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Abstract

This paper addresses the localization and mapping problem for a robot moving through a

(possibly) unknown environment where indistinguishable landmarks can be detected. A set theo-

retic approach to the problem is presented. Computationally efficient algorithms for measurement-

to-feature matching, estimation of landmark positions, estimation of robot location and heading

are derived, in terms of uncertainty regions, under the hypothesis that errors affecting all sensors

measurements are unknown-but-bounded. The proposed technique is validated in both simula-

tion and experimental setups.
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1 Introduction

Recent years have witnessed a growing interest towards mobile robots and their use in hostile and

unknown environments: several industrial and scientific research projects are aimed at obtaining

increased autonomy of mobile robots, in order to be independent of the intervention of human

operators. To operate successfully, the robot must be able to localize itself in the environment

(Leonard and Durrant-Whyte 1991, Shastri 1999). In fact, it is well recognized that robot self

localization is one of the most important problems for long range autonomous navigation. Several

techniques have been proposed in order to allow the robot to precisely determine its own position

and orientation (the robot pose). Those techniques depend on the robot sensory systems, the

environment the vehicle is navigating in, and the a priori knowledge available to the robot.

There are basically two different approaches to localization (see e.g. (Fox, Burgard and Thrun

1999)). Tracking or local techniques aim at developing algorithms that incrementally update the

robot position, while global techniques are designed to estimate the robot pose even under global

uncertainty, i.e. without any a priori information on the robot location. Since information provided
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by proprioceptive sensors (e.g., dead-reckoning) is prone to systematic errors and error accumula-

tion (Cox 1991, Barshan and Durrant-Whyte 1995), most recent works dealing with local techniques

suggest to combine dead-reckoning with some additional localization methods, generally based on

measurements performed on the environment. Fusion of the two kinds of information is usually

obtained via filtering techniques, the Extended Kalman Filter (EKF) being the most popular (see,

e.g., (Leonard and Durrant-Whyte 1991, Cox 1991, Holenstein and Badreddin 1992)). In the above

cases, robot position uncertainty is modeled as a unimodal Gaussian distribution, and white Gaus-

sian zero-mean random processes are generally used to represent unmodeled robot dynamics and

sensor noises. However, in many cases, real-world disturbances do not satisfy the above statistical

assumptions. Therefore, different techniques have been investigated: in (Kieffler, Jaulin, Walter

and Meizel 1999, Garulli and Vicino 2001, Victorino, Rives and Borrelly 2002) Set Membership

estimation techniques are applied to the case of distinguishable landmarks, while in (Hanebeck and

Horn 1999) a mixed statistical/set-theoretic approach to the estimation problem is proposed.

In the development of global techniques, several different methods have been proposed: search for

matching between map and measurements (Drumheller 1987, Talluri and Aggarwal 1992), identifica-

tion of landmarks and triangulation (Mouaddib and Marhic 2000, Levitt and Lawton 1990, Suther-

land and Thompson 1994, Betke and Gurvits 1997), use of occupancy grids (Elfes 1987) and Markov

techniques (Fox, Burgard and Thrun 1998), minimization of Hausdorff distance between local and

global map (Olson 2000), multiple hypothesis tracking combining Kalman filtering and Markov

estimation (Jensfelt and Kristensen 1999, Roumeliotis and Bekey 2000, Reuter 2000).

More recently, driven by the interest in planetary exploration, researches have turned their attention

towards localization of vehicles moving in unknown hostile environments (Olson 2000, Lacroix,

Mallet, Chatila and Gallo 1999). In this case, a map of the environment is not available, and

hence the more complex Simultaneous Localization and Map building (SLAM) problem must be

tackled. The robot has to collect information about the environment, and at the same time it

must localize itself in the map it is building. The most common approach to the problem is based

on Kalman filtering (Moutarlier and Chatila 1989, Leonard and Durrant-Whyte 1992, Gibbens,

Dissanayake and Durrant-Whyte 2000): it provides a recursive solution to the navigation problem

and a technique for computing estimates of uncertainty for both the vehicle and the landmarks.

