Mobile robot SLAM for line-based environment representation
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Abstract— This paper presents an algorithm for solving the purposes. An algorithm for computing the relative displace
simultaneous localization and map building (SLAM) problem, a  ment between two different robot poses by aligning the
key issue for autonomous navigation in unknown environments. corresponding range scans has been presented in [8]. In

The considered scenario is that of a mobile robot using range thi text. fitti i inst tal to the solution
scans, provided by a 2D laser rangefinder, to update a map of IS context, nting lines are instrumental 1o the

the environment and simultaneously estimate its position and Of the point-to-point correspondence problem. A method
orientation within the map. The environment representation  for building a line-based map, accounting for both robot

is based on linear features whose parameters are extracted pose and measurement uncertainty, can be found in [9]. An
from range scans, while the corresponding covariance matrices alternative mapping technique has been proposed in [10].

are computed from the statistical properties of the raw data. . X ) . .
Simultaneous update of robot pose and linear feature estimates It is based on an improved line extraction scheme, which

is performed via extended Kalman filtering. Experimental tests ~ €Xplicitly takes into account each point uncertainty in the
performed within a real-world indoor environment demonstrate ~ computation of the line parameters. However, both [9] and

the effectiveness of the proposed SLAM technique. [10] do not explicitly address the SLAM problem. Recently,
a segment-based SLAM algorithm exploiting 3D laser scans
has been proposed in [11]. It builds a 2D map of the

Simultaneous localization and map building (SLAM) isenvironment, which is at same time used for localizing the
a challenging problem in mobile robotics that has attractegbot, by projecting on the horizontal plane readings of a 3D
the interest of more and more researchers in the last decatiser range finder.

Self-localization of mobile robots is obviously a fundart@n  In this paper we present a SLAM algorithm based on range
issue in autonomous navigation: a mobile robot must be abdgans delivered by a 2D laser rangefinder and adopting a line-
to estimate its position and orientation (pose) within a mapased description of the environment. The problem is cast as
of the environment it is navigating in. However, in manya state estimation problem for an uncertain dynamic system,
applications of practical relevance (like explorationkeasr whose state vector includes both the robot pose and the
operations in hostile environments), a map is not available line parameters in a global reference frame. The covariance
it is highly uncertain. Therefore, in such cases the robatmumatrices associated to the parameters of the linear feature
use the measurements provided by its sensory equipmentai@ explicitly computed from those of the raw data delivered

estimate a map of the environment aatithe same timetlo by the sensors, and then fed into an Extended Kalman Filter
localize itself within the map. (EKF) which simultaneously estimates the current roboepos

Several techniques have been proposed so far to tackle ted updates the map. In order to facilitate data assocjation
SLAM problem. The main difference between them concernte EKF is enhanced by keeping track of segments associated
basically the environment representation and the uncgytai to line features.
description (see [1] for a comprehensive review of map The paper is organized as follows. The SLAM problem
building techniques). A wide variety of localization andis formulated in Section Il. The EKF-based algorithm is
mapping techniques relies on environment representatiobsefly reviewed in Section Ill. Section IV describes the
consisting of a set of characteristic elements detectaple kine extraction technique, as well as the computation of
the robot sensory systenfe@ture-basedmaps). A typical the covariance matrix of the line parameters from those
scenario is that of a robot measuring its relative rangeasnd/of the raw data. Feature matching and map management
bearing with respect to pointwise landmarks. In this sgftin are discussed in Section V. Results of experimental tests
localization algorithms with known landmarks and SLAMperformed in a real-world indoor environment are reported
techniques have been devised both for a statistical déiserip in Section VI, while conclusions and future lines of resbarc
of the sensor uncertainty (e.g. [2], [3]) and in a bounded+rer are outlined in Section VII.
framework (e.g. [4], [5], [6])-

Lines and segments are another class of commonly used
features [7]. They are especially suited for indoor appli- Let us consider an autonomous vehicle navigating in a
cations as they can be effectively extracted from rang2D environment and lep(k) = [z(k), y(k), 6(k)]’ denote
scans and then exploited for localization and/or mappinigs pose (i.e., the position(k), y(k) and orientatiord(k))

