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Abstract

This paper addresses a collective motion problem for a multi-agent system composed of nonholonomic vehicles. The aim of the
vehicles is to achieve circular motion around a virtual reference beacon. A control law is proposed, which guarantees global
asymptotic stability of the circular motion with a prescribed direction of rotation, in the case of a single vehicle. Equilibrium
configurations of the multi-vehicle system are studied and sufficient conditions for their local stability are given, in terms of the
control law design parameters. Practical issues related to sensory limitations are taken into account. The transient behavior
of the multi-vehicle system is analyzed via numerical simulations.
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1 Introduction

Multi-agent systems have received increased interest
in recent years, due to their enormous potential in
several fields: collective motion of autonomous vehi-
cles, exploration of unknown environments, surveil-
lance, distributed sensor networks, biology, etc. (see e.g.
(Jadbabaie et al., 2003; Marshall et al., 2004) and the
references therein). Starting from the seminal works
by Reynolds (1987) and Vicsek et al. (1995), several
theoretical frameworks have been proposed to analyze
the collective motion of multi-agent systems. A typical
aim of these approaches is to formulate decentralized
control laws driving the team of agents to pre-specified
equilibrium configurations.
Although a rigorous stability analysis of multi-agent
systems is generally a very difficult task, nice theoretical
results have been obtained in the case of linear models.
One of the first contributions in this respect was given
in (Leonard and Fiorelli, 2001), where a multi-vehicle
system with a virtual reference beacon is considered.
Parallel and circular motions are obtained by applying
a control law based on artificial potentials and stability
is proven via Lyapunov arguments. Leader following
and leaderless coordination problems have been studied
in (Jadbabaie et al., 2003; Lin et al., 2004). In particu-
lar, in (Jadbabaie et al., 2003) sufficient conditions are
given for convergence of the Vicsek’s control scheme, by
explicitly taking into account the time-varying topology
of the multi-agent system. More complex local control
laws, based on the combination of attractive, repulsive
and alignment forces, have been proposed in (Tanner
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et al., 2007). Stability of collective parallel motion is
achieved, while ensuring collision avoidance among the
agents. An approach for the analysis of multi-agent sys-
tems, based on partial difference equation over graphs,
has been proposed in (Ferrari-Trecate et al., 2006).
General frameworks for dealing with consensus prob-
lems in linear and nonlinear settings have been pre-
sented in (Olfati-Saber and Murray, 2004; Xiao and
Boyd, 2004; Moreau, 2005). These works study in depth
how the topology of the communication network affects
the behavior of the multi-agent system.
Stability analysis becomes more challenging when kine-
matic constraints are taken into account, as in the case
of wheeled nonholonomic vehicles. Unicycle-like motion
models have been recently considered in several papers.
In (Justh and Krishnaprasad, 2004; Paley et al., 2004)
different control laws are proposed for circular and par-
allel motion of planar multi-vehicle systems. A complete
stability analysis of the two-vehicle case, and of the cir-
cular motion of a single-vehicle around a fixed beacon, is
given in (Justh and Krishnaprasad, 2004). Moreover, it
is shown that for a wide class of control laws, the general
n-vehicle system admits only two sets of equilibrium
configurations, corresponding to parallel and circular
motion. Two different control laws stabilizing collective
motion in parallel and circular configurations are pre-
sented in (Paley et al., 2004). A possible drawback of
the above control schemes is that both clockwise and
counterclockwise rotations are stabilized. In (Sepulchre
et al., 2007), a family of controllers, stabilizing different
collective patterns, is presented. The proposed control
laws depend on the relative orientation and relative
spacing of the agents, and assume an all-to-all commu-
nication network. The latter assumption is relaxed in
(Jeanne et al., 2005), where the circular motion of parti-
cles in symmetric patterns is investigated for a ring-like
coupling network. In (Marshall et al., 2004), equilibrium
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formations of multi-vehicle systems in cyclic pursuit
are studied. A simple control law is proposed allowing
the vehicles to achieve circular motion configurations,
whose local stability is analyzed in detail. The cyclic
pursuit strategy requires the vehicles to be labelled and
each vehicle must always perceive its unique neighbor,
thus imposing quite strong sensory and communication
requirements.
The problem considered in this paper is that of a team
of nonholonomic vehicles whose objective is to achieve
collective circular motion around a virtual reference bea-
con. As a first contribution, a control law is proposed,
which is shown to guarantee global asymptotic stability
of the counterclockwise circular motion around a fixed
beacon, in the single-vehicle case. This turns out to be
a useful property also in the multi-agent case, because
all vehicles try to rotate around the beacon in the same
direction of rotation. Then, the control law is suitably
modified to cope with the multi-vehicle case. Equilib-
rium configurations of the multi-vehicle system under
the proposed control law are discussed and sufficient
conditions for local asymptotic stability are derived in
terms of the control law design parameters. Sensory
limitations are explicitly taken into account; in partic-
ular: i) each agent can perceive only vehicles lying in
a limited visibility region; ii) a vehicle cannot measure
the orientation of another vehicle, but only its relative
position; iii) vehicles are indistinguishable. Moreover,
the proposed control law is completely decentralized
and information exchange between the vehicles is not
required. Simulation results demonstrate the effective-
ness of the proposed approach in the multi-vehicle case.
Guidelines for the choice of the control law parameters
are provided, taking into account the tradeoff between
fast convergence to the equilibrium configuration and
safe collision-free trajectories. A preliminary version of
the paper has appeared in (Ceccarelli et al., 2005).
The paper is organized as follows. In Section 2, the con-
trol law for the single-vehicle case is introduced. Global
asymptotic stability of the counterclockwise circular
motion around a fixed beacon is proved. Section 3 con-
cerns the multi-vehicle scenario: the modified control
law is presented and the resulting equilibrium configura-
tions are studied. Sufficient conditions for local stability
are given. Simulation results are provided in Section 4,
along with a thorough analysis of the role of the control
law design parameters. Concluding remarks and future
research directions are outlined in Section 5.

