg min
ρ,α

E(ρ, α), h = 1, . . . , q (8)

whereE(ρ, α) =
∑nh

i=1

(

ρ− x
(h)
i cos(α) − y

(h)
i sin(α)

)2

.

The solution of the optimization problem (8) can be analyti-
cally computed as a function of the pointsp(h)

i concurring to
define the current line. Recalling equation (7), the parameters
of the h-th feature can be written as a functions : R

2nh →
R

2 of the sensor readings (see the Appendix):

[ρh, αh]′ = s
(

d
(h)
1 , φ

(h)
1 , . . . , d(h)

nh
, φ(h)

nh

)

. (9)

The line parameters extracted according to the above
procedure represent the measurements (6) used to update
the state estimate. However, in the EKF correction step the
knowledge of the covariance matrixR(k) of the observa-
tion noise v(k) is also required. This information can be
approximated, through linearization of equation (9), from
the statistical properties of the errors affecting the raw data
delivered by the sensor. Let

Cmi
=

[

σ2
di

σdiφi

σφidi σ2
φi

]

be the covariance matrix of the noise affecting the sensor
reading [d

(h)
i , φ

(h)
i ]′. Assuming that the errors corrupting

different readings are uncorrelated, the covariance matrix of
the h-th measurementzh(k) can be approximated as:

Rh(k) =

nh
∑

i=1

JiCmi
J ′

i (10)

where the matrixJi ∈ R
2×2 is the Jacobian ofs(·) w.r.t.

the pair d(h)
i , φ

(h)
i (full expressions are reported in the

Appendix). Finally, because of the hypothesis of uncorre-
lated measurement noise, the covariance matrixR(k) has
a block diagonal structure, theh-th block beingRh(k) in
equation (10).

V. M ATCHING AND MAP MANAGEMENT

In order to perform the EKF correction step, each measure-
mentzh(k) extracted from the sensor data must be associated
to the corresponding line present in the map (matching prob-
lem). This is a challenging task whenever natural features are
used and the sensory system returns only metric information
(like any proximity sensor), so that elements constitutingthe
map turn out to be indistinguishable. In the following, we
briefly describe the matching strategy adopted in this work.

Let

ξ̂(k|k − 1) = [p̂(k|k − 1)′, l̂1(k|k − 1)′, . . . , l̂n(k|k − 1)′]′

be the state estimate at timek, before the measurements
are processed. Given the current state estimateξ̂(k|k − 1)
and the observationszh(k), the matching problem consists
in determining the featureli (if it exists) in the map, origi-
nating theh-th measurement,h = 1, . . . , q. Intuitively, one
would compare theh-th extracted feature to the current line



estimates and select the “closest” one. Several heuristicscan
be devised to this purpose, involving different comparison
criteria. In this respect, key issues that must be considered
are:
i) the comparison requires to express the extracted line
parameters w.r.t. the global reference frame;
ii) the uncertainty affecting the parameters involved in the
comparison must be taken into account;
iii) different features in the environment may lie on the same
line (e.g., two aligned walls separated by a hallway).

The first issue is addressed by solvingzh(k) = µh(p̂(k|k−
1), lh) with respect tolh, whereµh(·, ·) is defined in (3)-(4).
At the same time, the covarianceRh(k) of the extracted
parameters is propagated, through linearization, according to
the covariance matrix of the current robot pose estimate. To
face the last problem, for each linêli(k|k − 1) in the map,
the endpoints of an associated segment are computed and
updated together with the EKF recursion, in order to trace
the length and the position of the physical feature along the
corresponding line. It is worth remarking that the segment
endpoints are not included in the state vector, but are used
as an instrumental tool to enhance the matching stage.

The matching algorithm proceeds through two stages.
First, for each measurementzh(k) all possible associations
are determined by using three validation gates. The parame-
ters involved in this test are:

a) the squared difference of orientation, weighted by the
inverse of its variance, between the extracted line and
the feature estimateŝli(k|k − 1);

b) the squared normal distance, weighted by the inverse of
its variance, of the midpoint of the extracted segment
to the feature estimatêli(k|k − 1);

c) the overlapping rate between the extracted segment and
the one associated to the feature estimatel̂i(k|k − 1).

