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Abstract

This paper addresses the problem of estimating position
and orientation of a mobile robot navigating in an envi-
ronment for which a landmark-based map is available.
A set theoretic approach to the problem is proposed.
Estimates of robot position and heading are derived
in terms of uncertainty regions, under the hypothesis
that the errors affecting all sensors measurements are
unknown but bounded. A recursive estimation proce-
dure for localization based on angle measurements is
presented. Simulation and experimental results prove
the effectiveness of the proposed approach.

1 Introduction

Sensor-based self-localization of a mobile robot is a
crucial problem in autonomous long range navigation
[1]. The ability to precisely determine its own posi-
tion and orientation (in the following, we use the term
pose to refer to both of them) is necessary to perform
many fundamental tasks, such as mission accomplish-
ment, or data collection. The localization problem is
usually tackled by integrating measurements from pro-
prioceptive sensors (providing information on the robot
motion) and exteroceptive sensor (performing measure-
ments on the surrounding environment). Information
on robot displacement can be obtained by integrating
the outputs of proprioceptive sensors. However, even
small noises and sensor drifts lead to error accumu-
lation, causing erroneous estimates [2]. Exteroceptive
sensors (e.g. cameras, GPS receivers and laser scanners)
provide measurements of geometric relations between
the vehicle and some features (described by a suitable
map) of the environment. In this case, robot pose can
be estimated from scratch, i.e. without having any es-
timate on the vehicle initial location. The main prob-
lem with exteroceptive sensors is uncertainty, due to
measurement, errors, feature misidentification or map
errors. By combining measurements from all sensors,
the uncertainty on the exteroceptive measurements and
the drift on proprioceptive sensors can be reduced. De-
pending on the sensors used, the environment repre-
sentation and the errors model, the problem can be
tackled in different ways. Kalman filtering [3], Markov
localization techniques [4] or iconic matching [5] have

been used with success, providing recursive solutions
to the localization problem and a measure of their un-
certainty. However, most techniques require statistical
assumptions on the nature of the errors.

The contribution of this paper is to propose a solu-
tion of the pose estimation problem in the presence
of angle measurements affected by bounded errors (for
landmark-based localization exploiting angle measure-
ments, see e.g. [6, 7]). No statistical assumption is
made on the errors: the only hypothesis is that they are
bounded in norm by some quantity. A Set Membership
(SM) approach is taken and estimates are given in terms
of guaranteed uncertainty regions, containing all feasi-
ble poses [8, 9, 10]. Though standard SM estimation
theory (see, e.g., [11, 12, 13]) is mostly developed for
linear estimation problems, the specific nonlinear struc-
ture of the feasible pose sets can be exploited to devise
recursive procedures for computing and updating the
pose uncertainty regions. The resulting dynamic local-
ization procedure enjoys a low computational complex-
ity and proves to be effective in both simulations and
real-world experiments.

The paper is structured as follows. Sect. 2 introduces
the set theoretic approach to the localization problem.
Sect. 3 presents the SM strategy for pose estimation
from angle measurements. Robot heading estimation is
treated in Sect. 4, while Sect. 5 provides a refinement
procedure for obtaining tighter set estimates. Simula-
tion and experimental results are reported in Sect. 6.
Finally, some concluding remarks are drawn in Sect. 7.

2 SM approach to the localization problem

Let us consider a vehicle navigating in a 2D envi-
ronment, and let p(k) = [z(k) y(k) 6(k)] € Q £
R? x [—7 7] be the pose of the agent at time k (where
0(k) represents the heading of the vehicle w.r.t. the
positive x-axis). Under the assumption of slow robot
dynamics and if translation and rotation measurements
u(k) from odometric sensors are available, the robot dy-
namics is described by the linear discrete-time model

p(k+1) = p(k) + u(k) + G(k)w(k), (1)

where w(k) € R® models the errors affecting measure-
ments u (k) (possibly shaped by a suitable matrix G(k)).