I. INTRODUCTION

Il. PROBLEM FORMULATION



vt Let us rearrange all the quantities to be estimated (i.e. the
= robot posep(k) and the line parametetg into a state vector
E(k) e R3T2: ¢(k) = [p(k)', L. .. 1] Since static feature

are considered, from (1) the time evolution of the stateorect
is given by:

£k +1) = £(k) + Esu(k) + Esw(k) ®)

1 c !
v where B3 = [I3 03x2,] € RG+22)%3_ Finally, if the mea-
,\wl surements taken at time are stacked into a vectar(k) =
[z1(k),...,z.(k)") € R?*", the measurement equation (2)
oy ) X can be rewritten as:

! (k) = p(&(k)) + v(k) (6)

Fig. 1. Line parameterf, )’ are expressed w.r.t. the global referencewhere p(§(k)) = [pa(p(k), 1), ..., pn(p(k),1,)']" and
frame. Line parametelfp, ]’ are expressed w.r.t a robot-centered reference)(k) = [v1(k)’,...,v,(k)’]’. Now, the SLAM problem can
frames.[z, y, 6]’ denote the robot pose w.r.t. the global reference framebe stated as follows.

SLAM problem. Let £(0) be an estimate of the initial
bot position and feature parameters. Given the dynamic
odel(5) and the measurement equati@), find an estimate

v

at time &, in a global reference frame. The environmenLc:
is described by static rectilinear features (like portiafs é(k) of the robot pose and feature parametéf#), for each
walls, doors, shelves) detectable by the robot sensorgmsyst E—19 '

In this scenario, a suitable environment representation ca e
be given in terms of the lines underlying each feature. A I1l. EXTENDED KALMAN FILTERING

line I; = [r;, v]' is parametrized by its distancg > 0 The main advantage of the above formulation is that any
from the origin and the direction); € (—m, 7] of the gtate estimation technique can be used to address the SLAM
normal passing through the origin (see Figure 1).  GiveBroplem. When a statistical description of the uncertaisty i
a robot kinematic model and a measurement equation, tBgopted, the standard approach is that based on the Extended
simultaneous localization and map building problem can bRgiman Filter (EKF). Let the process disturbancék) and
cast as a state estimation problem for an uncertain dynamie measurement noise(k) be modelled as zero-mean,
system. To illustrate the main ideas, let us suppose that thgjte noise, with covariance matriced(k) € R3*3 and
agent pose evolves according to the simple linear model p ;) e R27<2n respectively. Leté(k|k) denote the state
estimate at time:, based on all the measurements collected
p(k+1) = p(k) +ulk) +wik), F=01 @) up to that time, and leP(k|k) be the covariance matrix of
wherew(k) € R® models the noise affecting the odometricthe corresponding estimation error. The estimate update is
measurements(k) € R3. Nonetheless, more general kine-carried out in two stages as summarized below.
matic models of the formp(k + 1) = w(p(k), u(k),w(k)) Prediction:
can be dealt with in the proposed framework.

Assume that at each time instaht the robot is able to E(k +1[k) = E(k|k) + Ezu(k)

measure the distange(k) and orientation; (k) of the i-th P(k +1|k) = P(k|k) + E3Q(k)E4
feature from its current pog€k) (see Figure 1). Let;(k) = = rection:

[pi(k), a;(k)]',i=1,...,n denote the parameter measure- ' R

ments of the-th feature in a robot centered reference frame. {(k+1/k+1) = {(k+1|k)+

Then, z;(k) can be expressed as a functipp(p(k), ;) of + K (k+1)(2(k+1) — h(E(k+1]k)))

the current vehicle posg(k) and the parameters of the

sensed feature in the global reference frame: P(k+1k+1) = P(k+1]k)+

— K(k+1)S(k+1)K (k+1)’
zi(k) = ni(p(k), i) + vi(k), (2) K(k+1) = P(k+ 1K) H(k+1)'S(k+1)""
where v;(k) € R? models the noise affecting theth S(k+1) = H(k+1)P(k+1k)H (k+1) + R(k+1)

measurement. Depending on whether the segment joining the
vehicle positionz(k),y(k) and the origin intersects or not where H (k + 1) = 6‘57(55) R .
the linel;, the measurement equation takes on the form: =Lkl
) IV. FEATURE EXTRACTION
wi(p(k), ;) = [_ri + (k) ?05(9%2 +y(k) Sm(%)} (3) The EKF recursion is based on the measureme(s,
Yi = 0(k) + 7 which are not directly available to the robot but must be
or extracted from the readings provided by the robot sensory
r; — x(k) cos(¢;) — y(k) sin(¢;) equipment. The extraction of lines from range scans is a
pi(p(k), 1) = [ ¥ — 0(k) } - @ widely studied problem and several solutions are available



