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Abstract

This paper presents a fully asynchronous and distributed approach for tackling optimization prob-
lems in which both the objective function and the constraints may be nonconvex. In the considered
network setting each node is active upon triggering of a local timer and has access only to a portion
of the objective function and to a subset of the constraints. In the proposed technique, based on
the method of multipliers, each node performs, when it wakes up, either a descent step on a local
augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch
from the descent step to the ascent one through an asynchronous distributed logic-AND, which de-
tects when all the nodes have reached a predefined tolerance in the minimization of the augmented
Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate
descent for the minimization of the global augmented Lagrangian. This allows one to extend the
properties of the centralized method of multipliers to the considered distributed framework. Two ap-
plication examples are presented to validate the proposed approach: a distributed source localization
problem and the parameter estimation of a neural network.

1 Introduction

Nonconvex optimization problems are commonly encountered when dealing with control, estimation and
learning within cyber-physical networks. In these contexts, typically each device knows only a portion of
the whole objective function and a subset of the constraints, so that, to avoid the presence of a central
coordinator, distributed algorithms are needed.

Distributed optimization algorithms handling local constraints are basically designed for convex prob-
lems, except for some specific problem settings. In [1], the authors propose a distributed random projec-
tion algorithm, while a proximal based algorithm is presented in [2]. A subgradient projection algorithm
has been presented in [3] and an extension taking into account communication delays is given in [4]. In [5]
randomized block-coordinate descent methods are employed, to solve convex optimization problems with
linearly coupled constraints over networks.
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Another relevant class of algorithms is that of distributed primal-dual methods (see, e.g. [6, 7, 8]).
Within this framework, an iterative scheme combining dual decomposition and proximal minimization
is introduced in [9]. Distributed approaches based on the Alternating Directions Method of Multipliers
(ADMM) are presented in [10, 11, 12].

Asynchronous communication protocols are a typical requirement in real world networks (see, e.g., [13]
and references therein). Several asynchronous version of distributed optimization algorithms have been
proposed in literature, a typical example being the class of gossip-based algorithms [14, 15]. By building
on these works, an asynchronous algorithm based on the Method of Multipliers and accounting for
communication failures is introduced in [16]. In [17] an asynchronous ADMM is proposed for a separable,
constrained optimization problem. An asynchronous proximal dual algorithm has been presented in [18].

Distributed algorithms for nonconvex optimization have started to appear in the literature only re-
cently. In [19] a stochastic gradient method is proposed to minimize the sum of smooth nonconvex
functions subject to a constraint known to all agents. In [20] a decentralized Frank-Wolfe method for
finding a stationary point of the sum of differentiable and nonconvex functions is given. In [21, 22] the
authors propose distributed algorithms, respectively for balanced and general directed graphs, based on
the idea of tracking the whole function gradient and performing successive convex approximation of the
nonconvex cost function. Notice that the approaches in [19, 20, 21, 22] do not deal with local constraints,
but only with global ones known to all the agents. A perturbed push-sum algorithm for the uncon-
strained minimization of the sum of nonconvex smooth functions is given in [23]. A distributed algorithm
dealing with local constraints has been presented in [24] for a structured class of nonconvex optimization
problems.

The contribution of this paper is a fully distributed asynchronous optimization algorithm, hereafter
referred to as ASYnchronous Method of Multipliers (ASYMM). The proposed algorithm addresses con-
strained optimization problems over networks, in which both local cost functions and local constraints
may be nonconvex. It features two types of local updates at each node: a primal descent and a multiplier
update, which are regulated by an asynchronous distributed logic-AND algorithm. An interesting feature
of ASYMM is that a node does not need to wait for all multiplier updates to start a new primal descent,
but rather it just needs to receive the neighbors’ multipliers.

The main theoretical result consists in showing that ASYMM implements a suitable inexact version
of the Method of Multipliers, in which the primal minimization is performed by means of a block coor-
dinate descent algorithm up to a given tolerance. Thanks to this connection, ASYMM inherits the main
properties of the corresponding centralized method [25, 26]. A further contribution is to provide a bound
on the norm of the augmented Lagrangian gradient based on the local tolerances, which is instrumental
to recover convergence results in the case of inexact primal minimization (see, e.g., [26, Section 2.2.5]).
Finally, it is shown that the proposed algorithm can effectively solve big-data problem (i.e., with a high
dimensional decision variable). Indeed, thanks to its block-wise structure, each agent can optimize over
and transmit only one block of the entire solution estimate.

The paper is organized as follows. In Section 2 the distributed optimization set-up is presented. The
proposed algorithm is presented in Section 3 and analyzed and discussed in Section 4. In Section 5 an
extension for dealing with high dimensional optimization problems is presented. Finally, two numerical
applications are presented in Section 6 and some conclusions are drawn in Section 7.

2 Set-up and Preliminaries

2.1 Notation and definitions

Given a matrix A ∈ Rn×m we denote by A[i, j] the (i, j)-th element of A, by A[:, i] its i-th column,
by A[i, :] its i-th row and by A[i:j, k] the elements of the k-th column of A from row i to j. We write
A [i, :] = b to assign the value b to all the elements in the i-th row of A. Given two vectors a, b ∈ Rn and
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a constant c, we write a > c if all elements of a are greater than c and a > b if a[i] > b[i] for all i. If
J = {j1, ..., jm} is a set of indexes, we denote by [zj ]j∈J the vector [z>j1 , ..., z

>
jm

]>.
The following definitions will be useful in the following.
A function Ψ(x) has Lipschitz continuous gradient if there exists a constant L such that ‖∇Ψ(x) −

∇Ψ(y)‖ ≤ L‖x− y‖ for all x, y. It is σ-strongly convex if (∇Ψ(x)−∇Ψ(y))>(x− y) ≥ σ‖x− y‖2.
Let x = [x>1 , ..., x

>
N ]>, with xi ∈ Rn and let U = [U1, . . . , UN ], with Ui ∈ RNn×n for all i, be a partition

of the identity matrix such that x =
∑N
i=1 Uixi and xi = U>i x. The function Φ(x) has block component-

wise Lipschitz continuous gradient if there are constants Li ≥ 0 such that ‖∇xiΦ(x+Uisi)−∇xiΦ(x)‖ ≤
Li‖si‖ for all x ∈ RNn and si ∈ Rn.