Exteroceptive sensors provide measurements on the en-
vironment. When the robot moves in a static environ-
ment, these measurements depend only on the robot
pose p(k) and the landmark positions, that are known.
As a consequence, the outputs of the sensors can be
described by equations of the form

ci(k) = pi(p(k)) +vi(k)

where m is the number of measurements performed at
time k, p;(p) is a (nonlinear) function modeling the i-
th measurement process and v;(k) is the noise affecting
that measurement. Hence, the localization problem can
be stated as follows.

i=1,...,m (2

Localization Problem: Let p(0) be an estimate of the
initial robot pose. Given the dynamic model (1) and
the measurement equation (2), construct an estimator
of the vehicle pose p(k) at each time instant k = 1,2,. ..

This problem can be tackled in different ways, depend-
ing on the hypotheses on the unknown disturbances
w(k) and v;(k) in (1) and (2). When statistical as-
sumptions on the errors are considered, the estimate
can be computed via the extended Kalman filter, or
using Markov localization and Bayes rule. However,
real-world uncertainties may include also systematic er-
rors or non-gaussian, non-white noise, whose statistical
properties are very difficult to estimate. In this paper
a different approach is presented based on the assump-
tion that the disturbances are unknown-but-bounded,
i.e.

lwi(k)] < €(k) i=1,2,3 3)
(k)] < €(k) i=1,...,m (4)
where € (k), €/ (k) are known scalars. Assumption (4)

allows one to define, for each measurement in (2), a set
where the navigator pose is allowed to lie, given by

M;=C(cief)={p€ Q:ci — € <pi(p) <ci+€f}. ()

The shape of this set depends on the (nonlinear) func-
tion in (2) and can generally be nonconvex, noncon-
nected and/or unbounded. At every time k, the pose
will be constrained to lay into the intersection of m dif-
ferent sets defined by (5), thus giving the measurement
set M(k) = %, M;(k). We point out that, if assump-
tion (4) is verified, the set M is not empty. On the
other hand, an empty intersection implies that at least
one of the constraints (4) is violated. The localization
problem can be formulated in terms of dynamic esti-
mate of feasible sets.

Set Membership localization problem: Let
P(0) C Q be a set containing the initial pose p(0).
Find at each time k = 1,2,... the feasible pose set
P(klk) C Q containing all vehicle poses p(k) that
are compatible with the dynamics (1), the measure-
ments (2) collected up to time & and assumptions (3)-
4).

The solution of this problem is obtained from the fol-

lowing recursion, stemming out directly from (1)-(2)

P(0[0) = P(0) (6)
Plk—1) = Plk— 1k — 1) +u(k — 1) +

G(k — 1)Diagle® (k — 1)]Bss  (7)

P(k|k) = P(k|k — 1) N M(k) (8)

where By is the unit ball in the £, norm, defined as
[[v]lo = max; |v;|, and Diag[v] denotes the diagonal ma-
trix with vector v on the diagonal. Note that algebraic
operators in (6)-(8) are to be intended as set operators.
Equation (7) is based on the information provided
by proprioceptive sensors. Due to the noise affect-
ing odometers, uncertainty will grow during this step.
Equation (8) exploits exteroceptive measurements to
reduce uncertainty on the robot position. It requires
the computation of the intersections of highly struc-
tured nonlinear sets in R®. The computational com-
plexity of such intersections quickly becomes too high to
be tractable (see, e.g. [9, 10]) and approximation tech-
niques performing a tradeoff between complexity and
accuracy, are usually pursued. Set membership estima-
tion theory provides efficient approximation algorithms
for linear relations like (7) [14]. Problems introduced
by nonlinear equations such as (8) depend on the par-
ticular form of the measurement equation (2), i.e. on
the exteroceptive sensors available to the robot. Two
different approximations are introduced in the evalua-
tion of (7)-(8).
e Set bounding: the actual sets in (7)-(8), are re-
placed by approximating regions belonging to a class
of fixed, simpler structure. In order to obtain sets con-
taining the true robot pose, the smallest outer approx-
imation in the chosen class is sought. Given a class of
regions of fixed structure R, and denoted by R{S} the
minimum volume region in R containing the set S, the
desired approximation of the recursion (6)-(8) is given
by
R(0[0) = R{P(0)} 9)
Rklk—1) = R{R(k -1k —1)+u(k—1)+
G(k — 1)Diag[e”(k — 1)]B} (10)
R(klk) = R{R(k|k — 1) N M(k)}. (11)