2 Control law for a single vehicle

Consider the planar unicycle model

ẋ(t) = v cos θ(t) (1)

ẏ(t) = v sin θ(t) (2)

θ̇(t) = u(t); (3)

where [x y θ]′ ∈ R
2× [−π, π) represents the vehicle pose,

v is the forward speed (assumed to be constant) and

u(t) is the angular speed, which plays the role of control
input.
The following control law, based on the vehicle’s relative
pose with respect to a reference beacon, is proposed

u(t) =

{

k · g(ρ(t); c, ρ0) · αd(γ(t)) if ρ(t) > 0

0 if ρ(t) = 0
(4)

with

g(ρ; c, ρ0) = ln
( (c− 1) · ρ+ ρ0

c · ρ0

)

(5)

αd(γ) =

{

γ if 0 ≤ γ ≤ ψ

γ − 2π if ψ < γ < 2π.
(6)

In (4)-(6), ρ is the distance between the vehicle posi-
tion rv=[x y]′ and the beacon position rb = [xb yb]

′;
γ ∈ [0, 2π) represents the angular distance between the
heading of the vehicle and the direction of the beacon
(see Figure 1); k > 0, c > 1, ρ0 > 0 and ψ ∈ ( 3

2π, 2π)
are given constants.
The terms in equation (4) have the following meaning.
When γ ≤ ψ (and hence αd > 0), if ρ > ρ0 the input u(t)
is positive and favors counterclockwise rotation of the
vehicle. Conversely, if γ ≤ ψ and ρ < ρ0 (vehicle close
to the beacon) the vehicle is steered clockwise until it is
sufficiently faraway from the beacon. The threshold ψ in
(6) is introduced so that, when ρ is large and γ is close to
2π, the vehicle is forced to head for the beacon without
making useless circular motions. It will be shown that
the choice ψ > 3

2π is necessary to prevent clockwise ro-
tation about the beacon from being an equilibrium so-
lution. In order to analyze system (1)-(6), let us exploit
the representation of vectors in R

2 via complex numbers
(Justh and Krishnaprasad, 2004). Then, one can set

r = rb − rv = ρ eiΓ (7)

ρ=
√

(x− xb)2 + (y − yb)2 (8)

γ = (Γ − θ)mod(2π) (9)

where Γ ∈ [0, 2π) denotes the angular distance between
r and the x-axis (see Figure 1). By differentiating (7)

r = ρ eiΓ

Γ

γ

x

y

xb

yb

rb

rv

θ

Fig. 1. Vehicle (triangle) and beacon (cross).
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with respect to time, one obtains ṙ = ρ̇ eiΓ + iρ Γ̇eiΓ. For
a static beacon one has ṙ = −ṙv = −v eiθ = −v e−iγ eiΓ,
and hence for ρ 6= 0

ρ̇=−v cos γ (10)

Γ̇ =
v

ρ
sin γ . (11)

By differentiating (9) with respect to time, using (10)-
(11) and (4)-(6), one obtains the system

ρ̇ = −v cos(γ)

γ̇ =











v

ρ
sin γ−kg(ρ; c, ρ0)γ if 0≤γ≤ψ

v

ρ
sin γ−kg(ρ; c, ρ0)(γ−2π) if ψ<γ<2π.

(12)

The first aim is to show that (12) has a unique equilib-
rium point, corresponding to counterclockwise rotation
of the vehicle around the beacon. To this end, let us se-
lect the parameters v, k, c, ρ0 so that

min
ρ

ρ g(ρ; c, ρ0) > −
2 v

3π k
. (13)

This choice guarantees that for γ = 3
2π one has γ̇ < 0

for any ρ, i.e. there are no equilibria of system (12) such
that γ = 3

2π, or equivalently clockwise rotation is not a
limit cycle for system (1)-(6).
Let D = R++ × (0, 2π), where R++ denotes the set
of strictly positive real numbers. The following result
holds.

Proposition 1 The point pe =
[

ρe
π
2

]′
where ρe is such

that:
v

ρe
− k g(ρe; c, ρ0)

π

2
= 0 (14)

is the only equilibrium of system (12), for (ρ, γ) ∈ D.

From Proposition 1 one has that the counterclockwise
circular motion with radius ρe and angular velocity Γ̇ =
v
ρe

is a limit cycle for system (1)-(6). The rest of this

section will be devoted to proving global asymptotic sta-
bility of such a limit cycle.
Let us introduce the following Lyapunov function which
is instrumental in the stability analysis of the equilib-
rium pe for system (12):

V (ρ, γ) =

∫ ρ

ρe

A(ρ̂)dρ̂+

∫ γ

π
2

B(γ̂)dγ̂ (15)

where

A(ρ) =
2

πv

(

k g(ρ; c, ρ0)
π

2
−
v

ρ

)

(16)

B(γ) =











−
cos γ

γ
if 0 < γ ≤ ψ

−
cos γ

γ − 2π
if ψ < γ < 2π.

(17)

Hence

V̇ (ρ, γ) =















v

ρ

( 2

π
−

sin γ

γ

)

cos γ if 0 < γ ≤ ψ

v

ρ

( 2

π
−

sin γ

γ − 2π

)

cos γ if ψ < γ < 2π.

Define the following sets:

D̄=R++×
(

0, 3
2π

]

, D̂=D\D̄, K=R++×(ψ, 2π). (18)

It can be checked that V (ρ, γ) ≥ 0 ∀(ρ, γ); V̇ (ρ, γ) ≤ 0

for (ρ, γ) ∈ D̄, and V̇ (ρ, γ) < 0 for (ρ, γ) ∈ K. Moreover
V (ρ, γ) = 0 only for ρ = ρe, γ = π

2 and V (ρ, γ) is radially
unbounded on D, i.e.

lim
ρ→0

V (ρ, γ) = +∞ lim
ρ→∞

V (ρ, γ) = +∞

lim
γ→0

V (ρ, γ) = +∞ lim
γ→2π

V (ρ, γ) = +∞.

By using the Lyapunov function (15), it is possible to
prove the main result of this section.

Theorem 1 The counterclockwise circular motion
around a fixed beacon, with rotational radius ρe defined
in (14) and angular velocity v

ρe
, is a globally asymptoti-

cally stable limit cycle for system (1)-(6).

In order to prove Theorem 1, two preliminary lemmas are
needed. First, it is shown that for any initial condition in
D̂, there exists a finite time t̄ such that (ρ(t̄), γ(t̄)) ∈ D̄
(Lemma 1). Then, it is proved that for initial vehicle
poses outside D (i.e., when γ = 0 or ρ = 0), there exists a
finite time t̂ such that (ρ(t̂), γ(t̂)) ∈ D̄ (Lemma 2). From
these two lemmas, one can conclude that every trajec-
tory starting outside D̄ will end up in D̄ in finite time
(a phase portrait of vector field (12) is depicted in Fig-
ure 2). Finally, Theorem 1 is proved by using Lyapunov
arguments in D̄.