We say that indexes in {1, . . . , N} are drawn according to an essentially cyclic rule if there exists
M ≥ N such that every i ∈ {1, . . . , N} is drawn at least once every M extractions.

2.2 Distributed Optimization Problem

Consider the following optimization problem

minimize
x

N∑
i=1

fi(x)

subject to hi(x) = 0, i = 1, ..., N,

gi(x) ≤ 0, i = 1, ..., N,

(1)

where fi : Rn → R, hi : Rn → RmEi and gi : Rn → RmIi . Throughout the paper the following assumption
is made.

Assumption 1. Functions fi and each component of hi, gi are of class C2 and have bounded Hessian.
Problem (1) has at least one feasible solution, every local minimum of (1) is a regular point1 and it
satisfies the second order sufficiency conditions. �

The aim of the paper is to present a method for solving problem (1) in a distributed way, by employing
a network of N peer processors without a central coordinator. Each processor has a local memory, local
computation capability and can exchange information with neighboring nodes. Moreover, functions fi,
hi and gi are private to node i. The network is described by a fixed, undirected and connected graph
G = (V, E), where V = {1, ..., N} is the set of nodes and E ⊆ {1, ..., N} × {1, ..., N} is the set of edges.
We denote by Ni = {j ∈ V | (i, j) ∈ E} the set of the neighbors of node i and by di = |Ni|+ 1. Also, we
denote by dG the diameter of G.

Regarding the communication protocol, a generalized version of the asynchronous model presented
in [18] is considered. Each node has its own concept of time defined by a local timer, which triggers
when the node has to awake, independently of the other nodes. Between two triggering events each node
is in IDLE mode, i.e., it listens for messages from neighboring nodes and, if needed, updates some local
variables, but it does not broadcast any information. When a trigger occurs, the node switches to AWAKE
mode, performs local computations and sends the updated information to neighbors.

Assumption 2 (Local timers). For each node i, there exists a constant T̄i such that node i wakes up at
least once in every time interval of length T̄i. �

Assumption 3 (No simultaneous awakening). Only one node can be awake at each time instant. �

1A feasible vector x is said to be regular if the gradients of the equality constraints and those of the inequality constraints
active at x are linearly independent.
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Assumption 2 implies that in a time interval T̄ = maxi∈{1,...,N} T̄i each node is awake at least once.
Hence, under Assumption 3, nodes wake up in an essentially cyclic way. In practice, Assumption 3 can
be relaxed, allowing for non neighboring nodes to be awake in the same time instant, at the price of a
slightly more involved analysis of the proposed algorithm.

2.3 Equivalent Formulation and Method of Multipliers

In order to solve Problem (1) by means of the above defined network, let us rewrite it in the following
form

minimize
x1,...,xN

N∑
i=1

fi(xi)

subject to xi = xj , ∀(i, j) ∈ E ,
hi(xi) = 0, i ∈ V,
gi(xi) ≤ 0, i ∈ V.

(2)

where xi ∈ Rn for all i ∈ V. Notice that, thanks to the connectedness of G, problems (2) and (1) are
equivalent.

Let us now introduce the augmented Lagrangian associated to problem (2). Let νij ∈ Rn and ρij ∈ R
be the multiplier and penalty parameter associated to the equality constraint xi = xj . We compactly

define νi = [νij ]j∈Ni , ρi = [ρij ]j∈Ni . Similarly, let λi ∈ RmEi and %i ∈ R ( respectively µi ∈ RmIi
and ζi ∈ R) be the multiplier and penalty parameter associated to the equality (respectively inequality)
constraint of node i. Moreover, let x = [x>1 , ..., x

>
N ]>; denote by p = [ρi, %i, ζi]i∈V the vector stacking all

the penalty parameters; ν = [νi]i∈V , λ = [λi]i∈V and µ = [µi]i∈V be the vectors stacking the corresponding
multipliers, and, consistently, let θ = [ν>, λ>, µ>]>. Let us define for notational convenience

qc(a, b) =
1

2c

(
max{0, a+ cb}2 − a2

)
. (3)

When a and b are vectors, the right hand side in (3) is intended component-wise. Then, the augmented
Lagrangian associated to (2) is defined as

Lp(x,θ) =

N∑
i=1

{
fi(xi)

+
∑
j∈Ni

[
ν>ij (xi − xj) +

ρij
2
‖xi − xj‖2

]
+

+ λ>i hi(xi) +
%i
2
‖hi(xi)‖2+

+ 1>qζi(µi, gi(xi))

}
. (4)

Notice that, more generally, one can associate a different penalty parameter to each component of
the equality and inequality constraints of each node. This extension is omitted in order to streamline the
presentation.

A powerful method for solving problem (2) is the well known Method of Multipliers, which consists
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of the following steps (see e.g. [27, 26]),

xk+1 = arg min
x
Lpk(x,θk) (5)

νk+1
ij = νkij + ρkij(x

k+1
i − xk+1

j ), ∀(i, j) ∈ E , (6)

λk+1
i = λki + %ki hi(x

k+1
i ), ∀i ∈ V, (7)

µk+1
i = max{0, µki + ζki gi(x

k+1
i )}, ∀i ∈ V, (8)

where the max operator is to be intended component-wise and pk+1 ≥ pk ≥ ... ≥ p0 > 0.
A typical update rule for a penalty parameter ρij associated to an equality constraint xi = xj is

ρk+1
ij =

{
βρkij , if ‖xk+1

i − xk+1
j ‖ > γ‖xki − xkj ‖,

ρkij , otherwise,
(9)

where β and γ are positive constants (see [26, Section 2.2.5]). Similarly, the update rule for a penalty
parameter %i associated to an equality constraint hi(xi) = 0 is

%k+1
i =

{
β%ki , if ‖hi(xk+1

i )‖ > γ‖hi(xki )‖,
%ki , otherwise,

(10)

while the rule for a penalty parameter ζi associated to an inequality constraint gi(xi) ≤ 0 is

ζk+1
i =


βζki , if ‖g+

i (xk+1
i , µk+1

i , ζki )‖ >
> γ‖g+

i (xki , µ
k
i , ζ

k
i )‖,

ζki , otherwise,

(11)

where g+
i (xi, µi, ζi) = max{gi(xi),−µiζi }.

The minimization step (5) can be carried out approximately at each step k, up to a certain precision
εk. If the sequence {εk} → 0 as k → ∞, the minimization step is said asymptotically exact (see [26,
Section 2.5]).