e State decomposition: evaluation of the actual fea-
sible sets in the entire state space is replaced by that
of smaller dimension subsets within suitable subspaces.
Thus simpler sets are obtained. Set intersections are
then performed in these subspaces, and afterwards the
overall feasible pose set is approximated by the Carte-
sian product of the evaluated subsets. This strategy in-
troduces an approximation in the sense that correlation
between state elements belonging to different projected
subspaces is lost. We point out that the set obtained
by the final product always contains the real set.

In the next section we will present an efficient algo-
rithm for the case of angle measurements, performing
both set bounding and state decomposition. Position



Figure 1: a) Measurement set M; associated to a rel-
ative orientation measurement; b) Intersection
between two distinct measurement sets and its
projection on the (z,y) plane.

and orientation will be estimated separately, and their
feasible subsets will be evaluated using simple outer ap-
proximating regions.

3 Set Membership localization using angle
measurements

Let us suppose that the robot is navigating in an envi-
ronment described by a 2D map containing landmarks
(i.e., there are isolated features that can be detected).
Let the coordinates (zr,,yr,;) of N landmarks be avail-
able to the robot. For each landmark L;, the navigator
can measure the angle between its orientation and the
line connecting it to the landmark, i.e.

pi(p(k)) = atany(Ayi(k), Azi(k)) — 0(k),  (12)

where Ay;(k) = yr, — y(k), Az;(k) = zr, — z(k) and
atan, is the four quadrant inverse tangent. This kind of
measurement is available from panoramic cameras or,
as a byproduct, from stereo couples or range finders.
Equation (12) implies that the measurement set M; in
(5) has the following expression

Mi={p e Q: |atany(Ay;, Ax;) — 0 —c;| < €'} (13)

This set is a portion of Q delimited by two helicoids
(a part of this set, limited in the (z,y) plane is shown
in Fig. 1a). Each set M; is unbounded. However, the
intersection of two measurement sets M;, related to dis-
tinct landmarks, is always bounded. Moreover, its pro-
jection on the (z,y) plane is the well-known “thickened
ring” [15] , i.e. the region between two circular arcs
with the same extreme points: the two landmarks (see
Fig. 1b). Evaluating the difference between two mea-
surement equations (2), with u(-) given by (12), one
obtains

Ci — Cj = Tij + V; — Vj (14)

where 7;; is the visual angle between two distinct land-
marks (the angle formed by the rays from the vehicle
position to each landmark). The position uncertainty
region associated to noisy measurements c¢; and c; is the
thickened ring 7;; = {[z y]' : |ci—cj—atana(Ay;, Az;)+
atany(Ay;, Az;)| < € +¢€;} (see, e.g. [7, 16]). Given N

landmarks, one can intersect up to N(N — 1)/2 thick-
ened rings, considerir&g all the landmark pairs. This
gives the set 7 = (7,5 7i; which is the best possible
set membership position estimate, based on the avail-
able measurements.