Lemma 1 Let D̄ and D̂ be given by (18). For any trajec-
tory of system (12) with initial condition (ρ(0), γ(0)) ∈

D̂, there exists a finite time t̄ > 0 such that (ρ(t̄), γ(t̄)) ∈ D̄.

0 ψγ
3
2
ππ

2
2π

ρe

∞

ρ

D̄ D̂
K

Fig. 2. Vector field (12) on D.
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Proof: See Appendix A. 2

Now, let us consider all the initial vehicle poses such that
the vehicle points towards the beacon, or the vehicle lies
exactly on the beacon, i.e.

B = {(rv(0), θ(0)) : γ = 0, 0 < ρ <∞}
⋃

{(rv(0), θ(0)) : ρ = 0}.
(19)

Lemma 2 Let D̄ and B be given by (18) and (19), re-
spectively. For any trajectory of system (1)-(6) with ini-
tial conditions in B, there exists a finite time t̂ such that
(ρ(t̂), γ(t̂)) ∈ D̄.

Proof: See Appendix B. 2

Now Theorem 1 can be proved.
Proof of Theorem 1: From Lemmas 1 and 2 it follows
that for any initial condition (rv(0), θ(0)) ∈ R

2× [0, 2π),
there exists a finite time t∗ ≥ 0 such that (ρ(t∗), γ(t∗)) ∈
D̄. We want to prove that any trajectory of (12) starting
in D̄ converges to the equilibrium pe defined in Proposi-
tion 1. Notice that in D̄ system (12) boils down to

ρ̇ = −v cos γ

γ̇ =
v

ρ
sin γ − k g(ρ; c, ρ0) γ.

(20)

Consider any initial condition (ρ(0), γ(0)) ∈ D̄. Define
η = V (ρ(0), γ(0)) and Sη =

{

(ρ, γ) ∈ D̄ : V (ρ, γ) ≤

η
}

. Since V (ρ, γ) is radially unbounded, the set Sη is

compact and its boundary is given by ∂Sη =
{

(ρ, γ) :

(V (ρ, γ) = η ∧ γ < 3
2π

)

∨ (V (ρ, γ) ≤ η ∧ γ = 3
2π)

}

.
We want to show that the set Sη is a viability domain
for the system (20), i.e. the vector field always belongs
to the contingent cone to Sη, at any point on ∂Sη (see
Figure 3, and (Aubin, 1991, p. 25-26) for a rigorous def-
inition).
Consider (ρ, γ) ∈ ∂Sη such that γ < 3

2π, V (ρ, γ) = η.
Since for such (ρ, γ) the function V is differentiable and

V̇ (ρ, γ) ≤ 0, it can be concluded that the vector field
belongs to the contingent cone to Sη (see e.g. point P1

in Figure 3) .
Consider now, if there exists, any (ρ, γ) ∈ ∂Sη such that
γ = 3

2π, V (ρ, γ) < η. Because of (13), the vector field in
the r.h.s. of (20) is [0 −α]′, with α > 0. Hence, it be-
longs to the contingent cone (Figure 3, point P2).
Finally consider, if there exists, any (ρ, γ) ∈ ∂Sη such
that γ = 3

2π, V (ρ, γ) = η. Notice that for such (ρ, γ),

one has ∇V (ρ, γ) = [A(ρ), B( 3
2π)] = [β 0], with β ∈ R.

Hence, one of the two edges of the contingent cone to
∂Sη is orthogonal to the line γ = 3

2π (Figure 3, point
P3). Again, one has that the r.h.s. of (20) is of the form
[0 −α]′, α > 0, and hence it is tangent to the contingent
cone.
Now, notice that the vector field (20) is Lipschitz on Sη.
Hence, by applying the Nagumo theorem (Aubin, 1991,
Theorem 1.2.4, p. 28), for any (ρ(0), γ(0)) ∈ Sη the

��������������

γ

ρ

3
2
π

∂Sη

P1

P2

P3

Fig. 3. Examples of contingent cones for different points on
∂Sη (dashed). Arrows represent the vector field (20).

unique solution of (20) will not leave Sη for any t ≥ 0.
In other words, Sη is a positively invariant set with re-
spect to system (20).

By recalling that V̇ (ρ, γ) ≤ 0, ∀(ρ, γ) ∈ D̄, one can apply
LaSalle’s Invariance Principle (see e.g. (Khalil, 1992))
to conclude that the trajectories starting in Sη converge
asymptotically to the largest invariant set M such that
M ⊆ E = {(ρ, γ) ∈ Sη : V̇ (ρ, γ) = 0}. It is triv-
ial to show that, for any η ≥ 0, the set M contains
only the equilibrium point pe. Being the initial choice
of (ρ(0), γ(0)) ∈ D̄ arbitrary, convergence to pe occurs
for any trajectory starting in D̄. Because the equilib-
rium point pe corresponds to counterclockwise circular
motion around the beacon rb with radius ρe, it can be
concluded that such motion is a globally asymptotically
stable limit cycle for the system (1)-(6). 2

Remark 1 The stability analysis of this section holds
for a larger class of functions g(ρ), than the one proposed
in (5). Let g(ρ) be any locally Lipschitz function such
that |g(0)| < ∞, (13) holds and A(ρ) in (16) satisfies:
(i) ∃! ρe s.t. A(ρe) = 0; (ii) limρ→+∞

∫ ρ

ρe
A(σ)dσ = +∞;

(iii) limρ→0+

∫ ρ

ρe
A(σ)dσ = +∞. Then, the counterclock-

wise circular motion of radius ρe is globally asymptoti-
cally stable for system (1)-(6). Hence, global stability is
guaranteed, for example, by any g(ρ) constant and pos-
itive. The choice of the form (5) is motivated by an ad-
ditional degree of freedom for tuning the control law in
the multi-vehicle case (see Section 4.3).
It is worth remarking that in order to stabilize the clock-
wise rotation, it suffices to choose the threshold ψ ∈
(0, π

2 ). In this case, constraint (13) guarantees that the
clockwise rotation is the only limit cycle.

