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Abstract

This paper studies the minimum switching control problem for a
system of coupled double integrators with on-off input signals, in the
presence of a constant disturbance term. This type of problem is rel-
evant to a variety of applications in which the number of transitions
of on-off actuators must be minimized, in order to prevent actuator
wear. Two solutions are presented in terms of steady state limit cy-
cles. The first one provides an analytic upper bound to the maximum
number of transitions per input signal. The second solution exploits
the relative phases of the trajectories of the state variables, thus pro-
viding a less conservative upper bound. Additionally, a control law
is presented, which steers the system in finite time to the previously
derived limit cycles. The proposed techniques are demonstrated on a
spacecraft attitude control application.

1 Introduction

Control systems based on switching are widely employed in a number of
different contexts. While it is well-known that switching controllers provide
advantages over standard controllers even for simple SISO LTI systems (see
e.g., [1, 2]), one of the main motivations for resorting to switching control
schemes comes from limitations in the available control actuators. Indeed,
it is often the case that controllers can deliver only quantized signals or even
binary signals, which significantly limits the control authority [3]. A typical
behavior of switching control systems consists of limit cycle oscillations. Ex-
istence conditions and stability results for limit cycles in relay SISO systems
have been widely investigated (see [4] and references therein). The analy-
sis turns out to be much more involved when dealing with MIMO systems,
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although some contributions are available in the literature [5, 6, 7]. Re-
cently, the study of limit cycles has been extended to more general classes
of switching systems, such as piecewise affine systems or hybrid systems
[8, 9, 10]. Limit cycles are an acceptable solution only if they comply with
the limitations imposed by the actuators. In particular, in several applica-
tions the number of input transitions must be kept as low as possible, in
order to minimize wear and thus increase the actuator lifetime. A typical ap-
proach consists in the formulation of an optimal control problem, in which
the performance index includes the number of input transitions. Recent
examples of these approaches can be found in different application fields:
power electronics [11], air conditioning systems [12], boiler control systems
[13], attitude control [14]. Unfortunately, in all these cases the resulting
minimum switching control problem can be approached only via numerical
techniques.
Explicit solutions to minimum switching control problems are available only
for some special classes of systems, a notable example being on-off control of
the double integrator subject to a constant disturbance term. In this case,
the limit cycle corresponding to the fuel/switch-optimal periodic solution
has been fully characterised since long time [15]. However, for MIMO sys-
tems, the problem becomes very challenging even for simple dynamics, such
as the case of coupled double integrators. This problem is of special interest
in the context of multi-axis attitude control problem, when non orthogonal
thruster configurations are adopted. In particular, if on-off low-thrust ac-
tuators are employed, the minimization of the frequency of thruster firings
becomes a key technological requirement [16].
In this paper, the minimum switching control problem for a multivariable
system consisting of n coupled double integrators, subject to a constant
disturbance term and controlled by n on-off actuators, is addressed. The
first contribution of the paper is an upper bound to the minimum switching
frequency required to satisfy the state constraints. Then, a less conservative
solution is found by solving a suitable optimization problem which exploits
the further degrees of freedom provided by the relative phases of the periodic
trajectories. The last contribution is a control law which drives the system
in finite time to the periodic trajectories corresponding to the two solutions
previously obtained. The advantages of the proposed approach, with re-
spect to a model predictive control (MPC) scheme, are demonstrated on a
geostationary spacecraft attitude control application.
The paper is organized as follows. Section 2 reviews known results on the
minimum fuel and minimum switching control problems for a single-input
double integrator. Section 3 extends the control problem to a system of
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coupled double integrators, and presents two different suboptimal solutions.
In Section 4, a feedback control law is derived to steer the system in finite
time to the above periodic trajectories. The attitude control application is
presented in Section 5, while some concluding remarks are given in Section
6.

2 Single-input problem

In this section the minimum fuel and minimum switching control problems
are reviewed for a single-input double integrator with a constant disturbance
term. Consider the system

ẍ(t) = u(t) + k , (1)

where
u(t) ∈ {−1, 0, 1}, (2)

and k > 0 is a known constant disturbance term, such that k < 1 to ensure
controllability of the system. The objective of the control system is to
guarantee that x(t) satisfies

|x(t)| ≤ δ, ∀t ≥ t̄, (3)

for some t̄ ≥ 0, where δ is a known bound. Then, the minimum fuel control
problem can be formulated as

min
u

Jf (u) = lim
T→∞

1

T

∫ T

0
|u(t)| dt

s.t. (1), (2), (3).