Since (14) does not depend on the robot orientation,
a 2D set R;(k|k) containing the feasible vehicle posi-
tions, and an interval R,(k|k) for the admissible robot
orientations can be evaluated separately. Thickened
rings are sets bounded by nonlinear curves, so set
approximation is needed. In the following, an algo-
rithm that uses boxes as approximating sets is out-
lined. An axis-aligned boz is defined by B = B(c,b) =
{q : ¢ = ¢+ Diag[bla, ||a|lcc < 1} where ¢ is the cen-
ter of the box and the absolute values of the ele-
ments of 2b represent the length of the edges. We ob-
serve that premultiplication of a box by a (nonsingular)
square matrix gives a parallelotope, which is defined as
P=Pl,T)={q:q9q=c+Ta,l||a|| < 1}, where ¢ is
the center and T is a (nonsingular) matrix whose col-
umn vectors represent the edges of the parallelotope.
Using (10)-(11) and the state decomposition, we have
to solve the following approximation problems:

B1. Compute the minimum volume 3D box containing
the sum of a box and a parallelotope in R® (eq. (10));
B2. Compute the minimum volume 2D box R;(k|k)
containing the intersection of a box in R? with the set
T (projection of (11) on the z — y plane);

B3. Compute an interval R,(k|k) containing the feasi-
ble orientation set of the vehicle (projection of (11) on
the subspace spanned by 6).

Notice that the cartesian product R;(k|k) ® R, (k|k) is
the desired approximation of the feasible set P(k|k).
Optimal solution to problems B1, and a suboptimal re-
cursive solution to problem B2 have been presented in
[16]. In the next section, a technique for computing in-
terval approximations for the robot orientation (i.e., a
suboptimal solution to problem B3) will be introduced.

4 Orientation set approximation

Let ¢;(k), i = 1,..., N, be the angle measurements at
time k and R;(k|k) be a box containing all the vehicle
positions compatible with the robot dynamics and the
measurements up to time k.

(From each angle measurements c;(k), relative to a
landmark L; outside the box R;(k|k), an interval con-
taining the actual robot orientation can be derived. In
Fig. 2, the landmark L; and the box R;(k|k) are shown.
Lines s;, and s;, connect landmark L; and the box ver-
tices V and V, chosen so that the angle ¢; with the
X axis is respectively minimized (y,) and maximized
(®;). The equations of these lines are known, being the
landmark and the vertices coordinates known. The an-
gle 0 between the z axis of the robot reference system
X (") and the X axis is unknown, and so are the angles
a;, @; between X (") and lines s;,, s;,. ;From a simple
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Figure 2: Geometric setting for orientation estimation.
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Figure 3: Position estimation refinement: the set
My, (k, Ro(K|k)).

geometric reasoning, one has for the visual angle u;
p,—0=a; <p;<o;=9p; -9, (15)

in which ¢; and @; are known. Equation (15) can be
rewritten as

o, — Wi <0 <P — pui (16)

Since only a noisy measurement c; of the visual angle
i is available, (16) has to be modified according to (2)
and assumption (4) on error bounds, thus giving

p,—ci—€ <0< —ci+e (17)
which provides a restriction on the admissible orienta-
tion values. Setting Mo, = [p, —ci—€], P;—c;i+€]], the

desired outer approximation of the feasible orientation
set is obtained by computing the intersection:

Mok, Ri(klk) = () Mo, (18)
i L,-iR;(k\k)
Notice that this is an approximation of the exact feasi-

ble orientation set, because R;(k|k) is an approximation
of the exact feasible position set.

The overall localization procedure is given by the fol-
lowing algorithm where, IT = [I> 02x1] and @ = [0 0 1].

0. Let R(0]0) = R{P(0)}.

For k=1,2,...

1. Find R(k|k — 1) in (10) (computed as in [16]);

2. Find R;(k|k) D R{IR(k|k — 1) N T} as in [16];

3. Let Ro(k|k) = QR(k|k — 1) N M, (k, Ry (k|k));

4. Let R(k|k) = Ri(k|k) @ Ro(k|k).

The set R(k|k) is the desired outer approximation of
the admissible pose set, as it satisfies P(k|k) C R(k|k)
by construction.