(see e.g., [9], [10] and reference therein). The approaqb—xgh) cos(a) — yi(h) sin(«)|. Then, the parameters of the
adopted in this paper to obtain the measuremerits), fitting line are computed by minimizing the cost function
as well as the corresponding covariance matkikk), is , i
described in the following. The robot is suppoi@d to be lon, ] :argf{},i?E(”’ @), h=1....a (8
equipped with a proximity sensor (e.g., sonar rings or laser 9
rangefinder) providingV range and bearing measurementswhere E(p,a) = Y ", (p - x,@ cos(ar) — f )sm( ))

d;, ¢, j = 1,...,N, whered; is the distance of the The solution of the optimization problem (8) can be analyti-
point sensed along the directigr). The sensor readings are cally computed as a function of the poimféb) concurring to
processed in order to extract the paramelexk), an(k)]’  define the current line. Recalling equation (7), the pararset
of the linear features present in the surroundings, by itebf the h-th feature can be written as a functien R2"» —

atively alternatingsegmentatiorand line fitting steps. The R? of the sensor readings (see the Appendix):
segmentation phase aims at identifying the sensor readings 4
13

belonging to the same feature, while the line fitting aldorit o, on) =5 (dgh)> o, M) ) : 9)
allows to compute the feature parameters given a set of
related points. In the following, for notational clarityettime
dependence will be omitted.

The pair[d;, ¢;]' can be thought of as the polar coordi-
nates of thej-th point in a robot centered reference frame
Let us denote by

The line parameters extracted according to the above

procedure represent the measurements (6) used to update

the state estimate. However, in the EKF correction step the

knowledge of the covariance matri®(k) of the observa-

tion noisewv(k) is also required. This information can be

approximated, through linearization of equation (9), from
pj = [z, y;]' = [d; cos(;), djsin(¢;)], (7) the statistical properties of the errors affecting the ratad

delivered by the sensor. Let
the Cartesian coordinates of thigh point referenced to the

2
same frame. The segmentation phase consists in partigionin C,n. = [ 94, Udéﬂ
the sensor readings into subsgis(called segmentsof “al- Tgidi Ty,
most collinear” pointssS,, = (h),...,pﬁlh) ,h=1,...,q, Dbe the covariance matrix of the noise affecting the sensor

wheren;, denotes the cardinality of the-th segment. Each reading [d(h)xb h)] Assuming that the errors corrupting
set is built iteratively. All the pointsp;, are processed different readings are uncorrelated, the covariance mafri
sequentially, with the first two initializing the segmefit.  the h-th measurement, (k) can be approximated as:

Then, a poinp;, is added to the current segment if it satisfies nn
the following criterion: Ru(k Z JiCpn. J! (10)
« its normal distance from the current fitting line is below
a threshold),, and where the matrixJ; € R?*? is the Jacobian of(-) w.r.t.
» its Euclidean distance from the last point in the currenfhe pajr d(h)7¢(h) (full expressions are reported in the
segment is below a threshofd. Appendix). Finally, because of the hypothesis of uncorre-

When a new point is inserted in the current segment, tHated measurement noise, the covariance ma#ix) has

parameters of the fitting line are recomputed on the basis afblock diagonal structure, the-th block being R (k) in

the new set of points. IfV,, consecutive points do not meetequation (10).

the above criterion, the current segmefit is assumed to

be completed, and a new ort . ; is instantiated, starting

from the next point with respect to the last one inserted into In order to perform the EKF correction step, each measure-