Sufficient conditions guaranteeing the convergence of method (5)-(8) to a local minimum of problem (2)
have been given, e.g., in [26]. One of these conditions involves the regularity of the local minima of the
optimization problem. In general, such a condition is not verified in problem (2) due to the constraints
xi = xj for all (i, j) ∈ E . In [28, 29] the results in [26] have been extended to deal with the non regularity
of the local minima of problem (2). With respect to those works, the main novelty of the solution
proposed in this paper is that the network model is asynchronous and the switching between a primal
and a multiplier update is performed by the nodes in a fully distributed way.

3 Asynchronous Method of Multipliers

In this section, the Asynchronous Method of Multipliers (ASYMM) for solving problem (2) in an asyn-
chronous and distributed way is presented. Let us first present a distributed algorithm whose aim is to
check whether all nodes in an asynchronous network have set a local flag to one. It can be seen as the
asynchronous counterpart of the synchronous logic-AND algorithm presented in [30].

3.1 Asynchronous distributed logic-AND

Each node in the network is assigned a flag Ci that is initially set to 0 and is then changed to 1 in finite
time. The aim of the asynchronous distributed logic-AND algorithm is to check if all the nodes have
Ci = 1.
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Each node i stores a matrix Si ∈ {0, 1}dG×di which contains information about the status of the node
itself and its neighbors. Let Si[l, ji] denote the element in the l-th row and ji-th column of Si, where ji
is the index associated to node j by node i. The elements Si[1, ji] for j ∈ Ni represent the values of the
flags of nodes j ∈ Ni and Si[1, di] the one of node i itself. This means that Si[1, di] = Ci. Moreover, for
l = 2, . . . , dG, the element Si[l, ji], j ∈ Ni, contains the status of the (l−1)-th row of Sj , which is defined
as the product of all its entries. Similarly, Si[l, di] contains the status of the (l− 1)-th row of Si and it is
computed as

Si[l, di] =

di∏
b=1

Si[l − 1, b]. (12)

Hence, one has that Si[l, di] = 1 if and only if Si[l − 1, ji] = 1 for all j ∈ Ni and Si[l − 1, di] = 1.

Algorithm 1 Asynchronous distributed logic-AND

Initialization: Ci ← 0, Si ← 0dG×di

AWAKE
if
∏di
b=1 Si[dG, b] 6= 1 then
Si[1, di]← Ci
Si[l, di]←

∏di
b=1 Si[l − 1, b] for l = 2, ..., dG

BROADCAST Si[:, di] to all j ∈ Ni

if
∏di
b=1 Si[dG, b] = 1 then

STOP and send STOP signal to all j ∈ Ni

IDLE
if Sj [:, dj ] received from j ∈ Ni and not received a STOP signal then

Si[l, ji]← Sj [l, dj ] for l = 1, ..., dG

if STOP received, set Si[dG, :]← 1

A pseudo code of the distributed logic-AND algorithm is reported in Algorithm 1. Notice, in particular,
that node i has to broadcast to all its neighbors only the last column of Si, i.e. Si[l, di] for l = 1, ..., dG.
Moreover, it stores only the dj-th column of the matrices Sj of its neighbors j ∈ Ni, whenever it receives
them.

It is apparent that a node will stop only when the last row of its matrix Si is composed by all 1s, i.e.
when

di∏
b=1

Si[dG, b] = 1. (13)

In the following result it is shown that (13) is satisfied at some node if and only if Ci = 1 for all i.

Proposition 1. Let Assumption 2 hold. If there exists a time instant after which Cj=1 indefinitely for

all j ∈ V, then
∏d`
b=1 S`[dG, b] = 1 in finite time for all nodes ` ∈ V. Conversely, if there exists a node `

satisfying
∏d`
b=1 S`[dG, b] = 1 at a certain time instant, then every node j ∈ V must have had Cj = 1 at

some previous time instant.

Proof. In a time interval of T̄ , every node wakes up at least once. In the worst case, in which the
distance between two generic nodes j and ` is equal to the graph diameter (dG), in a time dGT̄ there
exists an ordered subsequence of awakenings following the path j → `. Hence, if Ci = 1 ∀i, node h
along this path will broadcast Sh[:, dh] = 1 to its neighbors and S`[dG, :] will eventually contain only
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1s, thus leading to
∏d`
b=1 S`[dG, b] = 1. Now assume that

∏d`
b=1 S`[dG, b] = 1 at some time instant and

suppose, by contradiction, that there exists some node j for which Cj = 0 at all previous time instants.
By assumption, all nodes i ∈ Nj have Si[1, ji] = 0 (because columns sent by j always contained a zero in
that position), which in turn, implies that Si[2:dG, di] = 0 for all i ∈ Nj . Then, for every i ∈ Nj , every
m ∈ Ni have Sm[2, im] = 0 and hence Sm[3 : dG, dm] = 0. By induction, node ` must have at least one
element of its dG-th row equal to 0, which contradicts the assumption and hence completes the proof.

Notice that the only information that the nodes need to know about the network is the graph diameter
dG. It is worth recalling that such a parameter can be preliminary computed in a distributed way (see,
e.g., [31] and references therein). Furthermore, only an upper bound on dG is necessary to run Algorithm 1,
at the price of an increase in the time needed in order to achieve the termination condition (13).

3.2 Asynchronous distributed optimization algorithm

It is worth stressing that the augmented Lagrangian defined in (4) is not separable in the local decision
variables xi. Thus, the minimization step in (5) cannot be performed by independently minimizing
with respect to each variable. In order to devise a distributed algorithm for solving problem (2) it is
useful to define a local augmented Lagrangian, whose minimization with respect to the decision variable
xi is equivalent to the minimization of the entire augmented Lagrangian (4). To this aim, let xNi =
[xj ]j∈Ni∪{i}, θNi = [λi, µi, νi, [νji]j∈Ni ], and pNi = [%i, ζi, ρi, [ρji]j∈Ni ]. Then, the i-th local augmented
Lagrangian, which groups together all the terms of (4) depending on xi, is defined as

L̃pNi
(xNi ,θNi) = fi(xi)+

+
∑
j∈Ni

[
x>i (νij − νji) +

ρij + ρji
2

‖xi − xj‖2
]

+

+ λ>i hi(xi) +
%i
2
‖hi(xi)‖2+

+ 1>qζi(µi, gi(xi)). (14)

The following proposition holds.

