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Abstract— This paper addresses the path planning problem
for mobile robots in a set theoretic framework. Under the
assumption of unknown but bounded disturbances, a proce-
dure for computing minimum average uncertainty paths is
proposed. The considered scenario is that of a holonomic
mobile robot moving in an environment where landmarks
can be identified. Practical issues, such as limited visibility
of landmarks and obstacle avoidance, are addressed. The
proposed technique is validated via numerical simulations.

I. INTRODUCTION

Mobile robot navigation implies the successfull inte-
gration of several tasks, such as sensing, environmental
mapping, localization and path planning. Each of these tasks
can be tackled using several techniques, depending on the
robot sensory system, the environment the robot is exploring
and the a priori knowledge available to the robot.
As a matter of fact, Extended Kalman Filter (EKF) turns
out to be the most popular sensor fusion technique used
to cope with uncertainty during the localization tasks [1],
[2], [3], [4]. In recent years, several techniques based
on different assumptions on the nature of the uncertainty
have been investigated. In the Set Theoretic framework
[5], no statistical assumptions on the nature of the errors
are made, all noises being supposed to be Unknown But
Bounded (UBB) by a known quantity. Under this hypothe-
sis, the problem can be easily phrased in terms of feasible
sets, defined as those sets containing all the admissible
robot poses (positions and orientations) compatible with the
whole available information and the bounds on the error.
Suitable techniques have been devised to efficiently tackle
the localization problem, exploiting its geometrical structure
(see e.g. [6], [7], [8]).

Motion planning is recognized to be a hard problem
since long time [9]. Nonetheless, as far as mobile robots
(characterized by few degrees of freedom) are concerned,
several solutions have been proposed, which proved to be
effective in practice (see [10] for a comprehensive review).
While uncertainty and disturbances are crucial issues in
localization, they have been often neglected in the path
planning phase, i.e., the robot is usually assumed to be
perfectly known. The presence of uncertainty at execution
time has been considered in motion planning techniques
which aim at computing safe paths, i.e. ensuring the goal
reach in spite of the uncertainty (see e.g. [11], [12]).

In this paper, we focus on a set theoretic approach to
the path planning problem, in order to take into account
the localization uncertainty associated to the selected paths.
The main objective of the paper is to introduce a framework
in which the set theoretic path planning problem can be
formulated as a suitable optimization problem. In particular,
the problem of finding a trajectory minimizing the overall
position uncertainty along the path, is tackled. This is
motivated by applications in which it is crucial to localize
the robot as precisely as possible along the whole path and
not only in the final target, typical examples being the ex-
ploration of unknown environments or the accomplishments
of several tasks requiring a prescribed precision along the
travelled path.

The paper is organized as follows. Section II briefly
describes the set theoretic localization framework. Sec-
tion III introduces the path planning problem in the set
theoretic framework and formulates the related optimization
problems. Practical issues, such as limited visibility and
obstacle avoidance, are considered. Section IV presents
simulation results, while some conclusions are drawn in
Section V.

II. SET THEORETIC LOCALIZATION

Let us consider a robot navigating in a 2D environment,
whose pose at time k is denoted by

p(k) = [x(k) y(k) θ(k)]′ ∈ Q,

with Q
4
= R

2 × [−π, π] being the set of all possible robot
configurations. The coordinates (x(k), y(k)) represent the
position of the vehicle, while θ(k) denotes its heading,
w.r.t. the positive x-axis. It is assumed that a map of the
environment is available, in terms of n static landmarks,
having known positions:

li = [xli yli ]
′, i = 1, . . . , n.

The robot is supposed to be equipped with exteroceptive
sensors, such as laser range finders or stereo vision sys-
tems, providing range and bearing measurements w.r.t. the
landmarks (see Fig. 1). The measurement equations take on
the form

Di(k) = d(p(k), li) + vdi
(k)

Ai(k) = α(p(k), li) + vαi
(k)

i = 1, . . . , n, (1)
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Fig. 1. Range and bearing measurement with respect to the i-th landmark.

where Di(k) and Ai(k) are the actual sensor readings
and vdi

(k), vαi
(k) model noise affecting the distance and

angular measurements, defined as

d(p(k), li)
4
=

√

(x(k) − xli)
2 + (y(k) − yli)

2, (2)

α(p(k), li)
4
= atan2(yli − y(k), xli − x(k)) − θ(k). (3)