5 Refinement of the approximating sets

In this section it will be shown how, given the interval
R, (k|k) containing all feasible robot orientations, it is
possible to refine the position estimate, by reducing the
area of the box R;(k|k) containing the feasible position
set. In fact, if 6 is allowed to vary inside the interval
Ro(k|k), then the robot position must lie in a sector
of the  — y plane (the grey region of Fig. 3 is an ex-
ample). Let (k) = (0 +8)/2, a(k) = (8 — 8)/2 where
0 = min{R,(k|k)} and § = max{R,(k|k)}. For each
landmark L;, it is possible to define a set containing
the vehicle position as

My, (k, Ro(k[k)) = {[z(k) y(k)]' € R
le; + G(k) — atany (Ay;, Az;)| < €2(k) + a(k)}. (19)

It is easy to see that this is a sector delimited by two
lines originating in L; (denoted by s; and 5; in Fig. 3).
Considering the intersection M; = ﬂil M, we obtain
a new admissible position set. The uncertainty on the
robot position can be reduced by evaluating the mini-

mum area box containing the intersection of such a set
with R;(k|k) (Fig. 4)

RO (klk) =R {R,“—” (k|k) N Ml(k)} (20)

where the superscript (i) is the number of refinement
iterations performed on the set R;(k|k). Once the po-
sition uncertainty set R;(k|k) has been tightened, also
the interval of admissible orientations R,(k|k) can be
reduced. This is done by repeating step 3 of the algo-
rithm in the previous section, using the position box
Rl(z) (k|k) computed in (20).

By iterating the computation of R;(k|k) and R, (k|k),
one can further reduce the uncertainty affecting posi-
tion and orientation estimates. This is done by setting

R (k|k) = R{TIR(k|k - 1) N T}
R (k|k) = QR (k| — 1) N M, (k, R\ (k|k))

and then repeating for i = 1,2, ...
R (k) = R R (klk) 0 Mu(k, RE (K[R)) } (21)
RO (K[k) = RED(k[K) N Mo (k, RO (K[K).  (22)

Solution of (21) requires the computation of the min-
imum box containing the intersection of a box and N



sectors M;,. This boils down to 4 linear programming
problems with 2N + 4 constraints. In order to obtain
less computational demanding algorithms, suboptimal
solutions based on recursive set approximation proce-
dures can be adopted [17]. By processing sequentially
the intersection of each set M;, with the current ap-
proximating box, the computational burden reduces to
O(N) operations for each set approximation (21). Note
that (22) can be easily computed exactly, as it requires
the intersection of at most N + 1 intervals (see (18)).
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Figure 4: Updating of the admissible position set.

Several heuristic criteria for stopping the above recur-
sion can be formulated. In practice, very few iterations
are sufficient to significantly reduce the size of the un-
certainty boxes.

6 Experimental testing

6.1 Numerical simulation results

In this section, simulation results of localization exper-
iments are reported. First, the proposed algorithm has
been tested in a static setting. At time k, the vehicle is
supposed to be located at the center of a square room of
20 meters side, with no information on its orientation.
This means that R(k|k —1) = B([0 0 0),[10 10 =]"),
in a reference system centered at the vehicle position. It
is assumed that 5 landmarks are identified in the scene.
The relative angle measurements are corrupted by addi-
tive noise v;(k), generated as an uniformly distributed
signal satisfying (4) with constant bound €? (k) = €?, Vi.
As nominal estimates of the vehicle position and orien-
tation the center of the box R;(k|k) and the center of
the interval R,(k|k) are considered. Position and orien-

Error Position Box Orientation | Orientation
bound | error (m) | area (m?) | error (deg) | width (deg)
0.50 0.07 0.21 0.25 3.07
1.00 0.14 0.48 0.48 5.33
1.50 0.19 1.13 0.72 8.12
2.00 0.26 1.76 0.94 10.36
2.50 0.31 2.25 1.08 12.50

Table 1: Simulation results with 5 landmarks.

tation errors (in meters and degrees, respectively) and
the associated uncertainties, for different values of €”
ranging from 0.5 to 2.5 degrees, are reported in Table 1.
Results are averaged over 1000 different landmark con-
figurations in the square room. Table 2 reports the

same results for the case of 10 landmarks. In this case
errors are remarkably reduced, as expected.