Proposition 2. Let Assumption 1 hold. Then

∇xiLp(x,θ) = ∇xiL̃pNi
(xNi ,θNi). (15)

Also, for fixed values of xj, j 6= i,

arg min
xi
Lp(x,θ) = arg min

xi
L̃pNi

(xNi ,θNi). (16)

Moreover, L̃pNi
(xNi ,θNi) has Lipschitz continuous gradient for all i ∈ V.

Proof. From (4) and (14) it can be easily seen that

Lp(x,θ) = L̃pNi
(xNi ,θNi) + Ψ(x−i,θ−i) (17)

where Ψ(x−i,θ−i) is a function which does not depend on local variables of node i. Hence (15) and (16)
follow. By Assumption 1 Lp(x,θ) ∈ C2 in the set {x | gi(xi) 6= −µi/ζi,∀i ∈ V} for all θ and p > 0
(see e.g. [26], Proposition 3.1). Hence, one has that ∇xLp(x,θ) is almost everywhere differentiable for
all θ and p > 0. Moreover, from Assumption 1, it holds that ∇xxLp(x,θ) is bounded, and Lp(x,θ) has
Lipschitz continuous gradient for all θ and p > 0. Hence Lp(x,θ) has block component-wise Lipschitz

continuous gradients and, from (15) L̃pNi
(xNi ,θNi) has Lipschitz continuous gradient.
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The ASYMM algorithm for solving problem (2) in an asynchronous and distributed way is now
introduced. When a node wakes up, it performs either one gradient descent step on its local augmented
Lagrangian or a multiplier update. The nodes keep performing gradient descent steps, until all of them
have reached a prescribed tolerance on the norm of the local augmented Lagrangian gradient. This check
is performed by nodes themselves in a distributed way, by using the logic-AND algorithm presented in
Section 3.1. When a node gets aware of this condition, it performs one ascent step on its local multiplier
vector. After it has received the updated multipliers from all its neighbors, it gets back to the primal
update.

More formally, when node i wakes up, it checks through a flag, called Mdone, if its multiplier vector
and the neighboring ones are up to date. If this is the case (which corresponds to Mdone = 0), it performs
one of the following two tasks:

T1. If
∏di
l=1 Si[dG, l] 6= 1, node i performs a gradient descent step on its local augmented Lagrangian

(using 1/Li as stepsize, where Li is the Lipschitz constant of L̃pNi
(xNi ,θNi)) and checks if the local

tolerance εi > 0 on the gradient has been reached. If the latter is true, it corresponds to setting
Ci ← 1 in the distributed logic-AND Algorithm 1. Then, it updates matrix Si, and broadcasts the
updated xi and the column Si[:, di] to its neighbors.

T2. If
∏di
l=1 Si[dG, l] = 1, node i performs an ascent step on the local multiplier vector and updates the

local penalty parameters according to equations (6)-(8) and (9)-(11), respectively. Then, it sets
Mdone = 1 and broadcasts the updated multipliers and penalty parameters νij and ρij (associated
to constraints xi = xj) to its neighbors.

When in IDLE , node i continuously listens for messages from its neighbors, but does not broadcast
any information. Received messages may contain either local optimization and logic-AND variables, or
multiplier vectors and penalty parameters. If necessary, node i suitably updates local logic-AND variables
or the Mdone flag. Notice that, for node i, sending a new multiplier νij or receiving a new νji corresponds
to sending or receiving a STOP signal in the asynchronous logic-AND algorithm.

The ASYMM pseudocode is reported in Algorithm 2 and an example of its execution is shown in
Figure 1, where tasks T1 and T2 are denoted by white and black blocks, respectively.

Remark 1. A gossip-based distributed algorithm based on the Method of Multipliers for convex opti-
mization problems has been proposed in [16]. In ASYMM the logic-AND allows the nodes to perform
multipliers updates asynchronously, while in [16] a global clock is employed to regulate such an update
in a synchronous way. One main advantage of ASYMM is that it guarantees that a prescribed tolerance
is reached by each node in the primal descent, which in turn is a crucial feature when solving nonconvex
optimization problems.

t3k+1 t3k+2 t3(k+1)

k-th cycle

(k + 1)-th cycle

Node 1Node 1Node 1Node 1Node 1Node 1Node 1Node 1

Node 2Node 2Node 2Node 2Node 2Node 2Node 2Node 2Node 2Node 2

Node 3Node 3Node 3Node 3Node 3Node 3Node 3Node 3Node 3Node 3

T2 subsequence

Legend

T2
waiting

T1

Graph

1

2

3

Figure 1: An example of the execution of ASYMM for a network with three nodes.
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Algorithm 2 ASYMM

Initialization: Initialize xi, θi, Ni, pi, Si = 0dG×di , Mdone = 0.

AWAKE
if
∏di
b=1 Si[dG, b] 6= 1 and not Mdone then

xi ← xi − 1
Li
∇xiL̃pNi

(xNi ,θNi)

if ‖∇xiL̃pNi
(xNi ,θNi)‖ ≤ εi then Si[1, di]← 1

Si[l, di]←
∏di
b=1 Si[l − 1, b] for l = 2, ..., dG

BROADCAST xi, Si[:, di] to all j ∈ Ni

if
∏di
b=1 Si[dG, b] = 1 and not Mdone then

νij ← νij + ρij(xi − xj) for j ∈ Ni
λi ← λi + %ihi(xi)

µi ← max{0, µi + ζigi(xi)}

update %i, ζi and ρi
Mdone ← 1
BROADCAST νij , ρij to j ∈ Ni

IDLE
if Sj [:, dj ] received from j ∈ Ni and not already received some new νji then

Si[l, ji]← Sj [l, dj ] for l = 1, ..., dG

if νji and ρji received from j ∈ Ni set Si [dG, :]← 1
if xnewj received from j ∈ Ni, update xj ← xnewj

if Mdone and νji received from all j ∈ Ni then
Mdone ← 0, Si ← 0dG×di , update εi

9



4 ASYMM Analysis

In order to analyze the ASYMM algorithm, we start by noting that under Assumptions 2 and 3, from a
global perspective, the local asynchronous updates can be treated as an algorithmic evolution in which,
at each iteration, only one node wakes up in an essentially cyclic fashion.