Then, among all feasible correspondences, the one minimiz-
ing a cost function, typically a weighted sum involving the
quantities previously computed in a)-c), is selected. When
a measurementzh(k) is associated to a featurêli(k|k − 1),
the endpoints of thei-th segment are suitable updated, by
projecting the endpoints of the extracted segment onto the
corresponding linêli(k|k − 1).

If a measurementzh(k) does not match any of the lines
currently present in the state vector, it has to be considered
as a new feature and the state vector must be properly aug-
mented. Let us denote bŷξn(k|k) ∈ R

3+2n the state estimate
after the measurement update at timek and letPn(k|k) be
the corresponding estimation error covariance. Then, the new

state vector becomeŝξn+1(k|k)
△
= [ξ̂n(k|k)′, l̂n+1(k|k)

′]′

where

l̂n+1(k|k)
′ = [r̂n+1(k|k), ψ̂n+1(k|k)]

′ = γ(p̂(k|k), zh(k)).

The functionγ(p̂(k|k), zh(k)) represents the initial estimate
of the newly added line (in the global reference frame)
according to the current robot pose estimate and takes on

the form (see equations (3)-(4)):
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−ρh(k)+x̂(k|k) cos(αh(k)+θ̂(k|k)−π)+

+ŷ(k|k) sin(αh(k)+θ̂(k|k)−π)

αh(k)+θ̂(k|k)−π
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r̂n+1

ψ̂n+1
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ρh(k)+x̂(k|k) cos(αh(k)−θ̂(k|k))+

+ŷ(k|k) sin(αh(k)−θ̂(k|k))

αh(k)−θ̂(k|k)











depending on the relative position of the vehicle and the
(n+ 1)-th line w.r.t. the origin. Analogously, the covariance
matrix Pn(k|k) becomes:

Pn+1(k|k) =

[

Pn(k|k) Pn(k|k)J ′
ξ

JξPn(k|k) JξPn(k|k)J ′
ξ + JzPn(k|k)J ′

z

]

whereJξ andJz are the Jacobian matrices:

Jξ =
∂γ(p̂(k|k), zh(k))

∂ξ̂n
, Jz =

∂γ(p̂(k|k), zh(k))

∂ẑh

.

Remark 1: In order to avoid the introduction of spurious
features in the state vector, an unmatched measurement can
be first inserted into a list of tentative features and then added
to the state only when it is deemed sufficiently reliable (e.g.,
if it is detected at least a prescribed number of times over a
given length of time [3]).

Despite the cautions taken in the extraction and matching
phases, it may still happen that two initially distinct features
turn out to be related to the same environment item2 (e.g.,
a long wall with temporary occlusions, or duplication of
the same feature due to a poor estimation of the current
robot pose). A possible way to deal with this problem is
to periodically inspect the state vector and check whether
any pair of features pass the aforementioned validation
gates. If that is the case, the two state components can be
actually considered as two estimates of the same feature, and
they can be consequently merged according to their current
uncertainties.

VI. EXPERIMENTAL RESULTS

The proposed SLAM algorithm has been validated on
real data gathered during several experiments performed by
a mobile robot Pioneer 3AT. This vehicle has a differen-
tial drive guide and is equipped with a SICK LMS laser
rangefinder, providing180◦ planar scans of the environment,
with a 0.5◦ resolution. The results of a typical run are shown
in Figure 2. The robot explores an environment constituted
by four rooms of the Siena Robotics and Systems (SIRS)
lab at our department, labelled from (A) to (D) in Figure 2,
according to the sequence (A)-(D)-(A)-(B)-(C)-(B)-(A). The
total distance travelled by the vehicle is about170 m, at an
average speed of0.4 m/s. Along the path, the robot collects
range scans at a frequency of4 Hz and accordingly updates
its pose estimate and the line-based map.

2Recall that although a physical linear featureli is supposed to be static,
its estimateŝli(k|k) vary during time.
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Fig. 2. Estimated trajectory by the SLAM algorithm (solid line) and by
odometry (dashed); segments associated to final map (thick solid lines)