(4)

The following proposition is a standard result from optimal control theory
[17].

Proposition 1 A minimizer of problem (4) satisfies

u(t) ∈ {−1, 0}. (5)

Moreover, min
u
Jf (u) = k.

Notice that any input sequence satisfying (5), and guaranteeing that (3)
holds, is a fuel-optimal solution. A fuel-optimal control law for system (1)
is

u(t) =

{

−1 if s(x, ẋ) > 0 or s(x, ẋ) = 0 and ẋ > 0
0 if s(x, ẋ) < 0 or s(x, ẋ) = 0 and ẋ < 0,

(6)
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where the switching function s(x, ẋ) is given by

s(x, ẋ) =

{

x− 1
2(k−1) ẋ

2 if ẋ ≥ 0

x− 1
2k ẋ

2 if ẋ < 0.
(7)

Such a control law guarantees that the trajectory of the closed-loop system
converges to the origin in finite time, from any initial condition. Hence, it
also enforces (3) indefinitely and therefore it solves problem (4). However,
an infinite switching frequency is required to keep the trajectory of system
(1) exactly at the origin, which translates into undesirable chattering of the
actuators in practical implementations.
Among all the fuel-optimal input sequences, finding the one which minimizes
the average number of input transitions amounts to solving the problem

min
u

Js(u) = lim
T→∞

1

T

∫ T

0
|u̇(t)| dt

s.t. (1), (3), u(t) ∈ {−1, 0}.
(8)

The solution to (8) can be found by using phase plane arguments. From
(3) and (5), it follows that fuel-optimal state trajectories are bounded paths
switching between the curves

ψL = {(x, ẋ) : x− 1

2k
ẋ2 = −δ, −δ ≤ x < x̄}, (9)

ψU = {(x, ẋ) : x− 1

2(k − 1)
ẋ2 = δ, x̄ ≤ x ≤ δ}, (10)

where x̄ = δ(1 − 2k) (see Fig. 1). The following result characterizes the
solution to problem (8) [15].

Proposition 2 Every optimal solution u∗(t) of problem (8) is such that the

resulting trajectory satisfies (x, ẋ) ∈ ψU ∪ ψL for all t ≥ t̃, for some t̃ ≥ 0.
Moreover, the resulting minimum switching frequency is Js(u

∗) = 2
√

γ/δ,
where γ = k(1− k)/16.

Proposition 2 provides a minimum switching and fuel-optimal solution for
system (1), under the constraints (2) and (3), in terms of a limit cycle in the
phase plane. This result will be exploited in the next section, to parameterize
the solutions of the multi-input minimum switching control problem, for a
system of coupled double integrators.
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Figure 1: Fuel/switch-optimal solution to problem (8).

3 Coupled double integrators

The aim of this paper is to address the minimum switching control problem
for a system of n double integrators x = [x1, . . . , xn]

T , controlled by n
switching inputs u = [u1, . . . , un]

T ,

ẍj(t) = uj(t) + kj , j = 1, . . . , n, (11)

where uj(t) ∈ {−1, 0, 1} and kj > 0. The vector x(t) must satisfy the
parallelotopic constraint

‖C x(t)‖∞ ≤ 1, (12)

where C ∈ R
n×n is nonsingular. Notice that the n double integrators (11)

are decoupled, but the constraints (12) are coupled. This formulation is
equivalent, through a change of coordinates, to n double integrators coupled
through a non diagonal input matrix, each of one subject to constraints of
the form (3).
For system (11), the minimum-fuel problem amounts to minimizing Jf,tot(u) =
∑n

j=1 Jf (uj). Thanks to the decoupling, the optimality condition

u∗j (t) ∈ {−1, 0}, j = 1, . . . , n, (13)

still holds, and leads to the optimal fuel cost Jf,tot(u
∗) =

∑n
j=1 kj = ‖k‖1.