Given the above, it is possible to associate an iteration of the distributed algorithm to each triggering.
Denote by t ∈ N a discrete, universal time indicating the t-th iteration of the algorithm and define as
it ∈ V the index of the node triggered at iteration t.

In the following, it will be shown that: (i) there is an equivalence relationship between ASYMM and
an inexact Method of Multipliers and (ii) under suitable technical conditions, a bound on the gradient of
the augmented Lagrangian can be derived from the local tolerances εi.

4.1 Equivalence with an inexact Method of Multipliers

Consider an inexact Method of Multipliers which consists of solving the k-th instance of the augmented
Lagrangian minimization by means of a block-coordinate gradient descent algorithm (see, e.g., [32] for
a survey), which runs for a certain number of iterations hk. A pseudo code of this inexact Method of
Multipliers (inexact MM) is given in Algorithm 3, where ih is the index of the block chosen at iteration
h and the penalty parameters are updated as in (10)-(11).

Algorithm 3 Inexact MM

for k = 0, 1, ... do
x̂0 = xk

for h = 1, ..., hk do
x̂h+1 = x̂h − 1

Lkih
Uih∇xihLp(x̂h,θk)

xk+1 = x̂h
k+1

νk+1
ij = νkij + ρkij(x

k+1
i − xk+1

j ), ∀(i, j) ∈ E
λk+1
i = λki + %ki hi(x

k+1
i ),∀i ∈ V

µk+1
i = max{0, µki + ζki gi(x

k+1
i )}, ∀i ∈ V

It is worth remarking that the ordered sequence of indexes h and k used in Algorithm 3 does not
coincide with the sequence of universal times t of ASYMM. It will be rather shown that a (possibly
reordered) subsequence of iterations in the universal time t of ASYMM gives rise to suitable h and k
sequences in Algorithm 3.

Let t1, t2, ... be a subsequence of {t} such that at each t` a multiplier update (task T2) has been
performed by node it` and let t1 be the time instant of the first multiplier update. Then, the following
result holds.

Lemma 3. Each sequence (itkN+1
, ..., it(k+1)N

), for k = 0, 1, ..., is a permutation of {1, ..., N}. Moreover,
if εi > 0 for all i ∈ V, multiplier updates occur infinitely many times.

Proof. Consider the first multiplier update, performed by node it1 at t1. Then, until all other nodes have
performed their first multiplier update, there will be some node j which has not received back all the
new multipliers from its neighbors and has Mdone = 1. Hence, it cannot run task T1, and consequently
it cannot set and broadcast Sj [1, dj ] = 1. So, node it1 has at least one element of the last row of Sit1
at 0, hence it cannot perform another multiplier update (although it could have started over performing
task T1). The first part of the proof is completed by induction. In order to prove the second part of the
lemma, assume, by contradiction, that the number of multiplier updates is finite and denote by tM the
time instant of the last multiplier update. If mod(M,N) 6= 0, from the connectedness of G at tM +1 there
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exists at least one node j that: i) has not updated its multipliers yet; ii) has a neighbor who has already
performed a multiplier update. Hence, node j will perform a multiplier update next time it wakes up
(which occurs in finite time by Assumption 2), thus contradicting the assumption that tM was the time
instant of the last multiplier update. If mod(M,N) = 0 (i.e., (itM−N+1

, . . . , itM−1
, itM ) is a permutation

of {1, . . . , N}), all the nodes that wake up after tM will run task T1. From a global perspective, this can
be seen as a block coordinate descent algorithm on the augmented Lagrangian with a given multiplier
vector. Since this algorithm converges to a stationary point [33], every node i ∈ V will reach its local
tolerance εi > 0 in finite time and then set Si[1, di] = 1. From Proposition 1, after a finite number of

iterations some node j will satisfy
∏dj
b=1 Sj [dG, b] = 1 and hence it will run a new multiplier update,

which contradicts the assumption that tM was the time instant of the last multiplier update.

In the sequel the subset of universal times t, {tkN+1, ..., t(k+1)N}, during which N tasks T2 are
performed, will be referred to as the k-th cycle of ASYMM.

The example in Figure 1 shows the k-th and (k+1)-th cycles of an ASYMM run. According to
Lemma 3, during a single cycle each node performs task T2 once. It is worth remarking that in the
k-th cycle node 1 starts over the (k+1)-th primal minimization before node 3 has completed its k-th
multiplier update. This happens because node 1 has already received the updated multipliers and penalty
parameters from node 2, which is the only neighbor of node 1. The same thing happens to node 3 in
the (k+1)-th cycle. This is a key feature of the asynchronous distributed scheme underlying ASYMM. It
can also be observed that when node 3 wakes up for the first time, after node 1 has done the k-th dual
update, it performs again task T1. In fact, node 3 has not received a STOP signal yet, because it is not
connected directly to node 1.

Define θi = [λi, µi, νi] and let x̃ti and θ̃ti be the value of the state vector and of the multiplier vector of
node i, at iteration t, computed according to ASYMM. Then, the following Corollary holds, whose proof
follows immediately from Lemma 3.

Corollary 4. Let τ ∈ {tkN+1, ..., t(k+1)N}, for some k = 0, 1, .... Then one has θ̃tiτ = θ̃τiτ for all
t = τ, τ+1, . . . , t(k+1)N . �

Corollary 4 states that once a multiplier vector is updated in a cycle, then, its value remains unchanged
for the whole cycle.

Let τki be the time instant in which node i performs task T2 in the k-th cycle, i.e., τki ∈ {tkN+1, ..., t(k+1)N}
such that node i is awake at time τki . By using this Corollary 4, one can define

xk+1
i = x̃

τki
i , θk+1

i = θ̃
τki
i ,

k = 0, 1, ... and by using Lemma 3 and reordering the indexes iτ ,

xk+1 =
[(
xk+1

1

)>
, ...,

(
xk+1
N

)>]>
,

θk+1 =
[(
θk+1

1

)>
, ...,

(
θk+1
N

)>]>
.

The next two lemmas show that a local primal (resp. multiplier) update is performed according to a
common multiplier (resp. primal) variable.

Lemma 5. For all τ ∈ {tkN+1, ..., t(k+1)N}, k = 0,1, ..., every multiplier θk+1
iτ

is computed using the

state vector xk+1.