Under the hypothesis of bounded errors

|vdi
(k)| ≤ εvd , (4)

|vαi
(k)| ≤ εvα , (5)

with εvd and εvα denoting known (possibly time-varying)
positive scalars, one can define, for each measurement pair
Di(k),Ai(k), a set

Mi(k) = {p ∈ Q : |Di(k) − d(p(k), li)| ≤ εvd

and |Ai(k) − α(p(k), li)| ≤ εvα} .
(6)

This set contains all robot poses compatible with the i-th
measurement readings and with the corresponding error
bounds (4)-(5). In a set-theoretic framework, data fusion is
obtained via set intersection. Hence, supposing that at time
k the robot performs measurements w.r.t. the n landmarks,
its pose is constrained to lie in the feasible set

M(k) =

n
⋂

i=1

Mi(k). (7)

Notice that, if the bounds on measurement errors are correct,
the set M(k) is not empty, whereas, an empty intersection
in (7) implies that at least one of the constraints (4)-(5)
has been violated. The most appealing property of the set-
theoretic formulation lies in fact that, as long as the errors
verify the boundedness assumption, the actual robot pose
p(k) is guaranteed to belong to the set M(k) (feasibility
property), regardless of the statistical nature of the noise.
Such a property turns out to be especially useful whenever
“certified” estimates are needed, e.g. in order to plan safe

paths. As a consequence, a measure of the quality of the set-
valued estimates is given by the size of the corresponding
feasible sets.

The exact solution to the set-theoretic localization prob-
lem involves the computation of the set (7). Unfortunately,
this set turns out to be the intersection of nonlinear,
nonconvex 3D sets, whose shape can be very complex.
Two major drawbacks prevent from computing its exact
expression. As far as real-time applications are concerned,
the computation required by (7) may be too expensive [6].
Moreover, as new measurements are processed, the shape
of the feasible pose set can become arbitrarily complex, so
that finding analytical expressions is a very hard problem.
For these reasons, suboptimal solutions, trying to reduce
the computational cost, while at the same time preserving
the essential features of the set-valued estimates, have
been devised. For instance, in [5] outer approximations of
the feasible sets via simple structure regions have been
proposed. It has been shown that, at the expense of some
conservativeness, it is possible to devise efficient recursive
algorithms able to compute guaranteed set estimates.

To illustrate the main idea, let us first suppose that the
robot orientation θ(k) is known. It is easily verified that the
projection on the xy-plane of each set Mi(k) corresponds
to a sector of corona Ci(k), whose radial and angular
semi-amplitude are given by εvα and εvd , respectively (see
Fig. 2(a)). Then, all the admissible robot positions at time
k, according to the error bounds and the measurements
Di(k), Ai(k), are constrained into the set

C(k) =
n
⋂

i=1

Ci(k). (8)

The goal is to bound the set C(k) by the minimum area set
belonging to a class of simple regions. In this paper, axis-
aligned boxes will be used. To this purpose, let us denote
by B{Z}, the minimum area box containing the set Z .
Notice that the set in (8) is still nonconvex. Hence, to further
simplify the computation, rather than finding the smallest
box containing C(k), we look for the minimum area box
outbounding the set T (k), defined as

T (k) =

n
⋂

i=1

Ti(k), (9)

where each Ti(k) denotes the minimum area trapezoid con-
taining each sector of corona Ci(k), as shown in Fig. 2(a).
Notice that Ti(k) can be analytically computed, from the
landmark location li, the sensor readings Di(k), Ai(k) and
the error bounds (4)-(5). With this choice, the problem
becomes the computation of

B(k) = B{T (k)}, (10)

which in turns boils down to the solution of four linear
programming problems. It is worth remarking that the set
B(k) contains, by construction, the true robot position (see
Fig. 2(b)).
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Fig. 2. (a) Trapezoidal approximation of a sector of corona. (b) Outer
approximation of the exact feasible position set C(k) (dashed region)
related to two landmarks.

To take into account also the uncertainty affecting the
vehicle orientation estimates, the above procedure has to be
slightly modified. At each time k an interval estimate of
the actual robot heading can be derived, from a simple ge-
ometrical reasoning. Such uncertainty can be suitably taken
into account by merely enlarging the angular amplitude of
each sector of corona, by a quantity equal to the width of
the orientation uncertainty interval.

The framework described above can easily incorporate
also a dynamic model of the robot, in which uncertainties
are modelled as UBB disturbances. In this case, the set esti-
mate B(k) can be recursively updated by using prediction-
correction schemes analogous to that adopted in EKF. The
interested reader is referred to [5] for a detailed description
of set membership localization algorithms.