In Figure 2, the trajectory estimated by the SLAM algorithm
(solid line) and the one reconstructed from encoder read-
ings (dashed line) are depicted, together with the segments
associated to the final line estimates in the map (thick
solid lines). It can be noticed the poor quality of odometric
estimates which after the first turns rapidly begin to drift
away from the actual vehicle position; the error accumulated
at the end of the run is about4.5 m. The effectiveness of
the SLAM algorithm to compensate for odometric errors is
clear from the final position and orientation errors, smaller
than 0.07 m and 0.5◦, respectively. Although the ground
truth is available only for the initial and final positions,
nonetheless satisfactory estimation accuracy along the path
can be observed, by looking at Figures 3-4 where 70 range
scans taken during the experiment are plotted according to
the current odometric estimate (Figure 3) or to the current
SLAM algorithm estimate (Figure 4).
The final map built by the SLAM technique is composed of
66 features. The parameters of the segmentation procedure
have been tuned trading-off the accuracy of the extracted
lines and the need to account for several unevennesses char-
acterizing real-world features. The overall map management
based on a tentative list and line merging, resulted in the
rejection of 48 spurious lines and the fusion of 19 map
elements. It is worth noticing that the misalignment among
the rooms actually resembles the shape of the building
(dating back to the 15th century) and is not due to mapping
faults. The presence of slightly curved walls or occlusions
caused an over-segmentation of the map which in some
cases, as a result of a wrong matching, generated overlap-
ping segments corresponding to nominally different features.
However, despite these drawbacks, the map accuracy proved
to be very well suited for navigation purposes, allowing the
robot to traverse back and forth different rooms without
getting lost.
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Fig. 3. Raw data relative to odometric pose estimates.
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Fig. 4. Raw data relative to SLAM algorithm pose estimates.

VII. C ONCLUSION AND FUTURE WORK

In this paper, a simultaneous localization and mapping
technique for mobile robots navigating in indoor environ-
ments has been presented. By adopting a line-based repre-
sentation of the environment, the problem is cast as a state
estimation problem and solved via extended Kalman filtering.
The results of experimental validation, carried out using the
mobile platform Pioneer 3AT, confirm the viability of the
proposed approach in quite complex indoor environments.

Future directions of research include the integration of
additional features in the map (e.g, corners or pointwise
landmarks) and the comparison with different segmentation
algorithms (e.g., [10]) as well as with more sophisticated data
association policies (e.g., [12]). The ability of the proposed
SLAM technique to deal with large loops is a current subject
of study. In this respect, preliminary promising results have
been obtained by simulation experiments. Moreover, the
consistency of the line-based map in the long run (see [13])
is under investigation.



APPENDIX

Let us considern points pi = [xi, yi]
′, i = 1, . . . , n

on a plane. The linel = [ρ∗, α∗]′ minimizing the sum of
the squared normal distances from each pointE(α, ρ) =
∑n

i=1(ρ − xi cos(α) − yi sin(α))2 is given by the function
f = [f1, f2]

′:
[

ρ∗

α∗

]

=

[

x̄ cos(α∗) + ȳ sin(α∗)
1
2 arctan

−2Sxy
Sy2−Sx2

]

△
=

[

f1(x1, y1, . . . , xn, yn)
f2(x1, y1, . . . , xn, yn)

]

(11)
where (see [8]):

x̄ =
1

n

n
∑

i=1

xi, ȳ =
1

n

n
∑

i=1

yi,

Sx2 =

n
∑

i=1

(xi − x̄)2, Sy2 =

n
∑

i=1

(yi − ȳ)2,

Sxy =

n
∑

i=1

(xi − x̄)(yi − ȳ).

In order to compute the covarianceCl =

[

σ2
ρ σρα

σαρ σ2
α

]

of the

parameters[ρ∗, α∗]′, let Ai be the Jacobian matrix off(·)
w.r.t. [xi, yi]:

Ai =











∂f1
∂xi

∂f1
∂yi

∂f2
∂xi

∂f2
∂yi











.

Denoting byCpi the covariance matrix of a pointpi =
[xi, yi]

′, under the hypothesis thatpi, pj are uncorrelated
if i 6= j, Cl is given byCl =

∑n
i=1AiCpiA

′
i. By exploiting

the following relationships:

∂Sxy

∂xi

= yi − ȳ,
∂Sxy

∂yi

= xi − x̄,

∂Sx2

∂xi

= 2(xi − x̄),
∂Sy2

∂yi

= 2(yi − ȳ),

∂Sy2

∂xi

= 0,
∂Sx2

∂yi

= 0,

it can be shown that the Jacobian matrix has the expression:

Ai =

[

Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]

,

where:

Ai(1, 1) =
cos(α∗)

n
− x̄ sin(α∗)Ai(2, 1)+

+ ȳ cos(α∗)Ai(2, 1),

Ai(1, 2) =
sin(α∗)

n
− x̄ sin(α∗)Ai(2, 2)+

+ ȳ cos(α∗)Ai(2, 2),

Ai(2, 1) =
(ȳ − yi)(Sy2 − Sx2) + 2Sxy(x̄− xi)

(Sy2 − Sx2)2 + 4S2
xy

,

Ai(2, 2) =
(x̄− xi)(Sy2 − Sx2) − 2Sxy(ȳ − yi)

(Sy2 − Sx2)2 + 4S2
xy

.