11



Proof. Consider τ ∈ {tkN+1, ..., t(k+1)N} for a given k. Node iτ computes

xk+1
iτ

= x̃τiτ ,

νk+1
iτ j

= νkiτ j + ρkiτ j(x
k+1
iτ
− x̃τj ), ∀j ∈ Niτ ,

λk+1
iτ

= λkiτ + %kiτhiτ (xk+1
iτ

),

µk+1
iτ

= max{0, µkiτ + ζkiτ giτ (xk+1
iτ

)}.

First, notice that the update of node iτ depends only on xj or θj with j ∈ Niτ . Then, let us show that
x̃τj = xk+1

j for all j ∈ Niτ . If a node j ∈ Niτ has already performed its multiplier update in the k-th cycle,
then, even if it woke up again before time τ it did not update xj (did not start a new primal update)
because it has not received all the updated multipliers from its neighbors (node iτ has not performed the
multiplier update yet and thus has not sent νk+1

iτ j
to node j). Therefore, x̃τj = xk+1

j . If, vice-versa, node

j ∈ Niτ has not performed its multiplier update in the k-th cycle, then x̃τj will become xk+1
j next time

node j wakes up (because node iτ has sent it the updated multiplier while it was in idle, so that j has
set Sj [dG, :] = 1).

Lemma 6. For all t = τki , τ
k
i + 1, . . . , τk+1

i , every descent step on the augmented Lagrangian with respect
to the block-coordinate xi is performed using the multiplier vector θk+1.

Proof. Node i can start over a block coordinate descent iteration after τki only when it has received all
the new multipliers νk+1

ji (and the corresponding penalty parameters) from its neighbors. Thanks to (15),
it is sufficient to show that each local descent on the i-th local augmented Lagrangian is performed using
the multiplier vector θk+1

Ni . This follows from Lemma 3 and Corollary 4 by using arguments similar to
those in the proof of Lemma (5).

Next lemma states that every node performs at least one primal update between the beginning of two
consecutive cycles.

Lemma 7. Between tkN+1 and t(k+1)N+1 every node performs task T1 at least once.

Proof. Since at iteration t(k+1)N all the nodes have performed the k-th multiplier update, each of them
has set Si[1, di] = 0 at some time between tkN+1 and t(k+1)N . At time t(k+1)N+1 the first node performs
the (k + 1)-th multiplier update. This can occur only if each node i has set Si[1, di] = 1 at some time
between tkN+1 and t(k+1)N+1, which implies that each node performs task T1 at least once over the same
time interval.

The equivalence of ASYMM and Algorithm 3 is stated by the next theorem.

Theorem 8. Let Assumptions 2 and 3 hold. Then, ASYMM is equivalent to an instance of Algorithm 3
in which the selection of nodes ih satisfies an essentially cyclic rule. Moreover, if in Algorithm 2, εi > 0,
∀i ∈ V, the total number of primal descent steps hk is finite.

Proof. Define Hk
i ={t | τk−1

i <t<τki , i runs task T1 at t} for k = 0, 1, ..., where τ−1
i is the first time instant

in which node i is awake (doing task T1). Then, define Hk =
⋃
i∈V H

k
i , hk = |Hk| and let

υ1 < υ2 < ... < υhk

be the ordered sequence of elements (time instants) in Hk.
By setting ih = ivh , for h = 1, . . . , hk, in Algorithm 3 and using Lemma 5 and Lemma 6, one has that

ASYMM turns out to be equivalent to an instance of Algorithm 3. Moreover, from Lemma 7 every node
runs task T1 at least once in {v1, . . . , vhk}. Hence, Algorithm 3 is run with an essentially cyclic update
rule over a time window of length hk, which is finite due to Lemma 3.
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Remark 2. The duration of each ASYMM cycle can be bounded both from below and from above as
follows. From the definition of hk it can be easily verified that hk ≥ N . Moreover, from Lemma 7 one has
that hk ≤ t(k+1)N+1−tkN+1−N . Hence, t(k+1)N+1−tkN+1 ≥ 2N . On the other side, from Proposition 1
it follows that t(k+1)N − tkN+1 ≤ dGT̄ for all k.

4.2 A bound on the Lagrangian gradient

In virtue of the equivalence result in Theorem 8, ASYMM inherits the convergence properties of Algo-
rithm 3 applied to Problem 2. In particular, in order to guarantee the convergence of the inexact MM to
a local minimum, it is necessary that the Lagrangian minimization is asymptotically exact (see, e.g., [26,
Section 2.5]). To this aim, in this section an upper bound ε on the norm of the gradient of the augmented
Lagrangian (4) is derived as a function of the local tolerances εi employed in task T1 of ASYMM. The
result requires (at a given iteration k) a technical assumption of local (strong) convexity of the augmented
Lagrangian.

Let us introduce the following preliminary result.

Lemma 9. Let Φ(y1, . . . , yN ) be a σ-strongly convex function with block component-wise Lipschitz con-
tinuous gradients (with Li being the Lipschitz constant with respect to block yi) in a subset Y ⊆ Rn. Let
{yh} be a sequence generated according to yh+1 = yh − 1

Lih
Uih∇yihΦ(yh), where y0 ∈ Y and indexes

ih ∈ {1, . . . , N} are drawn in an essentially cyclic way. If, for some h̄i > 0, ‖∇yiΦ(yh̄i)‖ ≤ εi, ∀i ∈
{1, . . . , N}, then

‖∇yΦ(yh)‖ ≤

√√√√ N∑
i=1

(
Liεi
σ

)2

for all h ≥ h̄ = maxi∈{1,...,N} h̄i.

Proof. See the Appendix.

The next result provides a bound on the norm of the gradient of the augmented Lagrangian L(x,θ)
used in ASYMM.

Proposition 10. Let Assumption 1 hold and assume that xk generated by ASYMM belongs to a neigh-
borhood of a local minimum of Lpk(x,θk) where Lpk(x,θk) is σk-strongly convex. Denote by εki the
local tolerance set by node i for the primal descent during cycle k and by Lki the Lipschitz constant of
∇xiL̃pkNi

(xNi ,θ
k
Ni). Then, it holds

‖∇xLpk(xk+1,θk)‖ ≤ εk =

√√√√ N∑
i=1

(
Lki ε

k
i

σk

)2

.