III. SET THEORETIC PATH PLANNING

The aim of this paper is to address the problem of
computing minimum uncertainty trajectories, exploiting the
set theoretic localization framework illustrated in Section
II.

Consider a robot with initial pose p0 and whose target
is to reach a pose pT , after T moves. The objective is
to plan a path P = [p(0), p(1), . . . , p(T )], such that the
average uncertainty associated to the path is minimized.

This corresponds to tackle the following problem:

min
P

1

T

T
∑

k=1

V
[

M(k)
]

s.t.
|x(k + 1) − x(k)| ≤ bx ∀k = 0 . . . T − 1
|y(k + 1) − y(k)| ≤ by ∀k = 0 . . . T − 1
p(0) = p0 p(T ) = pT

(11)

where V
[

M(k)
]

is the volume of the feasible set
M(k), and bx, by are bounds on the maximum x− and
y−displacement for each move, respectively. Bounds on the
orientation displacement (rotation) are not included, because
holonomic mobile robots are considered and it is assumed
that the time step for a single move is such that the robot
succeeds to perform the required rotation during each move.

The solution of problem (11) presents several difficulties.
In particular:

a) the set M(k) is a function of the sensor readings
Di(k), Ai(k), which in turn depend on the actual
realization of measurement noises;

b) the size of M(k) does not depend on the robot
orientation θ(k) if the visibility range is unlimited
and all landmarks can be seen from any robot pose;
in the more realistic situation of limited field of view,
V

[

M(k)
]

depends on which landmarks fall in the
robot field of view.

Problem a) can be faced in a worst-case approach, by
maximizing V

[

M(k)
]

over all possible noise realiza-
tions. However, this would lead to an untractable high-
dimensional min-max optimization problem. A more viable
approach is that of neglecting the noise realizations in the
planning phase, which amounts to consider measurements
Di(k), Ai(k) produced by a zero noise realization. Notice
that this is generally an unfavorable case in set theoretic
localization, where the maximum uncertainty reduction is
usually achieved when the noise sequence takes values on
the boundary as often as possible.
In order to cope with problem b), a suitable partition
of the orientation interval is introduced next. As it will
become clear in the following, this will also lead to a useful
simplification of the cost function in (11).

A. Limited angular visibility

In a real-world scenario, sensors usually have a limited
field of view. For example, a mobile robot using a laser
rangefinder to detect landmarks, has a limited angular
visibility. This means that in general the robot is not able
to perceive all the landmarks around it.

In this work, we consider robots which can see all the
landmarks li such that |α(p(k), li)| ≤ α, where α is the
angular visibility (sensor range limitations can also be easily
incorporated in this framework). This assumption implies
that, given a position z = [x, y]′, the robot perceives
different sets of landmarks depending on both its orientation
θ and its angular visibility α. Therefore, the intersections in



(7), (8) and (9) do not involve all the landmarks, but only
those that are actually seen from the current pose p(k).

In order to establish which landmarks are seen from
a given pose, we look for a partition of the orientation
interval [−π, π] into subsets hi, such that each subset hi

is associated to a unique set of visible landmarks from
the position z and for all orientations θ ∈ hi. For a fixed
position z, let us introduce the set

τh = {lj : |α(p, lj)| ≤ α ∀p = [x, y, θ] with θ ∈ h}
(12)

which is the set of visible landmarks, from position z and
orientation θ ∈ h, with h ⊆ [−π, π]. Then, the sought
partition of [−π, π] is given by

H(z) = {hi ⊆ [−π, π] :
⋃

hi ≡ [−π, π]
hi ∩ hj = ∅ ∀i 6= j

τhi
6= τhj

∀i 6= j

τa ≡ τhi
∀a ⊆ hi }.

(13)

Notice that H(z) is a partition of the interval [−π, π] into
disjoint sets, such that the set of landmarks perceived by
any couple of orientations θi ∈ hi and θj ∈ hj are different
if hi 6= hj . Moreover, the set of perceived landmarks is the
same in every subset of hi. This makes the partition defined
by (12)-(13) unique.

To clarify how the partition H(z) is constructed, let us
consider the example depicted in Fig. 3, concerning a four
landmarks scenario with a angular visibility α = π

2 . In this
case, one gets the partition H(z) = {h1, h2, h3, h4, h5, h6};
Table I reports the sets of visible landmarks τhj

, from pose
p = [x, y, θ] with θ ∈ hj .