Unfortunately, in order to guarantee consistency of the filtered quantities, all the correlations among

landmarks must be estimated (Uhlmann, Julier and Csorba 1997, Castellanos and Tardos 1999),

thus requiring high computational resources. In addition, to obtain a quantitative evaluation of the

estimation errors, suitable assumptions on the distribution of sensor noises must be introduced.

This kind of assumptions on landmark perception and robot motion are seldom satisfied on natural

terrains, since the complexity of the process of extracting low level data makes it difficult to obtain

a complete error analysis (Sabater and Thomas 1991). Consequently, other techniques, different

from the Kalman filter, have been investigated. These approaches include Markov localization and

Bayes rule (Thrun, Burgard and Fox 1998), occupancy grids (Elfes 1991) and iconic matching

(Olson 2000). Another possible approach to the SLAM problem is based on topological maps



(Levitt and Lawton 1990, Brooks 1986, Mataric 1992). Instead of building a metrically accurate

description, this method employs a qualitative knowledge of the relative position of landmarks and

robot to build maps and guide motion. Efforts have been spent to merge together topological and

feature-based approaches (Kurz 1996).

In this paper we will address the localization problem for a robot, equipped with proprioceptive

sensors (e.g., odometers and compass), moving through a (possibly) unknown environment. We

assume that the robot is equipped with suitable exteroceptive sensors which permit to detect

indistinguishable landmarks in the environment and to get relative measurements of its position

and heading with respect to landmarks. In addition, we suppose that the robot is moving in a

basically flat environment, such that a 2D dynamic model can be adopted. Different from what is

done in most of the literature, no statistical assumption is made on the errors affecting the sensors;

the only assumption is that they are bounded in norm by some quantity. This leads quite naturally

to a set theoretic approach to the problem. Estimates of the unknown quantities are derived in

terms of feasible uncertainty sets, defined as the regions where those quantities are guaranteed to

lie, according to the available information. Those sets provide a quantitative description of the

estimation errors. It is shown that set membership uncertainty representation can be exploited to

obtain a correct matching between measurements and detected landmarks. Moreover, the same

approach is adopted to tackle the SLAM problem, by including landmark positions in the state

vector to be estimated.

The basic reference theory for the technical development of the paper relies in the recently developed

set membership estimation theory (see, e.g, (Milanese and Vicino 1991, Kurzhanski and Veliov 1994,

Milanese, Norton, Piet-Lahanier and Walter 1996)). Though most of the theory is developed for

linear estimation, we will exploit the specific structure of the nonlinear localization problem to get

efficient solutions, based on recursive approximations of the uncertainty regions. One of the first

papers in which the set theoretic paradigm has been applied to robotic localization is (Sabater and

Thomas 1991), in which fusion of multiple sensor information with bounded uncertainty is used to

construct a geometric representation of features in the environment. Set membership localization

based on angle measurements has been tackled in (Hanebeck and Schmidt 1996, Garulli and Vicino

2001), using different set approximation techniques. A set-based localization algorithm using images

from a stereo vision system has been proposed in (Atiya and Hager 1993). Preliminary ideas on

how to deal with the SLAM problem in the presence of bounded errors are given in (Di Marco,

Garulli, Lacroix and Vicino 2000).

The aim of the present paper is to provide a general set-theoretic framework, in which the classical

problems involved with autonomous robot navigation, such as localization and simultaneous local-

ization and map building, can be tackled. Computationally efficient set membership algorithms for

dynamic localization and mapping are constructed, exploiting state decomposition and set approx-

imations.

The paper is organized as follows. Section 2 illustrates how set-valued methods can be employed to

solve the localization problems. More specifically, algorithms performing localization in known envi-



ronments, measurement-to-feature matching, and localization in (partially or completely) unknown

environments are presented. Section 3 concerns the implementation of such algorithms: the high

computational burden of the algorithms presented in Section 2 can be reduced via state decom-

position and set approximation. Section 4 reports numerical simulations and experimental results,

while some conclusions are drawn in Section 5.