3 Multi-vehicle systems

In this section the control law (4) is modified in order to
deal with a multi-vehicle scenario. Consider a group of
n agents whose motion is described by equations

ẋi(t) = v cos θi(t) (21)

ẏi(t) = v sin θi(t) (22)

θ̇i(t) = ui(t), (23)
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with i = 1 . . . n. Let ρi and γi be defined as in Section
2; ρij and γij denote respectively the linear and angular
distance between vehicle i and vehicle j (see Figure 4).
In the control input ui(t) a new additive term is intro-
duced which depends on the interaction between the i-th
vehicle and any other perceived vehicle j

ui(t) = fib(ρi, γi) +
∑

j∈Ni(t)

fij(ρij , γij). (24)

In (24), fib is the same as in the r.h.s. of (4), i.e.

fib(ρi, γi) =

{

kb · g(ρi; cb, ρ0) · αd(γi) if ρi > 0

0 if ρi = 0,
(25)

while

fij(ρij , γij) = kv · g(ρij ; cv, d0) · βd(γij), (26)

where kv > 0, cv > 1, d0 > 0 and

βd(γij) =

{

γij if 0 ≤ γij ≤ π

γij − 2π if π < γij < 2π.
(27)

The set Ni(t) contains the indexes of the vehicles that at
time t lie inside the visibility region Vi, that is the region
where it is assumed that the sensors of the i-th vehicle
can perceive other vehicles. Notice that the sets Ni(t)
are time-varying, which implies that the control law (24)
switches every time a vehicle enters into or exits from
the region Vi. To simplify the notation, the dependence
on t of Ni(t) is dropped hereafter.
In this paper, the visibility region has been chosen as
the union of two sets (see Figure 5): (i) a circular sector
of radius dl and angular amplitude 2αv centered at the
vehicle, modeling the presence of a long range sensor
with limited angular visibility (e.g., a laser range finder);
(ii) a circular region around the vehicle of radius ds,
which models a proximity sensor (e.g., a ring of sonars)
and plays the role of a “safety region” around the vehicle.
Therefore, one has that j ∈ Ni if and only if one of
the following conditions is verified: (i) |ρij | ≤ dl and
|βd(γij)| ≤ αv ; (ii) |ρij | ≤ ds. The design parameter d0

is the desired distance between two consecutive vehicles
rotating around the beacon. Hereafter, it is obviously
assumed that ds<d0<dl and d0 < 2ρe. Moreover, the
parameters ρe and d0 will be chosen so that each vehicle
can perceive another vehicle when rotating around the

beacon, i.e. arcsin
(

d0

2ρe

)

<αv.

The motivation for the control law (24)-(27) relies in the
fact that each agent i is driven by the term fib(·) towards
the counterclockwise circular motion about the beacon,
while the terms fij(·) have a twofold aim: to enforce
ρij = d0 for all the agents j ∈ Ni and, at the same
time, to favor collision-free trajectories. Indeed, the i-th
vehicle is attracted by any vehicle j ∈ Ni if ρij > d0, and
repulsed if ρij < d0. Moreover, the term g(ρij ; cv, d0) in

rb

ρi

γi

γij

rvi

θi

ρj

γj

rvj

θj

γji

ρij

Fig. 4. Two vehicles (triangles) and a beacon (cross).

Vi

Vj

i

j

ds

dl

d0

2αv

Fig. 5. Visibility region of i-th and j-th vehicle.

(26) is always negative for ρij < ds, thus pushing the
j-th agent outside the circular safety region around the
i-th vehicle and therefore hindering collisions among the
vehicles. The expected result of such combined actions is
that the agents safely reach the counterclockwise circular
motion in a number of platoons, in which the distances
between consecutive vehicles is d0. In the following, local
stability analysis of system (21)-(23) under the control
law (24)-(27), is addressed.

3.1 Equilibrium configurations

From Section 2 and by using a coordinate transformation
similar to the one adopted in (Marshall et al., 2004), one
obtains the equations

ρ̇i =−v cos γi (28)

γ̇i =
v

ρi
sin γi − ui (29)

ρ̇ij =−v (cos γij + cos γji) (30)

γ̇ij =
v

ρij
(sin γij + sin γji) − ui (31)

∀i, j = 1 . . . n, j 6= i. Notice that there are algebraic rela-
tionships among the state variables ρi, γi, ρij , γij , which

5



will be taken into account in the stability analysis. The
following result provides equilibrium configurations for
the considered multi-vehicle system.

Proposition 2 Every configuration of n vehicles in
counterclockwise circular motion about a fixed beacon,
with rotational radius ρi = ρe defined in (14), and

ρij = d0 ∀i = 1 . . . n, and ∀j ∈ Ni, (32)

corresponds to an equilibrium point of system (28)-(31),
under the control law (24)-(27).

Proof: The counterclockwise circular motion implies
γi = π

2 , and hence ρ̇i = 0. Now, notice that ρij = d0

for any j ∈ Ni implies that fij(·) = 0. Hence ui in (24)
is equal to (4). From (14), ρi = ρe implies γ̇i = 0.
Since all the vehicles lie on the same circle of radius ρe,
with the same direction of rotation, by trivial geometric
considerations it can be shown that γij + γji = π and

min{γij , γji} = arcsin
(

ρij

2ρe

)

. Hence ρ̇ij = 0 due to (30).

Moreover, by exploiting (14) again, equation (31) be-
comes γ̇ij = 2 v

ρij
sin γij −

v
ρe

= 0, which concludes the

proof. 2

A necessary condition for the existence of equilibrium
configurations satisfying (32) is that d0 and ρe are cho-
sen so that

(n− 1) arcsin
( d0

2ρe

)

+ ϕ < π. (33)

where
ϕ = min

{

αv , arcsin
( dl

2ρe

)}

(34)

(with a slight abuse of notation, it is meant that ϕ = αv

whenever dl > 2ρe). This choice guarantees that the n
vehicles can lie on a circle of radius ρe, with distance
d0 between two consecutive vehicles and with at least
one vehicle that does not perceive any other vehicle. In
(33), ϕ represents the maximum angular distance γij

such that the i-th vehicle perceives the j-th one, when
the two vehicles are moving in circular motion with ro-
tational radius ρe (see Figure 6).
Let us consider visibility regions Vi with αv ≤ π/2 (typ-
ical e.g. for range finders). Condition (32) in Proposition
2 requires that a vehicle in circular motion with radius
ρe perceives at most one vehicle, i.e. card(Ni) ∈ {0, 1}.
A sufficient condition for (32) to hold is, e.g., that d0

and ρe satisfy

2 arcsin

(

d0

2ρe

)

> ϕ, (35)

with ϕ given by (34), so that in the equilibrium configu-
ration, a vehicle cannot perceive two vehicles within its
visibility region. Notice that condition (35) also guar-
antees that there is a neighborhood of the equilibrium
configuration in which the sets Ni (and hence the inter-
connection topology) do not change.