PSfrag replacements l1l1l1l1l1l1l2l2l2l2l2l2

l3l3l3l3l3l3 l4l4l4l4l4l4

h1

h2

h3
h4

h5

h6

x

y

Fig. 3. Example of orientation partition: asterisk denotes the robot position
z = [x, y]′, circles represent landmark positions, solid lines bound the
angular subsets hi.

B. A simplified optimization problem

From the above discussion, the problem of choosing the
robot orientation along the path can be simplified into that
of selecting a suitable orientation subset hj . Indeed, the

TABLE I

SETS OF VISIBLE LANDMARKS τhi
FOR THE EXAMPLE IN FIG. 3

τh1
l1, l2

τh2
l2, l3

τh3
l2, l3, l4

τh4
l3, l4

τh5
l1, l4

τh6
l1

feasible set (7) associated to the robot pose p = [x y θ]′

becomes

M(j)(k) =
⋂

li∈τhj

Mi(k) (14)

where hj ∈ H(z) is such that θ ∈ hj . Clearly, the size of
M(j)(k) in (14) depends on τhj

, and hence on the partition
subset hj in which the robot orientation lies, but it does not
depend on the exact value θ of the orientation itself. For
this reason, one can get rid of the dependence on θ in the
cost function (11), by choosing the subset hj for which the
size of the feasible set M(j)(k) in (14) is minimum. This
amounts to consider for each position z(k) the cost function

J (z(k)) = min
hj∈H(z(k))

V
[

M(j)(k)
]

. (15)

If in (11) V [M(k)] is replaced by J (z(k)), the number of
free variables in the path planning optimization problem is
reduced from 3T to 2T . However, the cost function (15)
is still very difficult to compute, since the M(j)(k) are
nonlinear nonconvex 3D sets.

A further simplification is achieved by considering only
the position uncertainty and exploiting the set approxima-
tion introduced in Section II. In particular, the feasible set
approximation worked out in (9)-(10) becomes

B(j)(k) = B







⋂

li∈τhj

Ti(k)







. (16)

Hence, one can substitute to J (z(k)) the new cost

J2(z(k)) = min
hj∈H(z(k))

A
[

B(j)(k)
]

. (17)

where A[·] denotes the area of the set within square brack-
ets. Notice that, according to the discussion in Section II,
in (17) the uncertainty in robot orientation is neglected:
this means that in the planning phase one assumes to know
exactly the orientation of the robot when computing the size
of the (approximate) feasible position set.

Therefore, the set theoretic path planning problem we ad-
dress can be cast as follows. Let Z = [z(0), z(1), . . . , z(T )],



and Π = [I2 02×1]. Then, solve

min
Z

1

T

T
∑

k=1

J2

(

x(k), y(k)
)

s.t.
|x(k + 1) − x(k)| ≤ bx ∀k = 1 . . . T − 1
|y(k + 1) − y(k)| ≤ by ∀k = 1 . . . T − 1
z(0) = Π · p0 z(T ) = Π · pT

(18)
The solution Z∗ = [z∗(0), z∗(1), . . . , z∗(T )] of (18)

provides a sequence of positions. To solve completely the
path planning problem one has to specify the orientations
θ∗(k) associated to the positions z∗(k). In order to minimize
the uncertainty along the path one should consider the set
of orientations for which the minimum in (17) is achieved,
i.e.

hj∗(k) = arg min
hj∈H(z∗(k))

A
[

B(j)(k)
]

. (19)

Any value within hj∗(k) can be selected as the robot
orientation θ∗(k) at the k-th step of the computed path. For
example, θ∗(k) may be the center of the angular interval
hj∗(k). This choice is viable because we do not constraint
rotational displacement in a single robot move.

C. Obstacle avoidance

In static structured workspaces, the path planner must
also deal with the presence of obstacles. One of the most
popular techniques for tackling this problem is the potential
field approach [10], where artificial potential functions are
generated in agreement with the structure of obstacles. Once
such functions are generated, they can be combined with the
cost function in (17), in order to produce a new cost to be
minimized in (18). A possible choice, is to replace J2(z)
in (18) by

J2(z) + ρO(z)

where O(z) is the artificial potential function associated
to the obstacles, and ρ is a suitable weighting coefficient.
Clearly, the resulting cost function accounts both for uncer-
tainty along the path and for the presence of obstacles in
the scene. On the other hand the use of potential functions
usually complicates the solution of (18) increasing the
occurrence of local minima. This problem is well-known
and it has widely addressed in the literature (see [13]).