Proof. From Proposition 2, Lpk(x,θk) has block component-wise Lipschitz continuous gradient with

constants Lki . Moreover, during the k-th cycle of ASYMM, there occurred that ‖∇xiL̃pkNi
(xNi ,θ

k
Ni)‖ ≤ εki

and hence, by (15), also ‖∇xiLpk(x,θk)‖ ≤ εki . Then, being xk+1 generated through a block coordinate
descent (according to Theorem 8), the proof follows from Lemma 9.

Proposition 10 relates the local tolerances adopted by the nodes in the primal descent to a global
bound on the norm of the gradient of the augmented Lagrangian. The result requires to assume that
the vector xk generated during the k-th cycle of ASYMM lies in a neighborhood of a local minimum
of the current augmented Lagrangian, in which the augmented Lagrangian itself is strongly convex.
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This assumption is indeed strong, but it is somehow standard in the nonconvex optimization literature
(see, e.g., [26, Section 2.2.4]). In practice it turns out to be typically satisfied after a sufficient number
of iterations of multiplier/penalty parameter updates. In fact, as pk grows according to the update
rules (9)-(11), the augmented Lagrangian tends to become locally strongly convex. Moreover, from a
practical point of view, it has been observed that choosing the obtained xk as the initial condition for
the (k+1)-th minimization usually generates sequences {xk} that remain within a neighborhood of the
same local minimum of Problem (2), thus meaning that there exists a cycle k̄ after which the assumption
in Proposition 10 will hold indefinitely. Hence, if the assumptions of Proposition 10 hold from a certain
cycle k̄ and the local tolerances εki vanish as k → ∞, the minimization of the augmented Lagrangian
turns out to be asymptotically exact. Therefore, convergence results such those in [26, Section 2.5] can
be recovered, when applying ASYMM to Problem (2). The interested reader is referred to [26, Chapter 2]
for a thorough discussion on the convergence properties of the Method of Multipliers.

5 Dealing with big-data optimization

The ASYMM algorithm can be easily amended to deal with so called distributed big-data optimization,
[34], i.e., the distributed solution of problems in which x ∈ Rn with n very large. In this set up arising,
e.g., in estimation and learning problems, two main problems may arise. On one hand, the primal and
multiplier update steps may not be executable in a single step by some node because the computation of
the whole gradient in the primal step may be cumbersome. Moreover, communication bottlenecks may
arise, in fact it may happen for some node i, that the local optimization variable xi does not fit the
communication channels between node i and its neighbors.

Assume each agent i to partition its local decision variable xi in Ni blocks, i.e., xi = [xi,1 . . . xi,Ni ]
>

,

where xi,m = U>i,mxi and xi =
∑Ni
m=1 Ui,mxi,m.

Whenever node i wakes up to perform task T1, it computes the primal descent step on one of the Ni
blocks (say m) instead of performing it on the whole xi, i.e. it computes

xi,m = xi,m −
1

Li,m
∇xi,mL̃pNi

(xNi ,θNi)

where m is picked in an essentially cyclic way. Similarly the update of the local multiplier vectors can be
carried out on one block at a time, e.g.,

νij,m ← νij,m + ρij(xi,m − xj,m).

By following the same reasoning adopted in Sections 3 and 4, it can be shown that the primal descent
steps are equivalent to a block coordinate descent algorithm on the augmented Lagrangian and converge
to a stationary point.

The only additional assumption needed for the convergence result is that functions fi, hi, gi have block
component-wise Lipschitz continuous gradients. If for some node i, xi does not fit the communication
channels (the same holds true for νij), ASYMM is easily extended by allowing node i to transmit xi,m
and Ui,m at the end of each task T1 and to split the transmission on νij in multiple steps.

6 Numerical Results

Two examples are presented to assess the performance of ASYMM. The first one involves nonconvex local
constraints, while the second requires the minimization of a nonconvex objective function.
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Figure 2: Distributed source localization

6.1 Distributed source localization

Consider a network of N sensors, deployed over a certain region, communicating according to a connected
graph G = (V, E), which have to solve the optimization problem

minimize
x

N∑
i=1

fi(x)

subject to ‖x− ci‖ −Ri ≤ 0, i = 1, ..., N

ri − ‖x− ci‖ ≤ 0, i = 1, ..., N,

which can be rewritten in the form of problem (2).
Such a problem naturally arises, for example, in the context of source localization, in which each

agent knows its own absolute location ci and takes a noisy measurement yi of its own distance from an an
emitting source located at an unknown location x? (for example through a laser) as yi = ‖x? − ci‖+wi.
If we make the assumption of unknown but bounded (UBB) noise, i.e. for all i = 1, ..., N , the noise signal
wi satisfies |wi| ≤ κi for some κi ≥ 0, then each node is able to define its own feasible set Xi in which the
unknown source location must lie as Xi = {x | ri ≤ ‖x− ci‖ ≤ Ri}, where ri = yi − κi and Ri = yi + κi.
Notice that each set Xi is a circular crown and hence it is a non convex set.

Suppose fi(xi) = x>i xi for all i ∈ V. We report a simulation with N = 10 nodes and n = 2, in which
x? ∈ U [−2.5, 2.5]n, ci ∈ U [−2.5, 2.5]n and κi ∈ U [0, 0.3] for all i ∈ V, where U [a, b] denotes the uniform
distribution between a and b. The graph is modeled through a connected Watts-Strogatz model in which
nodes has mean degree K = 2. Let us define the measure of infeasibility at iteration k as

ξk =

N∑
i=1

(
max(0, ‖xki − ci‖ −Ri)+

+ max(0, ri − ‖xki − ci‖) +
∑
j∈Ni

‖xki − xkj ‖
)

We run ASYMM for 25000 iterations with β = 4 and γ = 0.25. Figure 2a shows the evolution of xki
for each i ∈ V. Finally, in Figure 2b the values of ξk are reported. As it can be seen, the nodes performed
50 multiplier updates each, along the 25000 iterations (corresponding to 2500 awakenings per node on
average).
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Figure 3: Graphical representation of the Neural Network used as classifier. In green the input units, in blue the
hidden units, in red the output unit and in yellow the bias units.

6.2 Distributed nonlinear classification

In this example we consider a nonlinear classification problem in which the data to be classified are
represented as points z ∈ R2 which belong to two different classes. So, each point is associated a label
y ∈ {−1, 1}, which represents the class the point belongs to.