The minimum switching problem (8) can be generalized to the considered
multivariable system, by suitably adapting the cost Js(u). Since we are
interested in reducing as much as possible the number of input transitions
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per actuator, this amounts to minimize the maximum Js(uj) over all inputs
uj(t), j = 1, . . . , n. This corresponds to solving the problem

min
u

max
j

Js(uj)

s.t. (11), (12)

uj(t) ∈ {−1, 0}, j = 1, . . . , n.

(14)

Problem (14) is hard to solve if all feasible solutions x(t) are considered.
Therefore, by building on the optimal solution of the single-input problem,
we restrict our attention to the periodic trajectories given by Proposition 2.
To this aim, the trajectory of the j-th integrator is parameterized as

xj(t) = aj fj(λj),
λj = mod(t/pj + φj , 1),
aj = p2j γj ,

γj = kj (1− kj)/16,

(15)

where aj is the amplitude, pj is the period, φj ∈ [0, 1] is the phase, mod(x, y)
denotes the remainder of x/y, and fj(λj) ∈ [−1, 1] is defined as

fj(λj) =

{

1− 8
kj

(λj − kj
2 )

2 if 0 ≤ λj ≤ kj

−1− 8
kj−1(λj −

kj+1
2 )2 if kj < λj < 1.

(16)

Notice that (15)-(16) is a parameterization of ψL∪ψU in (9)-(10). The input
signals uj are pulse-width modulated with period pj and duty cycle kj , and
can be expressed as

uj(t) =

{

−1 if 0 ≤ λj ≤ kj

0 if kj < λj < 1.
(17)

Since uj in (17) satisfy (13) and Jf,tot(u) = ‖k‖1, they are fuel-optimal.
Being these signals double-switch periodic, one has Js(uj) =

2
pj
. Moreover,

(12) is equivalent to

max
i

max
t

∣

∣

∣

∣

∣

∣

n
∑

j=1

cij xj(t)

∣

∣

∣

∣

∣

∣

≤ 1, (18)
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where the coefficients cij are the entries of C. By enforcing (15) and replacing
(12) by (18), problem (14) becomes

min
p, φ

max
j

2

pj
s.t. (15), (18)

0 ≤ φj < 1
pj > 0, j = 1, . . . , n,

(19)

where p = [p1, . . . , pn]
T and φ = [φ1, . . . , φn]

T . So far, the dynamic opti-
mization problem (14) has been converted into a static optimization prob-
lem, where the decision variables are p and φ. Note, however, that the
problem is still hard to solve, being non-convex in these decision variables.
Consequently, some simplifying assumptions will be made in order to derive
an upper bound to the solution of (19). Let us observe that by (15)

max
t

∣

∣

∣

∣

∣

∣

n
∑

j=1

cij xj(t)

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

|cij | aj . (20)

Hence, (18) can be enforced by imposing ‖C a‖∞ ≤ 1, where a = [a1, . . . , an]
T

and C is the matrix whose entries are |cij |. From (15), it follows that

pj =
√

aj/γj . (21)

By replacing (18) with ‖C a‖∞ ≤ 1 and exploiting (21), problem (19) boils
down to

min
a

max
j

2

√

γj
aj

s.t. ‖C a‖∞ ≤ 1
aj > 0, j = 1, . . . , n.

(22)

By (20), the solution of (22) is an upper bound to that of (19). It turns
out that problem (22) can be solved analytically, as stated by the following
theorem.

Theorem 1 A global minimum of problem (22) is attained at

a∗ =
1

‖Q‖∞
Γ1, (23)

where Γ = diag(γ1, . . . , γn), Q = CΓ, ‖·‖∞ denotes the matrix infinity norm

and 1 = [1, . . . , 1]T .
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Proof: Let r = Γ−1a. Then, problem (22) can be rewritten as

min
β,r

β

s.t.
2

√
rj

≤ β

‖Qr‖∞ ≤ 1
rj > 0, j = 1, . . . , n.

(24)

The statement of the theorem is proven if the feasible solution r∗ = 1
‖Q‖∞

1,

β∗ = 2
√

‖Q‖∞ is a global minimum for problem (24). Let r̂, β̂ be another
feasible solution of (24). Hence, we get

r̂j ≥
4

β̂2
, ∀j = 1, . . . , n,

and, being qij ≥ 0, ∀i, j, where qij denotes the entries of Q, one has

1 ≥
n
∑

j=1

qij r̂j ≥
4

β̂2

n
∑

j=1

qij , ∀i = 1, . . . n.