IV. SIMULATION RESULTS

In this section, simulation results concerning the proposed
path planning strategy are presented. The optimization
problem (18) yielding the path Z∗ is solved via Sequential
Quadratic Programming (SQP). Then, the orientations θ∗(k)
are chosen as the centers of the intervals hj∗(k) defined in
(19). The computed path has been used to simulate a mobile
robot navigation, during which the localization algorithm
sketched in Section II is applied. Performance in terms of
localization precision are compared to those of different
path choices.

Consider the four landmark scenario depicted in Fig. 3.
The aim is to solve the path planning problem (18) with
the constraints

p0 =





−3
−4
0



 , pT =





5
4
π



 ,

[

bx

by

]

=

[

1
1

]

and T = 14. The cost function J2(z) in (17) has been
computed via the set approximation techniques described
in Section II, assuming the noise bounds

εvd = 0.1 (m), (20)

εvα = 5 (deg), (21)

in (4)-(5). The resulting J2(z) for this scenario is shown in
Fig. 4(a), while the corresponding orientations are reported
in Fig. 4(b). The computed path Z∗ is shown in Fig. 5.
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Fig. 4. The cost function (17) and the associated orientations for a four
landmark scenario.

Fig. 6 shows the cost function and the computed path for
the same scenario, in which two rectangular obstacles are
present. The cost function has been generated according to
what suggested in Section III-C.

Let us now analyze the computed paths by simulating
the motion of a mobile robot, performing self-localization
with respect to the landmarks at each move along the path.
The localization algorithm combines the set approximation
techniques outlined in Section II for processing distance and
orientation measurements, with a simple dynamic model for
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Fig. 5. Path calculated by solving (18) with the cost function in Fig. 4(a).
White triangles represent the selected robot poses. White circles are
landmarks; contour lines of the cost function J2(z) are reported in the
background.

robot motion. In particular, it is assumed that the robot pose
evolves as

p(k + 1) = p(k) + u(k) + w(k) (22)

where u(k) represents translation and rotation measure-
ments from odometric sensors, and w(k) models the errors
affecting u(k). It is assumed that also errors w(k) are UBB.
For each move, bounds on translation errors are set to 10%
of the x−, y−displacement, respectively, while bounds on
rotation errors do not exceed 5% of the variation of θ.
At each move, the set of feasible robot poses is enlarged
according to the model (22); each time measurements are
performed, such a set is reduced by intersecting it with the
set B(k) in (10). A detailed description of the dynamic
localization algorithm can be found in [5].

The performance of the localization algorithm has been
compared for three different paths:

topt: the path obtained by solving problem (18);
td1

: the direct path joining p0 to pT , where the orientations
are chosen as the center of the interval hj∗ in (19);

td2
: the direct path joining p0 to pT , where the orientation

is kept equal to the one pointing from z(0) to z(T ).
It is worth remarking that, while the path planning is
performed assuming zero measurement noise realizations,
in the simulations the disturbance signals vdi

, vαi
, w

are generated as independent uniformly distributed random
variables within the given bounds. In each simulation run,
the uncertainty affecting the robot pose is computed in
terms of boxes containing the robot position (z(k)) and
intervals containing the robot orientation θ(k), for each k.
Simulation results are averaged over 100 runs with different
noise realizations.

Fig. 7 reports the result of typical runs for the considered
paths topt, td1

and td2
, in the scenario of Fig. 6. It can be

observed that the uncertainty on the robot position is smaller
along the path topt, as expected. The comparison between
the two direct paths td1

and td2
in Figures 7(b) and 7(c)

confirms that the choice of orientations along the path plays
an important role in uncertainty reduction.
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Fig. 6. Cost function and computed path, for a scenario including two
rectangular obstacles.

Average uncertainties on position and orientation are
shown in Fig. 8. It can be noticed that, although the
uncertainty values are similar at the endpoints of the path,
the overall uncertainty is significantly smaller along the
selected path topt.

V. DISCUSSION AND FUTURE WORK

A path planning algorithm for holonomic vehicles, which
explicitly takes into account the localization uncertainty
affecting the robot along its trajectory, has been proposed.
A deterministic description of the uncertainty is adopted,
leading to set-valued pose estimates whose size concurs
to the definition of a suitable potential function to be
minimized.