Error Position Box Orientation | Orientation
bound | error (m) | area (m?) | error (deg) | width (deg)
0.50 0.02 0.0094 0.09 1.00
1.00 0.04 0.039 0.18 1.97
1.50 0.07 0.097 0.29 3.08
2.00 0.08 0.16 0.40 4.17
2.50 0.11 0.22 0.46 4.89

Table 2: Simulation results with 10 landmarks.

6.2 Experimental results

In order to test the proposed algorithm in a real-world
dynamic setting, several experiments with the mobile
robot Nomad XR4000 have been carried out. This ve-
hicle has an holonomic drive system and is equipped
with a SICK LMS 200 laser rangefinder, whose scan-
ning angle width is 180° with a resolution of 0.5°.

10

1= *

Figure 5: Dynamic localization: landmarks (*), posi-
tion uncertainty (boxes), nominal trajectory
(dashed line), true trajectory (dash-dotted line)
and estimated trajectory (solid line).

To simplify landmark extraction from planar range
scans, the following scenario has been considered: in
a room of approximately 60 m?2, 9 artificial landmarks
have been placed in known positions. Figs. 5-6 show
the results of a typical experiment. The robot was
programmed to follow a predefined piecewise linear
trajectory (dashed-line in Fig. 5), relying only on its
odometry system; after each movement, data from a
180° range scan were collected. Concerning the mo-
tion model, the following assumption have been made:
G(k) = I and €¥(k) = €¥ = [0.2m 0.2m 5°)'. Time-
varying measurement error bounds e}(k) (see equa-
tion (4)) have been derived directly as byproducts of
the landmark extraction phase. This has been per-



Figure 6: Dynamic localization: orientation uncertainty
intervals and true orientation (dashed-dotted
line).

formed by properly filtering the signal provided by
the rangefinder scan. Each landmark corresponds to
a certain angle interval in the filtered signal (clearly
dependent on the distance from the robot to the se-
lected landmark), whose half amplitude has been cho-
sen as e?(k). The average value of €!(k) turned out
to be about 1°. At time k = 0, the uncertainty po-
sition set was R;(0|0) = B([0 0]',[1 1]) (dashed gray
box in Fig. 5), while no information was supposed
to be available on the initial robot orientation, i.e.
R,(0|0) = B(0,w). In Fig. 5, it can be noticed that
the true trajectory followed by the vehicle (dash-dotted
line) rapidly deviated from the nominal one (dashed
line), due to the well-known error accumulation asso-
ciated with dead-reckoning techniques. The nominal
trajectory estimated via the proposed set membership
technique (solid line, connecting the centers of the po-
sition uncertainty boxes) follows quite well the true
path. Also orientation is estimated quite precisely (see
Fig. 6). On average, nominal position and orientation
errors (measured with respect to the center of the cor-
responding feasible sets) are less than 5 ¢m and 0.4°,
respectively, while the area of the position uncertainty
box is about 0.1 m? and the width of the orientation
uncertainty interval is 5.4°. The worst estimation per-
formance, both in terms of nominal error and uncer-
tainty region size, were obtained at time k = 7, due to
the reduced number of visible landmarks (only 3, while
on average, approximatively 6 landmarks were visible).
Note that these results are in good agreement with
those of numerical simulations presented in Sect. 6.1,
the slightly uncertainty increase being due to the pres-
ence of odometers errors in the vehicle motion model.

7 Conclusion

A set membership technique for pose estimation of a
mobile robot, based on angle measurements with re-
spect to known landmarks, has been presented.

The main features of this approach are the following:
- no assumptions are required on the errors in the robot
dynamics model and on the noises affecting sensor mea-
surements, except that they must be bounded;

- the SM localization algorithm provides both nominal
estimates of the robot pose and the associated guaran-
teed uncertainty sets for position and orientation;

- the algorithm is simple and can be implemented in
any commercial robot. In this respect, strategies for
trading off computational burden and tightness of the
approximating regions can be devised (see Sect. 5).
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