Hence,

β̂ ≥ 2

√

√

√

√ max
i=1,...,n

n
∑

j=1

qij = β∗,

which concludes the proof.
Since by (23) all the entries of Γ−1a∗ are equal, it follows from (21) that the
periods of the period trajectories resulting from the solution of problem (22)
are

p∗1 = p∗2 = . . . = p∗n =
1

√

‖Q‖∞
. (25)

In the relaxation (22) of problem (19), the additional degrees of freedom
provided by the relative phases φj have not been exploited. In order to find
a less conservative relaxation, we enforce directly the property (25) into the
original problem (19). This leads to the new relaxed problem

max
p, φ

p1
2

s.t. (15), (18)
φ1 = 0, 0 ≤ φj < 1, j = 2, . . . , n
p1 = p2 = . . . = pn > 0,

(26)

where φ1 = 0 has been enforced without loss of generality, since shifting all
the phases by the same quantity does not affect the optimal solution of (26).

8



Theorem 2 A global minimum of problem (26) is attained at φ∗ = argmin
φ
σ(φ)

and p∗1 =
1√
σ(φ∗)

, where

σ(φ) = max
i

max
0≤t≤p1

∣

∣

n
∑

j=1

cij γjf(t/p1 + φj)
∣

∣. (27)

Proof: The result easily follows by using (15) and rewriting constraint
(18) as p21 σ(φ) ≤ 1.
Due to (20) and (25), the solution of problem (26) is a lower bound to that
of (22), while still being an upper bound to that of (19). Notice that σ(φ) in
(27) does not depend on the actual value of the period p1, because the peak
values of the sums of the p1-periodic functions f(t/p1 + φj), evaluated over
the period, are independent from the period itself. According to (17), the
resulting optimal input signals u∗j are pulse-width modulated with period
p∗j = p∗1 and phases φ∗1 = 0 and φ∗j for j = 2, . . . , n. Finding φ∗ amounts
to solve a crest factor minimization problem, which is known to be a hard
optimization problem, being σ(φ) a non convex function. Nevertheless, for
low dimensional cases, such as n = 2 or n = 3, which are of practical interest
in many applications, a global minimizer of σ(φ) can be found by numeric
search over the free phases φj .

Example. Let n = 2, k = [0.7, 0.1]T in (11), and

C =

[

cos(π/3) sin(π/3)
− sin(π/3) cos(π/3)

]

,

in (12). According to Theorem 1, the solution to (22) is given by a∗ =
[0.9257, 0.3967]T . From (25), it follows that p∗1 = p∗2 = 8.4 and hence the
resulting average switching frequency is Js(u

∗) = 2/p∗1 = 0.238. Prob-
lem (26) is solved using Theorem 2 with φ1 = 0. The minimizer φ∗2 is
found numerically through a one-dimensional search. One gets φ∗2 = 0.59
and p∗1 = p∗2 = 9.53, which give Js(u

∗
j ) = 2/p∗1 = 0.21 which is lower than

the optimal cost of (22) by approximately 12%. The resulting trajectories
x1(t), x2(t) of system (11) are shown in the x1 x2 plane in Fig. 2, together
with the set defined by (12) and the box |xj | ≤ a∗j .

4 Minimum switching control law

In this section, it is shown how to control the system to the periodic tra-
jectories previously found, starting from any given initial condition. For
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Figure 2: Trajectories in the x1, x2 plane from the solutions to (22) (dashed)
and (26) (solid), with constraints (12) (outer parallelogram) and |xi| ≤ a∗i
(inner box).

the solution provided by Theorem 1, this amounts to design a control law
tracking a limit cycle with prescribed period. For the solution specified by
Theorem 2, the control law must also track the phase of the trajectory along
the limit cycle.
In order to steer the double integrator (11) to a periodic trajectory of the
form (15)-(16), with prescribed period pj from any initial condition, the
fuel-optimal control law (6) is modified as follows

uj(t) =







−1 if s(xj , ẋj) ≥ aj
0 if s(xj , ẋj) ≤−aj
up otherwise,

(28)

where up = −1 if s(xj , ẋj) ≥ aj occurred more recently than s(xj , ẋj) ≤−aj ,
and up = 0 otherwise. The resulting closed-loop system consists of the
nonlinear system (11), under the relay feedback (28), with s(xj , ẋj) defined
by (7) and hysteresis aj . Notice that the switching curve s(xj , ẋj) = aj
contains the portion of the curve ψU in (10) with δ = aj , for ẋ > 0; similarly,
s(x, ẋ) = −aj contains the portion of the curve ψL in (9) with δ = aj , for
ẋ < 0. Straightforward phase plane arguments lead to the following result.
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Proposition 3 The perturbed double integrator (11) with the control law