S,,. Notice that, the condition which determines the end omentz; (k) extracted from the sensor data must be associated

a segment allows to filter out spurious readings (outlierdp the corresponding line present in the map (matching prob-

due to small projections, indentations or occlusions of & fldém). This is a challenging task whenever natural features a

surface. Moreover, in order to increase the robustnesseof tHsed and the sensory system returns only metric information

extraction phase and reject false features, segmentseghortlike any proximity sensor), so that elements constitutimg

than a minimum lengttL, or made up of less thaN, points mMap turn out to be indistinguishable. In the following, we

are deemed unreliable and are discarded. briefly describe the matching strategy adopted in this work.
Once a segmen$;, has been identified, the parameters Let

of the corresponding linear featufg;,, «] are computed ¢ A ’ 3 ' & n

by fitting a Iine through all the pofints bel]onging £,. Let §(klk = 1) = [pklk = 1), Lu(klk = 1)’ In(Klk = 1)]

P = 2™y ™) be the coordinates of theth point in  be the state estimate at timie before the measurements

K2

V. MATCHING AND MAP MANAGEMENT

S, i=1,...,n,. The normal distance gf\" to the line/ ~ are processed. Given the current state estirgatet — 1)
described by the parametdys o]’ is given byd(pf.h),l) _ _and the o_b_servatlonsh(k:), the_ ma’Fchmg problem consists
in determining the featurg (if it exists) in the map, origi-
1The Ien(j;th ofa segmerﬁh has to be intended as the distance betweefiating theh-th measurement; = 1,...,q. Intuitively, one

the firstp{" and lastp{") points in 5. would compare thé-th extracted feature to the current line



estimates and select the “closest” one. Several heuristics the form (see equations (3)-(4)):

be devised to this purpose, involving different comparison - . k)t 2 A

e ) . . n - +&(k|k) cos k)+0(k|k)—
criteria. In this respect, key issues that must be considere s pu(k) %( | )C'Os(ah( ) A( [R)=m)t
are: = +9(k|k) sin(an (k) +0(k|k) —)
i) the comparison requires to express the extracted line| . .
parameters w.r.t. the global reference frame; Pt ap (k) +0(k|k)—m

i) the uncertainty affecting the parameters involved ie thor

g_c))rg%arisonfmust be_ tal;‘en intp account; . ) Pt on(k)+2(k|k) COS(ah(k)—é(k|k))+

i) different features in the environment may lie on the gam " ’ 5

line (e.g., two aligned walls separated by a hallway). = g (k[k) sin(an (k) —0(k|k))
The first issue is addressed by solvi'ngk) = Mh‘(ﬁ(k|k:— Dt an (k) —O(k|k)

1),15) with respect td;,, wherepu, (-, ) is defined in (3)-(4). _ _ . .

At the same time, the covariandg, (k) of the extracted dependlng_ on the relatlv_e _posmon of the vehicle and the

parameters is propagated, through linearization, acogri (n +_1)-th line w.r.t. the origin. Analogously, the covariance

the covariance matrix of the current robot pose estimate. T8atrix P, (k[k) becomes:

face the last problem, for each lidgk|k — 1) in the map, P, (k|k) Py (k|k)J¢

the endpoints of an associated segment are computed aht 1 (FIk) = JePo(klk)  JePo(k|k)JE + J. Py(klk)J.

updated together with _the EKF recursi_on, in order to tracﬁ/herejg and.J. are the Jacobian matrices:

the length and the position of the physical feature along the ) .

corresponding line. It is worth remarking that the segment 7. _ aV(p(Mk)’Zh(k))’ J. = 87(p(k|k)’zh(k))‘

endpoints are not included in the state vector, but are used 0&n 0zn

as an instrumental tool to enhance the matching stage. Remark 1:In order to avoid the introduction of spurious
The matching algorithm proceeds through two stageéeatures in the state vector, an unmatched measurement can

First, for each measuremeny (k) all possible associations be first inserted into a list of tentative features and thetedd

are determined by using three validation gates. The pararﬁ@-the state only when it is deemed sufficiently reliable .(e.g

ters involved in this test are: if it is detected at least a prescribed number of times over a

ven length of time [3]).