Finally, if the polar coordinates[di, φi] of the pointspi

are available, together with the corresponding covariance

matrix Cmi
=

[

σ2
di

σdiφi

σφidi σ2
φi

]

, the covariance matrixCpi

must be expressed in terms ofCmi
. Denote byg(di, φi) the

coordinate transformation:
[

xi

yi

]

=

[

di cos(φi)
di sin(φi)

]

△
=

[

g1(di, φi)
g2(di, φi)

]

. (12)

Then, the optimal line parameters are given by[ρ∗, α∗]′ =
s (d1, φ1, . . . , dn, φn) , obtained by substituting equation (12)
into (11). Moreover, the covariance matrixCl of [ρ∗, α∗] can
be computed asCl =

∑n
i=1 JiCmi

J ′
i , whereJi = AiBi and

Bi =











∂g1
∂di

∂g1
∂φi

∂g2
∂di

∂g2
∂φi











=





cos(φi) −di sin(φi)

sin(φi) di cos(φi)



 .

REFERENCES

[1] S. Thrun, “Robotic mapping: a survey,” inExploring Artificial In-
telligence in the New Millenium, G. Lakemeyer and B. Nebel, Eds.
Morgan Kaufmann, 2002.

[2] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization
by tracking geometric beacons,”IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 376–382, 1991.

[3] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and
M. Csorba, “A solution to the simultaneous localization and map build-
ing (SLAM) problem,” IEEE Transactions Robotics and Automation,
vol. 17, no. 3, pp. 229–241, 2001.

[4] A. Garulli and A. Vicino, “Set membership localization of mobile
robots via angle measurements,”IEEE Transactions on Robotics and
Automation, vol. 17, no. 4, pp. 450–463, August 2001.

[5] K. Briechle and U. D. Hanebeck, “Localization of mobile robot using
relative bearing measurements,”IEEE Transactions on Robotics and
Automation, vol. 20, no. 1, pp. 36–44, February 2004.

[6] M. Di Marco, A. Garulli, A. Giannitrapani, and A. Vicino,“A
set theoretic approach to dynamic robot localization and mapping,”
Autonomous Robots, vol. 16, pp. 23–47, January 2004.

[7] I. J. Cox, “Blanche - an experiment in guidance and navigation of
an autonomous mobile robot,”IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 193–204, 1991.

[8] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2D range scans,”Journal of Intelligent and Robotic
Systems, vol. 18, pp. 249–275, 1997.

[9] J. Vandorpe, H. Van Brussels, and H. Xu, “Exact dynamic map
building for a mobile robot using geometrical primitives produced
by a 2d range finder,” inProceedings of the 1996 IEEE International
Conference on Robotics and Automation, Minneapolis, April 1996, pp.
901–908.

[10] A. T. Pfister, S. I. Roumeliotis, and J. W. Burdick, “Weighted line
fitting algorithms for mobile robot map building and efficient data
representation,” inProceedings of the 2003 IEEE International Con-
ference on Robotics and Automation, Taiwan, September 2003, pp.
1304–1311.

[11] O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner, “2D mapping
of cluttered indoor environments by means of 3D perception,” in
Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, New Orleans, LA, April 2004, pp. 4204–4209.

[12] J. J. Leonard, P. M. Newman, R. J. Rikoski, J. Neira, and J.D. Tard́os,
“Towards robust data association and feature modeling for concurrent
mapping and localization,” inProceedings of the Tenth International
Symposium on Robotics Research Lorne, Victoria, Australia, Novem-
ber 2001.

[13] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of
simultaneous localization and map building,” inProceedings of the
2001 IEEE International Conference on Robotics and Automation,
May 2001, pp. 4238–4243.