The presented preliminary results are obtained via general
purpose optimization techniques. Current investigations in-
clude more efficient numerical methods, like the Navigation
Functions [14], or computational techniques for constrained
trajectory generation [15] in order to encompass more
complex robot motion models (e.g., nonholonomic vehicles)
.

This work has to be intended as a first step toward the
development of advanced exploration strategies, through
the integrated solution of different tasks, like localization,



(a) path topt

(b) path td1

(c) path td2

Fig. 7. Simulation runs for three different paths. Black dots represent the
chosen path, boxes depict the uncertainty on the robot position, triangles
show the true robot pose, circles represent the landmarks.

map building and path planning (see [16]). Along this line,
the proposed design procedure represents an attempt to
consider in the planning stage the whole information gained
along the path, to localization purposes. The next goal
is the extension of the proposed planner when the more
challenging Simultaneous Localization and Map building
(SLAM) problem has to be addressed.

REFERENCES

[1] J. L. Crowley. World modeling and position estimation for a mobile
robot using ultrasonic ranging. In Proceedings of the 1989 IEEE
International Conference on Robotics and Automation, pages 674–
680, 1989.

0 2 4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

0.025

 

PSfrag replacements

topt

td1

td2

m
2

stepdeg

(a) Average areas of position uncertainty boxes

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

 

PSfrag replacements

topt

td1

td2

m2

step
de

g

(b) Average uncertainty on orientations

Fig. 8. Average uncertainties on positions and orientations over 100 runs
of the localization algorithm, for the three paths of Fig. 7.

[2] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization
by tracking geometric beacons. IEEE Transactions on Robotics and
Automation, 7(3):376–382, 1991.

[3] B. Barshan and H. F. Durrant-Whyte. Inertial navigation systems
for mobile robots. IEEE Transactions on Robotics and Automation,
11(3):328–342, 1995.

[4] J. J. Leonard and H. J. S. Feder. A computationally efficient
method for large scale concurrent mapping and localization. In
J. Hollerbach and D. Koditscheck, editors, Robotic Research: the
Ninth International Symposium. Springer-Verlag, 2000.

[5] M. Di Marco, A. Garulli, A. Giannitrapani, and A. Vicino. A
set theoretic approach to dynamic robot localization and mapping.
Autonomous Robots, 16:23–47, January 2004.

[6] M. Kieffler, L. Jaulin, E. Walter, and D. Meizel. Nonlinear identifi-
cation based on unreliable priors and data, with application to robot
localization. In A. Garulli, A. Tesi, and A. Vicino, editors, Robustness
in Identification and Control. Springer-Verlag, London, 1999.

[7] A. Garulli and A. Vicino. Set membership localization of mobile
robots via angle measurements. IEEE Transactions on Robotics and
Automation, 17(4):450–463, August 2001.

[8] K. Briechle and U. D. Hanebeck. Localization of a mobile robot
using relative bearing measurements. IEEE Transactions on Robotics
and Automation, 20(1):36–44, 2004.

[9] J. Reif. Complexity of the mover’s problem and generalizations.
In Proceedings of the 20th IEEE Symposium on Foundations of
Computer Science, pages 224–241, 1979.

[10] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[11] A. Lazanas and J.C. Latombe. Motion planning with uncertainty: a
landmark approach. Artificial Intelligence, 76:287–317, 1995.

[12] A. Lambert and Th. Fraichard. Landmark-based safe path planning
for car like robots. In Proceedings of the 2000 IEEE International
Conference on Robotics and Automation, pages 2046–2051, San
Francisco, CA, 2000.

[13] Z. Shiller and S. Dubowsky. Global time optimal motions of



robotic manipulators in the presence of obstacles. In Proceedings
of the IEEE Conference on Robotics and Automation, pages 370–
375, Philadelphia, PA, April 1988.

[14] J. Barraquand, B. Langlois, and J.C. Latombe. Numerical potential
field techniques for robot path planning. IEEE Transactions on
Systems, Man, and Cybernetics, 22(2):224–241, 1992.

[15] M.B. Milam, K. Mushambi, and R.M. Murray. A new computational
approach to realtime trajectory generation for constrained mechanical
systems. In Proceedings of the IEEE Conference on Decision and
Control, pages 845–851.

[16] A. Makarenko, S. Williams, F. Borgault, and H. Durrant-Whyte.
An experiment in integrated exploration. In Proceedings of the
2002 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 534–539, Lousanne, October 2002.