ρe

ϕ

dl

ρe

ϕ

dl

(a) (b)

Fig. 6. Possible values of ϕ in constraint (33): (a) ϕ = αv;

(b) ϕ = arcsin
“

dl

2ρe

”

.

When (33) and (35) are satisfied, there can be several
different equilibrium configurations such as those con-
sidered in Proposition 2. Indeed, due to (33) all vehi-
cles can lie on the desired circle of radius ρe and there
is at least one vehicle that does not perceive the others,
while (35) guarantees that at the equilibrium card(Ni) ∈
{0, 1}. This means that there may be q vehicles with
card(Ni) = 0 and n − q vehicles with card(Ni) = 1,
i.e. the equilibrium configuration is made of q separate
platoons. The limit cases are obviously q = 1 (a unique
platoon) and q = n (n vehicles rotating independently
around the beacon).

Remark 2 It is worth discussing the relationships be-
tween the proposed approach and the techniques that
aim at equilibrium formations in cyclic pursuit (see e.g.
(Marshall et al., 2004)). Although the objective is ba-
sically the same (to achieve collective circular motion),
the main difference is that the present approach does not
enforce a fixed interconnection topology among the ve-
hicles. The only requirement is that there exist some of
the equilibrium configurations considered in Proposition
2. Notice that this can be always guaranteed by acting
on the control law parameters so that conditions (33)
and (35) are satisfied (see the discussion in Section 4.3).
The advantage of this approach is that there is no need
to number the agents and to make them distinguishable.
In turn, one must be prepared to accept that the vehi-
cles achieve the circular motion in different configura-
tions, possibly made up of separate platoons, while the
cyclic-pursuit approach requires a unique platoon with
no distinct leader and a fixed interconnection topology.

3.2 Stability analysis

Let us now proceed with stability analysis of the multi-
vehicle system (28)-(31), with the control law (24)-(27),
under the assumptions (13), (33) and (35). In particu-
lar, the aim is to establish sufficient conditions under
which the equilibrium configurations in Proposition 2
are asymptotically stable.
W.l.o.g., consider n vehicles in counterclockwise circu-
lar motion about a beacon, forming a single platoon and
numbered as in Figure 7 (the analysis of equilibria with
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multiple platoons is analogous). The equilibrium point
considered by Proposition 2 is such that

ρi = ρe γi = π
2 i = 1 . . . n

γ(i−1)i = π
2 + arccos( d0

2ρe
) i = 2 . . . n.

(36)

Being card(N1) = 0 and card(Ni) = 1 for i ≥ 2, the
kinematic of the i-th vehicle is locally affected only by
the positions of the beacon and of the (i − 1)-th vehi-
cle, except for vehicle 1 whose kinematic is locally de-
termined only by the beacon position. Therefore, in a
neighborhood of the equilibrium configuration (36), the
kinematic system (28)-(31) is described by the equations

ρ̇1 =−v cos γ1 (37)

γ̇1 =
v

ρ1
sin γ1 − u1 (38)

ρ̇i =−v cos γi (39)

γ̇i =
v

ρi
sin γi − ui (40)

γ̇(i−1)i =
v

ρ(i−1)i
(sin γ(i−1)i + sin γi(i−1)) − ui−1 (41)

for i = 2 . . . n. The control inputs are given by u1 = f1b

and ui = fib + fi(i−1) for i ≥ 2. Notice that the 3n − 1
state variables in system (37)-(41) are sufficient to de-
scribe completely the n-vehicles system. Indeed, the re-
maining state variables in system (28)-(31) can be ob-
tained via algebraic relationships form the above 3n− 1
ones. In particular one has

ρ(i−1)i = ρ(i−1) cos(γ(i−1)i − γ(i−1)) +

+
√

ρ2
i − ρ2

(i−1) sin2(γ(i−1)i − γ(i−1)) (42)

γi(i−1) = γi − arcsin

(

ρ(i−1)

ρi
sin(γ(i−1)i − γ(i−1))

)

(43)

for i = 2, . . . , n.
By linearizing system (37)-(41) at the equilibrium point
(36), one gets a system of the form

ξ̇ =











A 0 · · · 0

∗ B
. . .

...
...

. . .
. . . 0

∗ · · · ∗ B











ξ (44)

where ξ = [ρ1 γ1 ρ2 γ2 γ12 . . . ρn γn γ(n−1)n]′, A ∈ R
2×2

and B ∈ R
3×3. The next lemma is instrumental in es-

tablishing a sufficient condition for asymptotic stability
of the considered equilibrium configurations.

Lemma 3 If the parameters of the control law (24)-(27)
satisfy

kv

kb
≤ 2

cv
cb

cb − 1

cv − 1
(45)

ρe

1

2

3

n

n−1d0

d0

d0

Fig. 7. Equilibrium configuration of n vehicles: Ni = {i− 1}
and ρi(i−1) = d0 for i = 2, . . . , n, while N1 is empty.

then matrix B in (44) is Hurwitz.

Proof: See Appendix C. 2

Now, the main result of this section can be stated.

Theorem 2 Let (45) hold. Then, every equilibrium con-
figuration given by Proposition 2 is asymptotically stable.

Proof: It is sufficient to show that the lower triangu-
lar matrix in (44) is Hurwitz. According to Lemma 3,
the inequality (45) guarantees that matrixB is Hurwitz.
Then, it remains to show that also matrix A in (44)
is Hurwitz. From the linearization of (37)-(38) at the

equilibrium point (36), one gets A =

[

0 a12

a21 a22

]

where

a12 = v, a21 = − v
ρ2

e
− kb

cb−1
(cb−1)ρe+ρ0

π
2 , a22 = − 2v

πρe
. Be-

ing a12 > 0, a21 < 0 and a22 < 0, matrix A is Hurwitz.
This concludes the proof. 2

Clearly (45) is a sufficient conditions and its violation
does not imply instability of the considered equilibria.
However, it is worth noticing that a wrong choice of the
control law parameters may lead to an unstable matrix
B in (44), and hence to instability of the equilibrium
configuration: examples can be easily found for cv = cb
and kv ≫ kb, or for kv = kb and cv ≫ cb. This is in good
agreement with intuition, as it basically says that the
beacon-driven control term should not be excessively re-
duced with respect to the control input due to interac-
tion with the other agents.