(28) converges in finite time to a periodic trajectory of the form (15)-(16),
with period pj given by (21). Moreover, only one switching of the control

input is required to reach this trajectory from any initial condition.

By applying for each input signal uj(t) of system (11) the control law (28)
with aj = a∗j given by Theorem 1, the periodic trajectories (15) with period
p∗j in (25) are reached in finite time with one switching per input, from any
initial condition.
Besides the relationship between the hysteresis of the relay element and the
period of the limit cycle, a relationship between a variation of the hysteresis
width and a corresponding phase shift does indeed exist. Therefore, the
approach proposed hereafter is to steer both the period and the phase of
the closed-loop trajectory to p∗j and φ∗j resulting from Theorem 2, by using

a time-varying hysteresis defined by two parameters aUj (t) and a
L
j (t). More

specifically, the following procedure is proposed: upon reaching of a switch-
ing curve, the parameter defining the offset of the opposite switching curve
is updated, to enforce a cycle whose duration is designed to steer both the
phase and the period to the prescribed values. To this purpose, the control
law (28) is modified as

uj(t) =







−1 if s(xj , ẋj) ≥ aUj (t)

0 if s(xj , ẋj) ≤−aLj (t)
up otherwise,

(29)

where up = −1 if s(xj , ẋj) ≥ aUj (t) occurred more recently than s(xj , ẋj) ≤
−aLj (t), and up = 0 otherwise, with aLj (t) + aUj (t) > 0. The time-varying
parameters are designed as explained next. Hereafter, for the sake of expo-
sition, the subscript j denoting the input channel will be dropped.
Let {zLm}, {zUm} denote two sequences of increasing time instants at which
the trajectory reaches the switching curves of the control law (29). With-
out loss of generality, let us consider u(t0) = 0 (the case u(t0) = −1 be-
ing analogous) and construct a sequence {zl} of increasing time instants as
{zl} = {zU1 , zL1 , zU2 , zL2 , . . .}. The proposed approach is to update aU (t) and
aL(t) in (29) at times zLm and zUm, respectively. To this aim, let us define a
sequence {dl} such that

aL(t) = d2m−1 for t ∈ [z2m−1, z2m+1),
aU (t) = d2m for t ∈ [z2m, z2m+2).

(30)

Notice that the offset of a switching curve is updated when the trajectory
is not lying on the same curve.
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Figure 3: Scheme for the computation of the event times: switching curves
(solid) and example of a closed-loop trajectory (dotted).

The sequence {zl} depends on the application of the control law (29) to
system (11) and hence on the particular choice of the update sequence {dl} in
(30). The controlled evolution of the system is illustrated in Fig. 3, where the
state trajectory (dotted) reaches the time-varying switching curves (solid)
at times zl, zl+1 and zl+2. The event times can be computed iteratively
according to

zl+1 = zl +
|ẋ(zl+1)|+ |ẋ(zl)|

q(zl)
, (31)

where q(zl) = |k + u(zl)| and the velocity |ẋ(zl+1)| is given by

|ẋ(zl+1)| = 4
√

2γ(dl + dl−1). (32)

From the previous observations, it follows that the objective of driving the
system to a steady state periodic solution in the form (15)-(16), with pre-
scribed period p and phase φ, can be recast in terms of the design of the
sequence {dl}.