Despite the cautions taken in the extraction and matching

a) the squared difference of orientation, weighted by thgI

inverse of its variance, between the extracted line anﬁ’hases, it may still happen that two initially distinct figegs

the feature estimateis(k|k —1); _ turn out to be related to the same environment &deg.,
b) the squared normal distance, weighted by the inverse gf " wal with temporary occlusions, or duplication of

its variance, of the midpoint of the extracted segmenhe same feature due to a poor estimation of the current
o the featurg estimatk(k[k — 1); robot pose). A possible way to deal with this problem is
c) the overlapping rate between the extracted segment apl o rinically inspect the state vector and check whether
the one associated to the feature estiniaelk — 1). any pair of features pass the aforementioned validation
Then, among all feasible correspondences, the one minimigates. If that is the case, the two state components can be
ing a cost function, typically a weighted sum involving theactually considered as two estimates of the same featude, an
quantities previously computed in a)-c), is selected. Whelhiey can be consequently merged according to their current
a measurementy, (k) is associated to a featufgk|k — 1), uncertainties.
the endpoints of the-th segment are suitable updated, by VI. EXPERIMENTAL RESULTS
projecting the endpoints of the extracted segment onto the

corresponding liné; (k[k —1). , real data gathered during several experiments performed by
If a measurement,, (k) does not match any of the lines 5 nopile robot Pioneer 3AT. This vehicle has a differen-
currently present in the state vector, it has to be considerg.; yrive guide and is equipped with a SICK LMS laser

as a new feature and the state ve%tozr must be properly aygygefinder, providing80° planar scans of the environment,
mented. Let us denote Iy, (k|k) € R*"=" the state estimate iy 5 0.5° resolution. The results of a typical run are shown
after the measurement update at tilmand letP, (k[k) be i, Figure 2. The robot explores an environment constituted
the corresponding estimation error covariance. Then, ¢ine n by four rooms of the Siena Robotics and Systems (SIRS)
~ A ~ A
state vector becomes$, 1 (k|k) = [§.(k|k)", lnt1(K[k)']"  lab at our department, labelled from (A) to (D) in Figure 2,
where according to the sequence (A)-(D)-(A)-(B)-(C)-(B)-(A)h&
total distance travelled by the vehicle is aba@® m, at an
i1 (K|k) = [Pt (Ek), Ynir (k|K)) = v(p(k|K), zn(k)).  average speed 0f4 m/s. Along the path, the robot collects
range scans at a frequency®bf{ > and accordingly updates
The functiony(p(k|k), z, (k)) represents the initial estimate itS Pose estimate and the line-based map.

of the_neWW added line (in the glObal. reference frame) 2gecall that although a physical linear featéyds supposed to be static,
according to the current robot pose estimate and takes wiestimated;(k|k) vary during time.

The proposed SLAM algorithm has been validated on
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Fig. 3. Raw data relative to odometric pose estimates.

Fig. 2. Estimated trajectory by the SLAM algorithm (soliddjnand by

odometry (dashed); segments associated to final map (thiak lsdis) ‘ ‘ ™ ‘ ‘ e~
10+ ;’“‘Mf l / ol I i
i [ _ i
A twﬂl\‘ ! / N
| — W S e
In Figure 2, the trajectory estimated by the SLAM algorithm g | @ L |

(solid line) and the one reconstructed from encoder read-
ings (dashed line) are depicted, together with the segments
associated to the final line estimates in the map (thick
solid lines). It can be noticed the poor quality of odometric
estimates which after the first turns rapidly begin to drift
away from the actual vehicle position; the error accumadlate

at the end of the run is abodt5 m. The effectiveness of i 1
the SLAM algorithm to compensate for odometric errors is = & - ("m) 5 10 15
clear from the final position and orientation errors, smalle

than 0.07 m and 0.5°, respectively. Although the ground Fig. 4. Raw data relative to SLAM algorithm pose estimates.