4 Simulation results

In this section, simulation studies are provided for the
multi-vehicle system (21)-(23) under the control law
(24)-(27). In the examples, the velocity of the vehicles
is set to v = 1 and the visibility region Vi has been
chosen as in Figure 5, with αv = π

4 , ds = 3, dl = 12.

The control law parameters are set to: ψ = 7
4π, d0 = 10,

cb = cv = 2, kb = 0.05, kv = 0.09 (notice that condition
(45) is satisfied). Throughout the simulations, the pa-
rameter ρ0 is used as a tuning knob to properly adjust
the rotational radius ρe resulting from (14) and to en-
force the constraints (13), (33) and (35) (see Section 4.3
below for a detailed discussion).
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4.1 Static beacon

A 8-vehicle system with ρ0 = 12 is considered. A typical
simulation run is shown in Figure 8(a). The multi-vehicle
system achieves collective circular motion in three sepa-
rate platoons of cardinality 4, 3 and 1 respectively (i.e.,
q = 3 according to the discussion in Section 3.1). In Fig-
ures 8(b)-8(c), the evolution of the average rotational ra-
dius ρ̄ = 1

n

∑n
i=1 ρi and of the average angular distance

with respect to the beacon γ̄ = 1
n

∑n
i=1 γi are plotted.

Figure 9 shows four consecutive snapshots of a simula-
tion in which an initial equilibrium configuration of five
vehicles, rotating around the beacon in two platoons, is
perturbed by a sixth incoming vehicle. It can be observed
that, after a transient in which the original equilibrium
is destroyed due to the interaction between vehicles 5
and 6, the agents reorganize themselves to finally reach
a new equilibrium consisting of one single platoon. Ob-
serve that the final interconnection topology is different
from that of the initial equilibrium.
Repeated runs have been performed to test convergence
of the multi-vehicle system, for different initial configu-
rations. In Figure 10(a), the estimated convergence times
for 100 simulations with random initial conditions are
reported, for a 4-vehicle system with ρ0 = 5. The same is
done in Figure 10(b), for a 6-vehicle system with ρ0 = 8.
The convergence test is based on the difference between
the rotational radius of each vehicle and ρe (namely
|ρi(t)− ρe|). All the simulations terminated successfully
in both cases. Quite intuitively, one observes that the
average convergence time increases as the number of ve-
hicles grows.

4.2 Moving beacon

Although the theoretical analysis has been performed for
the case of a static beacon, the proposed control strat-
egy is expected to show good performance also when
the beacon is moving and the team of vehicles has to
track it, while keeping collective circular motion around
it. Moreover, the control law has been designed so that
when the beacon moves faster than the vehicles, or it is
faraway from them, each vehicle points straight towards
the beacon and tracks it in rectilinear motion. In fact,
when ρ is large, from (12) one has that γ tends to 0 (or
to 2π, if it starts from values larger than ψ), and hence
ρ̇ tends to be equal to −v, as desired.
In Figure 11, the beacon moves in rectilinear motion
(dashed line) with constant velocity vb = 0.1, while a
4-vehicle team is subject to the usual control law with
v = 1 and ρ0 = 5. Notice that the team tracks the beacon
while maintaining a circular motion around it. In Figure
12, a 6-vehicle team has to deal with a non-static bea-
con, which jumps through four sequential way-points rbi

,
i = 1, . . . , 4 (a similar scenario was considered in (Paley
et al., 2004)). It can be observed that when the beacon
switches from rbi

to rbi+1
, the vehicles move from a ro-

tational configuration about rbi
towards the new beacon

position rbi+1
, in a sort of parallel motion (see Figure

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

t

ρ̄

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

t

γ̄
π
2

π

(c)

Fig. 8. A 8-vehicle scenario: (a) trajectory of 8 vehicles; (b)
average rotational radius; (c) average angular distance .
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6

(a) t = 0

1 2

3

4
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(b) t = 100

1
2

3
4

5

6

(c) t = 150

1

2

3 4
5

6

(d) t = 1000

Fig. 9. Team self reorganizing after the incoming of a new
vehicle.
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0
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(a) 4 vehicles

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

t

runs

(b) 6 vehicles

Fig. 10. Convergence times for 100 runs; the dotted line
represents the average convergence time.

12). Notice that this is obtained without switching be-
tween two different control laws (as done in (Paley et
al., 2004)). The trajectories show that the desired con-
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figuration in rotational motion is reached for each way-
point.

4.3 Design of the control law parameters

The transient behavior of the multi-vehicle system is
clearly affected by the choice of the control law param-
eters. Following the discussion in Section 3.1 the role of
the constraints (13),(33) and (35) is analyzed next.
The clockwise rotation around the beacon must not be
an equilibrium point, i.e. the parameters have to verify
inequality (13). This can be obtained by choosing a suffi-
ciently small ρ0, or alternatively a sufficiently small con-
trol gain kb in (25). The equilibrium radius ρe must be
consistent with the number of vehicles and the desired
inter-vehicle distance d0. This means that the configura-
tion of a single platoon in circular motion must be feasi-
ble with respect to inequality (33). Notice that this re-
quires a sufficiently large ρe (for fixed d0), and therefore
a sufficiently large ρ0. This introduces a trade-off with
the requirement imposed by (13). On the other hand,
since ρe can be increased by suitably reducing kb, it is
always possible to find a sufficiently small kb satisfying
both (13) and (33). However, a too small kb may lead
to violation of the sufficient condition (45), and hence
stability of the desired circular collective motion is not
guaranteed anymore.
Figure 13 shows the region of feasible parameters kb and
ρ0, for the simulation examples presented in this section.
The region below the dashed curve contains the values of
kb and ρ0 satisfying (13). Constraint (33) is satisfied by
all the pairs (kb, ρ0) above the solid line corresponding
to the number of vehicles n (Figure 13 reports the cases
n = 4, 6, 8). The constraint (35) turns out to be always
satisfied in the considered example. Finally, the sufficient
condition (45) of Theorem 2 is satisfied by all values of
kb lying on the right of the dash-dotted line (notice that
for cb = cv, condition (45) simplifies to kb ≥

kv

2 ). There-
fore, by choosing kb and ρ0 inside the region bounded by
the three curves described above (the one corresponding
to n = 8 is shaded in Figure 13), it is possible to satisfy
all the geometrical constraints and the stability condi-
tion. It can be checked that this has been done in all the
examples presented in this section.
So far, it has been assumed that the parameter kv is as-
signed. However, the choice of kv is driven by a trade-
off between safety and stability. Indeed, notice that the
multi-vehicle system with kv = 0 is globally asymptot-
ically stable, because it is the composition of globally
asymptotically stable decoupled subsystems. Instability
can arise only from the presence of the cross terms fij

in (26). In this respect, the choice of a small kv is mo-
tivated by the stability constraint (45), while a large
kv favors safe trajectories (as it increases repulsion be-
tween nearby vehicles) and a tighter connection among
the vehicles in the team (because attraction is stronger
between faraway vehicles).
Several simulations have been performed in order to an-