Theorem 3 Let a = p2γ and define the sequence {dl} as

d0 = a, (33)

dl = a
(

1 + 4∆φl + 2∆φ2l
)

, (34)
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where

∆φl = mod

(

z̄l+2 − ẑl+2

p
+

1

2
, 1

)

− 1

2
, (35)

ẑl+2 = zl +
|ẋ(zl)|
q(zl)

+
q(zl)

2
p+

√
2

4

√

p2 +
dl−1

γ
, (36)

and the variables {z̄l} are defined according to

z̄2m−1 = −φ p,
z̄2m = (k − φ) p,

(37)

for m ∈ N. Then, the solution of system (11) with the control law (29)-(30)
converges in finite time to the periodic trajectory (15)-(16) with period p and

phase φ. Moreover, only three switchings of the control input are required to

reach this trajectory from any initial condition.

Proof: Under the assumption that u(t0) = 0 (the reasoning is the
same if u(t0) = −1), the closed-loop system trajectory will reach the curve
s(x, ẋ) = d0 = a at a certain time z1, at which the input switches to u(z1) =
−1. Without loss of generality, let z1 = 0. Since q(z1) = 1 − k, (33) and
(36) give

ẑ3 =
ẋ(z1)

1− k
+

(

1− k

2

)

p.

By using (31)-(32), it is possible to check that ẑ3 represents the time at
which the trajectory of the closed-loop system would reach again the curve
s(x, ẋ) = a if one enforced d1 = d2 = a in (29)-(30). Being z̄3 = −φ p,

∆φ1 = h− φ− |ẋ(z1)|
p(1− k)

+
k

2
, (38)

for some h ∈ Z. By using d1 from (34), with ∆φ1 given by (38), the proce-
dure is repeated at time z2. After simple manipulations, one obtains

ẑ4 =
|ẋ(z1)|
1− k

+ p(1 + ∆φ1) +
k

2
p,

z̄4 = (k − φ)p,

∆φ2 = mod

(

−1

2
− h, 1

)

− 1

2
= 0,

and hence d2 = a. By induction, it can be easily verified that ∆φl = 0
and dl = a, ∀ l ≥ 2, for any ẋ(z1). Hence, by (30), aU (t) = aL(t) = a,
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for all t ≥ z3. From Proposition 3, one has that the closed-loop trajectory
converges to a solution of the form (15)-(16) with period p. Moreover, from
(31)-(32) it follows that the sequence of switching times zl satisfies

mod

(

z̄l − zl
p

+
1

2
, 1

)

− 1

2
= 0, ∀l ≥ 4. (39)

On the other hand, the switching times of the periodic solution (15)-(16)
with given phase φ occur at time instants t̃ such that either mod(t̃/p +
φ, 1) = 0 or mod(t̃/p + φ, 1) = k. These equations lead to t̃ = z2m−1 and
t̃ = z2m in (37), respectively. Therefore, (39) guarantees that, for all t ≥ z4,
the switching times of the closed-loop trajectory coincide with those of the
periodic solution (15)-(16), with desired period p and phase φ. Finally, since
by (35) −1/2 ≤ ∆φ1 < 1/2, which implies d1 ≥ −1/2 a by (34), one has
that aL(t)+aU (t) > 0 ∀t, as it is required for the control law (29) to be well
defined. This concludes the proof.
By applying for each input signal uj(t) of system (11) the control law (29)-
(30), with the input sequence {al} chosen as in Theorem 3 and pj = p∗j ,
φj = φ∗j given by Theorem 2, the periodic trajectories (15) with period
p∗j and phase φ∗j are reached in finite time with three switchings per input
channel, from any initial condition.

5 Attitude control application

Consider a 2000 kg spacecraft on a geostationary orbit, whose propulsion
system consists of the four orbit control thruster O1-O4 and the six atti-
tude control thruster A1-A6 depicted in Fig. 4. Thrusters A1-A3 produce
opposite torques with respect to A4-A6. During station-keeping (orbit con-
trol) maneuvers, a large disturbance torque, with respect to environmental
perturbations, is generated due to misalignment of thrusters O1-O4 with
respect to the spacecraft center of mass. Because a station-keeping maneu-
ver requires to fire two orbit control thrusters in sequence, to correct for
orbital inclination and longitude errors, such disturbance is piecewise con-
stant. In order to maintain the desired Earth-pointing orientation, it must
be compensated using thrusters A1-A6. In the following, the proposed con-
trol strategy is applied to this purpose, and compared to the MPC scheme
developed in [14], based on a finite horizon reformulation of the optimal
control problem (14), which requires the solution of a mixed-integer linear
program (MILP).
The simulation environment relies on the fully nonlinear attitude dynamic
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Figure 4: Thruster configuration.