The considered classifier can be represented as a Neural Network (NN) consisting of one input layer
with two units, two hidden layers with four and two units respectively, and an output layer with one unit
(respectively green, blue and red in Figure 3). Moreover, a bias unit is present in both the input and the
hidden layers (in yellow in Figure 3). Define w1 ∈ R2×4, b1 ∈ R4, w2 ∈ R4×2, b2 ∈ R2, w3 ∈ R2×1 and
b3 ∈ R. Moreover, define x ∈ R25 as the stack of all the previously defined variables.

Define the output of the first hidden layer as

l1(z, w1, b1) = tanh(w>1 z + b1). (18)

where the operator tanh is to be intended component-wise. Similarly, the output of the second hidden
layer is

l2(z, w1, b1, w2, b2) = tanh(w>2 l1(z, w1, b1) + b2) (19)

and the output of the whole NN is

f(z, x) = tanh(w>3 l2(z, w1, b1, w2, b2) + b3) (20)

Given a set of labeled data points (Z, Y ), the classification problem can be written as

minimize
x

∑
z,y∈(Z,Y )

(f(z, x)− y)
2
. (21)

Suppose now that the dataset is distributed among N nodes, which communicate according to a
connected graph G = (V, E). Each node i owns a portion of the dataset (Zi, Yi), which must remain
private and cannot be shared with the other nodes. In this framework, problem (21) can be rewritten in
the equivalent form

minimize
x1,...,xN

N∑
i=1

∑
z,y∈(Zi,Yi)

(f(z, xi)− y)
2

subject to xi = xj , ∀(i, j) ∈ E
(22)
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Figure 4: Distributed nonlinear classification. Blue dots represent points with label −1 and white dots points with
label 1. Colored regions represent the output of the classifier (20) resulting from the solution of (22) provided by
ASYMM. The color of the regions is associated to a number as in the color bar.

In our simulations two datasets are considered, which are benchmarks used in the context of machine
learning. The first one consists of points belonging to two moon-shaped subsets (see Figure 4a), in which
points of one subset have label y = 1, points of the other have label y = −1. In the second one, data
points are distributed along two nested circles. Points on the inner circle have label y = 1, while the
others have label y = −1 (see Figure 4b).

The ASYMM algorithm has been run on N = 10 nodes, each one processing a local dataset (Zi, Yi)
consisting of 100 points. The obtained classifiers are represented in Figures 4a and 4b. The colored
regions represent the value of (20) computed in those points at the (local) minimum x? obtained by
ASYMM.

It is worth stressing that the example presents a low-size classification problem, with the purpose of
illustrating the proposed technique. When massive data in higher dimensional spaces are available, it
is necessary to consider a more complex neural network (i.e., with a much higher number of neurons)
so that the dimension of the decision variable can be fairly high. In such a case, the big-data approach
proposed in Section 5 can be adopted.

7 Conclusions

In this paper, an asynchronous distributed algorithm for nonconvex optimization problems over networks
has been proposed. By suitably defining local augmented Lagrangian functions, the optimization process
has been distributed among the agents of the network. A fully asynchronous implementation has been
devised, taking advantage of a distributed logic-AND algorithm that allows the agents to regulate the
sequence of primal and dual update steps. The proposed ASYMM algorithm is shown to be equivalent
to an inexact version of the centralized method of multipliers, thus inheriting its main properties. An
extension to big-data problems, featuring high-dimensional decision variables, has been also presented.

Ongoing research concerns the specialization of the proposed method to different application domains,
including distributed set membership estimation and machine learning with constraints.
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Appendix

Proof of Lemma 9

Consider a function Φ(y), σ-strongly convex in a subset Y ⊆ Rn, with L-Lipschitz continuous gradient.
Define y? = arg miny∈Y Φ(y). From the definition, if Φ(y) is σ-strongly convex, then, using the Cauchy
Schwartz inequality one obtains

‖∇Φ(y)−∇Φ(z)‖ ≥ σ‖y − z‖.
Then, it can be easily proved that

σ‖y − y?‖ ≤ ‖∇Φ(y)‖ ≤ L‖y − y?‖, ∀y ∈ Y (23)

In order to prove Lemma 9 the following technical results are needed.

Lemma 11. Performing a gradient descent algorithm on Φ(y), starting from y0 and using a step-size
equal to 1

L , i.e.

yh+1 = yh − 1

L
∇yΦ(yh) (24)

produces a sequence {yh} such that,

‖yh+1 − y?‖ ≤ ‖yh − y?‖ (25)

Proof. See, e.g., [35, Theorem 2.1.14].

Lemma 12. Consider a sequence {yh} generated as yh+1 = yh − 1
L∇Φ(yh) with y0 ∈ Y . Then:

1. for all h ≥ h̄ it holds that
‖∇Φ(yh)‖ ≤ L‖yh̄ − y?‖ (26)

2. if for some h̄ it holds that ‖∇Φ(yh̄)‖ = ε, then

‖∇Φ(yh)‖ ≤ Lε

σ
(27)

for all h ≥ h̄.

Proof. Using the right side of (23) and Lemma 11 one has that

‖∇Φ(yh̄+1)‖ ≤ L‖yh̄+1 − y?‖ ≤ L‖yh̄ − y?‖
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y? yh̄+1 yh̄

ε

Lε
σ L‖y − y?‖

σ‖y − y?‖

y

‖∇Φ(y)‖

Figure 5: Representation of the results of Lemma 12.

By induction, (26) follows directly and this concludes the proof for point 1. For point (ii), since
‖∇Φ(yh̄)‖ = ε, from the left side of (23), one has that

σ‖yh̄ − y?‖ ≤ ε

which can be rewritten as
‖yh̄ − y?‖ ≤ ε

σ
(28)

Then, substituting (28) in the right side of (23), we obtain (27) which, from point 1 concludes the
proof.

A graphical representation of the previous Lemma is given in Figure 5. The gradient of Φ(y) is bounded
by the dotted lines, as from (23). Moreover, from (25), given ‖∇yΦ(yh̄)‖, it holds that ‖∇yΦ(y

¯h+1)‖
stays in the shaded region.

Finally, Lemma 9 is proved by noting that, from Lemma 12

‖∇yiΦ(yh)‖ ≤ Liεi
σ

for all h ≥ h̄i, and

‖∇yΦ(yh)‖ =

√√√√ N∑
i=1

‖∇yiΦ(yh)‖2.
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