Fig. 11. A 4-vehicle team tracking a moving beacon.

rb1 rb2

rb3
rb4

Fig. 12. A 6-vehicle team tracking four sequential way points.
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0
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40

45

50

n=4
n=6
n=8

eq. (13)

eq. (33)

kb = kv

2

kb

ρ0

Fig. 13. Feasible region for parameters kb and ρ0

alyze the behavior of the multi-vehicle system for differ-
ent values of kv. Figure 14 refers to a 4-vehicle setting
with ρ0 = 5. It shows the convergence times (Fig. 14(a))
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Fig. 14. Simulations of a 4-vehicle system for different values
of kv: (a) convergence times; (b) minimum inter-vehicle dis-
tance; (c) maximum real part of the eigenvalues of matrix B.

and the minimum distance between two vehicles in the
team, mini,j mint ρij(t) (Fig. 14(b)), both as functions
of kv. Although the sufficient condition (45) is satisfied
for kv ≤ 0.1, by computing the eigenvalues of matrix B
it turns out that, for the set of parameters considered in
this simulations, instability is reached only for kv ≥ 0.4
(Fig. 14(c)). This effect is clearly depicted in Figure
14(a) where the convergence time rapidly grows as kv

approaches the instability threshold. On the other hand,
the minimum inter-vehicle distance, which is representa-
tive of the collision avoidance effect, does not change sig-
nificantly for kv > 0.1, while it is remarkably reduced for
smaller values of kv. This shows the presence of a trade-
off between convergence time and safety requirements.
Notice also that for values of kv larger than 0.05 the
minimum inter-vehicle distance is approximately equal
to the radius ds of the safety circular area in the visi-
bility region Vi. This confirms that the cross-term fij in
the control law (24) tends to keep the vehicle j outside
the safety region of the i-th agent, thus enforcing safe
trajectories in presence of finite size vehicles.

5 Conclusions and future work

In this paper, a decentralized control law for a team of
nonholonomic vehicles, whose aim is to achieve collective
circular motion around a virtual reference beacon, has
been presented. The main features of the proposed con-
trol strategy are: i) it guarantees global stability in the
single-vehicle case; ii) control parameters can be easily
selected to achieve local stability of the equilibrium con-
figurations in the multi-vehicle scenario; iii) simulative
studies show promising results in terms of convergence
rate and tracking performance, in the case of a non-static

beacon. With respect to similar approaches presented in
the literature, quite restrictive assumptions have been
removed. In particular: (i) limitations in the visibility re-
gion Vi of the vehicles are explicitly taken into account;
(ii) exteroceptive orientation measurements are not per-
formed: each vehicle has to measure only distances to
other vehicles lying in its visibility region; (iii) labelling
of the vehicles is not required. These aspects are criti-
cal for multi-vehicle systems with equipment limitations,
hampering long range measurements or estimation of
other vehicles orientation. Moreover, there is no need of
smart communication protocols to identify vehicles or
to exchange information, because the required measure-
ments can be obtained from range sensors.
Several interesting developments of this work can be
foreseen. From a theoretical point of view, it would be
desirable to provide sufficient conditions for the conver-
gence of the multi-vehicle system to the desired equi-
librium configurations. Simulation studies seem to sug-
gest that collective circular motion is always achieved,
whenever the initial configuration of the multi-vehicle
system is chosen at random. Another research line to
be pursued concerns the use of the proposed control law
for tracking a moving beacon, while keeping collective
circular motion around it. As it has been observed, the
control law has been designed so that, when the beacon
is faraway from the vehicles, each agent points straight
towards it. Hence, smooth transitions between circular
and parallel motion are expected when tracking a bea-
con with time-varying velocity profile. Rigorous theoret-
ical analysis and extensive performance evaluations are
necessary to validate the proposed control scheme in the
tracking scenario.
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A Proof of Lemma 1

Let D̂1 = R++ × ( 3
2π, β], D̂2 = R++ × (β, 2π), where

β is such that γ̇ < −ξ < 0 for any (ρ, γ) ∈ D̂1, for
some ξ > 0. Notice that such β can always be found
because of (13). Observe that for any (ρ, γ) ∈ D̂, one
has ρ̇ < 0 but, despite the discontinuity in (12), also
limρ→0+ γ̇(ρ, γ) = −∞, ∀γ ∈ ( 3

2π, 2π), and hence the

trajectories cannot reach ρ = 0 within D̂ in finite time.
Moreover, because V (ρ, γ) is radially unbounded on D
and V̇ (ρ, γ) < 0 on the set K in (18), then the trajecto-

ries cannot leave the set D̂ through the line γ = 2π.
Now consider any initial condition (ρ(0), γ(0)) ∈ D̂2. In
such set, one has ρ̇ ≤ −v cosβ < 0. Since there can-
not exist trajectories such that ρ(t) = 0 or γ(t) = 2π
for any finite t, as shown above, one can always find

a time t̄1 ≤ ρ(0)
v cos β such that γ(t̄1) = β and hence

(ρ(t̄1), γ(t̄1)) ∈ D̂1. Choose now any initial condition

(ρ(0), γ(0)) ∈ D̂1. Since γ̇ < −ξ, and there cannot exist
a trajectory such that ρ(t) = 0 for any finite t, one can

always find a time t̄2 ≤
γ(0)− 3

2
π

ξ such that γ(t̄2) = 3
2π

with ρ(t̄2) > 0. Therefore, it has been proven that for

any initial condition in D̂, there exists a finite time
t̄ ≤ t̄1 + t̄2 such that (ρ(t̄), γ(t̄)) ∈ D̄.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

x

y

v t̂2 sin(ǫ)

−v t̂2 sin(ǫ)

vt̂2 cos(ǫ) vt̂2

γ=π−2ǫ

γ=π+2ǫ

Fig. B.1. Bounds on ρ and γ at time t̂2.