model, see e.g. [15], while for the purpose of control design the attitude
error dynamics are approximated by θ̈ = I−1

M (Bu + τ), where θ expresses
the roll, pitch and yaw errors, IM is the spacecraft inertia matrix, B maps
the thruster activation command u ∈ {−1, 0, 1}3 into the corresponding
torque and τ is the disturbance torque. In the considered problem IM =
diag(1.9, 1.47, 1.55) · 103,

B =





−2 2 0
2 2 −1.9
0 0 1.5



 · 10−3,

τ = [1.2, 0.7, 1]T mNm during the first half of the station-keeping maneuver,
τ = [0.2, 1.4, 0.5]T mNm during the second half, and the maneuver lasts for
3000 s. The required attitude control accuracy is ‖θ‖∞ ≤ 0.5 mrad. The
above model can be cast in the form (11)-(12) by adopting the coordinate
transformation x = B−1IM θ and setting C = I−1

M B/(5 ·10−4). An extended
Kalman filter takes care of estimating the disturbance torque from attitude
and rate measurements. More details on the considered navigation system
can be found in [14]. The solutions provided by Theorems 1 and 2 are eval-
uated twice during the maneuver, to account for the impulsive variation of
the disturbance at t = 1500 s.
In Fig. 5, the attitude error trajectories resulting from the application of
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Figure 5: Trajectories in the x space for the MS1 (red, dotted), MS2 (blue,
solid) and MPC (black, dash-dotted) control schemes, with constraints (12).

the control law (28), exploiting the solution of Theorem 1 (MS1), and of
the control law (29), making use of Theorem 2 (MS2), are compared to that
obtained by applying the MPC scheme. It can be seen that the three ap-
proaches succeed in keeping the tracking error within the bounds (outer par-
allelotope), except for a negligible constraint violation by the MS2 approach
during the short transient following the impulsive disturbance variation, due
to the requirement to track a new reference phase. The fuel consumption
(evaluated in terms of the sum of the actuator firing times) and the maxi-
mum actuator switching frequency are reported in Table 1. While the former
is approximately the same for the three solutions, the latter is higher for the
MPC law. In particular, the application of the MS2 scheme requires a much
lower switching frequency, which translates into an increased lifetime of the
attitude control thrusters. The superior performance of the proposed ap-
proach, with respect to the MPC scheme, is explained by the fact that the
MPC optimization problem has to be solved over a finite prediction hori-
zon, in order to retain the computational feasibility of the receding horizon
strategy. In fact, the time needed to solve the MILP problem within the
MPC scheme is of the same order as that required to evaluate the solution
of Theorem 2 through a two-dimensional search on φ2 and φ3. However, the
MILP problem has to be solved at every sampling instant, while the solution
of Theorem 2 has to be computed only twice per station-keeping maneuver
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Table 1: Control system performance
Parameter MPC MS1 MS2

Firing time [s] 4520 4478 4487
Switching frequency [Hz] 0.028 0.020 0.012

(i.e., when the disturbance torque changes).

6 Conclusions

The minimum switching control problem has been addressed for a system
of coupled double integrators with on-off input signals, in the presence of a
constant disturbance term. Two suboptimal solutions have been presented,
which provide upper bounds on the number of input transitions of the re-
sulting steady state limit cycles. A control law driving the system to these
limit cycles in finite time has been derived. Simulation results of an attitude
control case study have shown that exploiting the relative phases of the pe-
riodic trajectories of each state variable provides a significant reduction of
the actuator switching frequency.
Several aspects of the considered problem still remain to be investigated.
It is not clear how to tackle the minimum switching problem without pa-
rameterizing the trajectory in the same form as the optimal solution for the
SISO case. A further relaxation would be the removal of the assumption
that the considered trajectories are unimodal limit cycles: at least in prin-
ciple, oscillations resulting from more complex combination of the actuator
switchings, may result in a lower number of input transitions. Another sub-
ject of ongoing investigation is the application of the proposed controller to
the case of coupled double integrators with time-varying disturbances. This
would require to evaluate the reference periodic trajectories online, which
appears to be feasible whenever the control bandwidth is large compared to
the disturbance variation rate.
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