truth is available only for the initial and final positions,

nonetheless satisfactory estimation accuracy along thte pa

can be observed, by looking at Figures 3-4 where 70 range

scans taken during the experiment are plotted according to VII. CONCLUSION AND FUTURE WORK

the current odometric estimate (Figure 3) or to the current

SLAM algorithm estimate (Figure 4). ] ) o )
The final map built by the SLAM technique is composed of N this paper, a simultaneous localization and mapping
66 features. The parameters of the segmentation procedG‘?éhn'que for mobile robots navigating in lqdoor environ-
have been tuned trading-off the accuracy of the extracté@ents has been presented. By adopting a line-based repre-
lines and the need to account for several unevennesses ci¥gatation of the environment, the problem is cast as a state
acterizing real-world features. The overall map managemefStimation problem and solved via extended Kalman filtering
based on a tentative list and line merging, resulted in thEhe results of experimental validation, carried out using t
rejection of 48 spurious lines and the fusion of 19 maﬁnobne platform P|opeer '3AT, conﬂrm the V|ab|!|ty of the
elements. It is worth noticing that the misalignment among§"@Posed approach in quite complex indoor environments.
the rooms actually resembles the shape of the building Future directions of research include the integration of
(dating back to the 15th century) and is not due to mappinadditional features in the map (e.g, corners or pointwise
faults. The presence of slightly curved walls or occlusion'andmarks) and the comparison with different segmentation
caused an over-segmentation of the map which in sonadgorithms (e.g., [10]) as well as with more sophisticatathd
cases, as a result of a wrong matching, generated overlagssociation policies (e.g., [12]). The ability of the prepd
ping segments corresponding to nominally different fezgur SLAM technique to deal with large loops is a current subject
However, despite these drawbacks, the map accuracy provadstudy. In this respect, preliminary promising resultséna
to be very well suited for navigation purposes, allowing théeen obtained by simulation experiments. Moreover, the
robot to traverse back and forth different rooms withoutonsistency of the line-based map in the long run (see [13])
getting lost. is under investigation.



APPENDIX
Let us considem points p; = [z;, v, ¢ = 1,...,n
on a plane. The liné = [p*, «*]' minimizing the sum of
the squared normal distances from each pdiifty, p) =

S (p — xicos(a) — y; sin(a))? is given by the function
f=1f, f]"
ol Z cos(a*) + gsin(a*) A ALy, T yn)
a* B 2arctan7§’2 N f2($17y17~-~7$myn)
(11)

where (see [8]):

I I
x:ﬁ;xi, yZE;yi»
Sp2 = Z(xz - f)2a Sy2 = Z(yl - 37)2,

i=1 i=1
=1
o? Opa

In order to compute the covariancg = - P 5 | of the

ap a
parametergp*, «*|’, let A; be the Jacobian matrix of(-)

W.rt. [z, y5): of o5
1 1
Oz, y;
A =
0f2 0f
Ox; Oy

Denoting by C,, the covariance matrix of a poing; =
[z;, v;)’, under the hypothesis that,p; are uncorrelated
if i #j, Cyis given byC; = >~ | A;C,, A}. By exploiting
the following relationships:

0Szy o 0Szy -
8.1:7; - y’L y? 6y1 - x’L x?
0S5,z B 0Sy2 _
e 2(z; — ), ou; =2(yi — 9),
08,2 0Sg2
Ox; 0 0y; =0
it can be shown that the Jacobian matrix has the expression:
A — Az(lal) Az(]-v?)
CTA(2,1) Ai(2,2)
where:
A;(1,1) cos(a”) — Zsin(a*)A;(2, 1)+
+ gcos(a®)A;(2,1),
A;(1,2) = sin(a”) ~ Fsin(a*)A;(2,2)+
+ gceos(a®)A;(2,2),
_ (y — yz)( zz) + 252y (T — 24)
A’L(27 1) - ( ) —|—4SQ 9
(z xl)( — Sp2) — QSocy(y — i)
A1(2a2) - ( ) —|—4S2

Finally, if the polar coordinatesd;, ¢;] of the pointsp;

are available, together with the corresponding covariance
O’i 0d; i
Opid; U¢
must be expressed in terms ©f,,,. Denote byg(d;, ¢;) the
coordinate transformation:

matrix C,,, = , the covariance matrix,,

x| _ |dicos(¢i)| & |g1(ds, ds)
[yj N |:di Siﬂ(ﬁf’i)} B |:92(div¢i):| ' (12)
Then, the optimal line parameters are given[py, o*|' =

s(di, ¢1,...,dn, ¢y) , Obtained by substituting equation (12)
into (11). Moreover, the covariance mattix of [p*, «*] can
be computed a€; = >, J;,C,, J!, whereJ; = A;B; and

991
06
Bi = =
992
0
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