B Proof of Lemma 2

Define the sets of initial conditions B1 = {(rv(0), θ(0)) :
γ = 0, 0 < ρ < ∞}, B2 = {(rv(0), θ(0)) : ρ = 0}.
Consider first (rv(0), θ(0)) ∈ B1. Then, system (12)
boils down to ρ̇(t) = −v, γ̇(t) = 0, ∀t ∈ [0, t̂1) where

t̂1 = ρ(0)
v . Hence the vehicle proceeds straight towards

the beacon until it reaches it, i.e. ρ(t̂1) = 0 and hence
(rv(t̂1), θ(t̂1)) ∈ B2.
Consider now an initial condition (rv(0), θ(0)) ∈ B2

(notice that in this case γ is not defined). We want
to prove that in finite time (ρ(t), γ(t)) ∈ D̄. W.l.o.g.
set rv(0) = rb = [0, 0]′ and θ(0) = 0. Observe that
system (1)-(6) does not have any equilibrium point,

and that |θ̇| < M
.
= k log(c)ψ as long as ρ ≤ ρ0 (see

(3)-(6)). Let t0 be the smallest time t (if there ex-
ists) such that ρ(t) = ρ0, otherwise set t0 = ∞. Since
ρ(0) = 0 and ρ(t) is a continuous function of time, then

∀t ∈ [0, t0), |θ̇(t)| < M . Now, for any ǫ ∈ (0, π
4 ), set

t̂2 = min{ ǫ
M , t0}. Then ∀t ∈ [0, t̂2], |θ(t)| < Mt̂2 ≤ ǫ.

Hence, it follows that
[

v t̂2 cos ǫ

0

]

� |rv(t̂2)| �

[

v t̂2

v t̂2 sin ǫ

]

, (B.1)

where |·| and � have to be interpreted as componentwise
operators (see the dashed region in Figure B.1). By sim-
ple geometric arguments it can be shown that (B.1) im-
plies: vt̂2 cos ǫ ≤ ρ(t̂2) ≤ vt̂2 and π−2ǫ ≤ γ(t̂2) ≤ π+2ǫ.
By recalling the definition of ǫ, it follows that ρ(t̂2) > 0
and γ(t̂2) ∈ [0, 3

2π], which means (ρ(t̂2), γ(t̂2)) ∈ D̄.
Therefore, for any initial condition in B, there exists a
finite time t̂ ≤ t̂1 + t̂2 such that (ρ(t̂), γ(t̂)) ∈ D̄. This
concludes the proof.

C Proof of Lemma 3

Without loss of generality, let us compute matrixB from
the equations

ρ̇2 =−v cos γ2 (C.1)

γ̇2 =
v

ρ2
sin γ2 − u2 (C.2)

γ̇12 =
v

ρ12
(sin γ12 + sin γ21) − u1. (C.3)
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where

ρ12 = ρ1 cos(γ12 − γ1) +

√

ρ2
2 − ρ2

1 sin2(γ12 − γ1), (C.4)

γ21 = γ2 − arcsin

(

ρ1

ρ2
sin(γ12 − γ1)

)

. (C.5)

and u1 = f1b = kb g(ρ1; cb, ρ0) γ1; u2 = f2b + f21 =
kb g(ρ2; cb, ρ0) γ2 + kv g(ρ21; cv, d0) γ21. Let us consider
the equilibrium (36), ξe

.
= [ρe

π
2 ρe

π
2

π
2 +arccos( d0

2ρe
)]′.

Notice that, by substituting ξe into (C.4)-(C.5), one gets
ρ12 = d0 and γ21 = π

2 − arccos( d0

2ρe
). By linearizing

system (C.1)-(C.3) at the equilibrium ξe, one obtains
matrix B = {bij} ∈ R

3×3 with b11 = b13 = b33 = 0,
b12 = v and

b21 =
v

ρ2
e

+ kb
cb − 1

(cb − 1)ρe + ρ0

π

2

+kv
cv − 1

cvd0

(

π

2
− arccos

( d0

2ρe

)

)

2ρe

d0

b31 =
v

2ρ2
e

, b22 =
2v

πρe
, b32 =

v

d0

√

1 −
d2
0

4ρ2
e

.

b23 = kv
cv − 1

cvd0

√

4ρ2
e − d2

0

(

π

2
− arccos

( d0

2ρe

)

)

Now, let us write the characteristic polynomial of B as
PB(λ) = λ3 +a1λ

2 +a2λ+a3, where, by trivial calcula-
tions, one has a1 = b22, a2 = vb21−b23b32, a3 = vb31b23.
The coefficients a1 and a3 are trivially positive because
bij ≥ 0 ∀i, j. For the term a2, one can observe that

b23b32
v

= kv
cv − 1

cvd0

(

π

2
− arccos

( d0

2ρe

)

) (

2ρe

d0
−

d0

2ρe

)

≤ kv
cv − 1

cvd0

(

π

2
− arccos

( d0

2ρe

)

)

2ρe

d0
≤ b21,

which implies positiveness of a2. Therefore, by applying
the Routh-Hurwitz criterion to PB(λ), matrix B turns
out to be Hurwitz if a1a2 − a3 > 0. Then, one has

a1a2 − a3 = b22(vb21 − b23b32) − vb23b31

= 2v3

πρ3
e

+ kb
cb−1

(cb−1)ρe+ρ0

v2

ρe

+kv
cv−1

cv

(

π
2 − arccos

(

d0

2ρe

))

v2

ρ2
e

(

1
π − 1

2d0

√

4ρ2
e − d2

0

)

.

By letting φ = π
2 − arccos( d0

2ρe
), one can rewrite the last

r.h.s. term of the previous equation as 1
2kv

cv−1
cv

v2

ρ2
e
r(φ),

where r(φ) = φ( 1
π/2 − 1

tan φ ). Since 0 ≤ φ ≤ π
2 , one

has that r(φ) ≥ −1. Moreover, because ρe > ρ0, the
following inequality holds

a1a2 − a3 >
2v3

πρ3
e

+ kb
cb − 1

cb

v2

ρ2
e

−
1

2
kv
cv − 1

cv

v2

ρ2
e

. (C.6)

Now, it is easy to see that
kv

kb
≤ 2

cv
cb

cb − 1

cv − 1
is a sufficient

condition for the right hand side of (C.6) to be positive.
This concludes the proof.
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