2 Set-Valued Methods for Localization

2.1 Models, assumptions and problem formulation

Let us consider a vehicle navigating in a 2D environment, and let

p(k) = [x(k) y(k) θ(k)]′ ∈ Q
4
= R

2 × [−π π]

be the pose of the agent at time k, where (x(k), y(k)) denotes the robot position, and θ(k) represents

the robot heading w.r.t. the positive x-axis. Time evolution of the robot pose p(k) can be described

by a suitable dynamic model. Under the assumption of slow robot dynamics, if translation and

rotation measurements u(k) from odometric sensors are available, the vehicle dynamics can be

described by the linear discrete-time model

p(k + 1) = p(k) + u(k) + w(k), (1)

where w(k) ∈ R
3 models the error affecting measurements u(k). Nonetheless, the technique pre-

sented in this paper applies to the general linear time-varying model

η(k + 1) = F (k)η(k) + G(k)u(k) + H(k)w(k), (2)

where η(k)
4
= [p′(k) ṗ′(k)]′ represents the robot state vector. Notice that model (2) can be adopted

to approximate any nonlinear dynamics η̇(t) = f(η(t), u(t), w(t)) through discretization and lin-

earization w.r.t. the current robot state.

The robot is equipped with exteroceptive sensors, providing measurements on the environment. In

this paper, it is assumed that the environment can be described by landmarks, i.e. indistinguishable

features represented by points on a plane. When navigating in a 2D environment, a sensing robot

has usually access to two kinds of measurements: (i) distance from a landmark; (ii) angle between

robot orientation and the direction of a landmark. The former is usually provided by sensors such

as ultrasonic or infrared sensors, the latter is given by panoramic cameras. Alternative sensors

(such as millimeter-wave radars, laser rangefinders and stereovision systems) provide both kinds

of information. All these measurements can be modeled as nonlinear functions of the robot pose

p(k) and the position of the landmark li = [xli yli ]
′ with respect to which the measurement is

taken. In the first part of this section, it is assumed that landmarks li, i = 1, . . . , n, have been

correctly recognized and their position is known exactly (i.e. an accurate environment map is given

a priori). This assumption will be relaxed in Sections 2.3-2.4. In order to fix the main ideas behind



the proposed approach, it is assumed that both distance and angle measurements are available to

the robot (see Figure 1); thus, measurement equations take on the form

Di(k) = d(p(k), li) + vdi
(k)

Ai(k) = α(p(k), li) + vαi
(k)

i = 1, . . . ,m, (3)

where m is the number of measurements performed at time k, Di(k) and Ai(k) are the actual

readings provided by the sensors at time k; vdi
(k) and vαi

(k) are measurement noises affecting the

distance and the heading measurements respectively, defined as

d(p(k), li)
4
=

√

(x(k) − xli)
2 + (y(k) − yli)

2

α(p(k), li)
4
= atan2(yli − y(k), xli − x(k)) − θ(k),

(4)

with atan2(b, a) denoting the four quadrant inverse tangent. Notice that function d(·) depends on

the robot position only, while function α(·) is related to both position and heading.

PSfrag replacements

x

y

p(k)

θ(k)

α(p(k), li)

li

d(p(k), li)

Figure 1: Distance and relative orientation measurements with respect to an identified landmark.

The dynamic localization problem can be stated as follows.

Dynamic Localization Problem: Let p̂(0) be an estimate of the initial robot pose. Given the

dynamic model (1) and the measurement equations (3)-(4), compute an estimate p̂(k) of the vehicle

pose p(k) at each time instant k = 1, 2, . . ..

This problem can be tackled in different ways, depending on the hypotheses on the unknown

disturbances w(k), vdi
(k) and vαi

(k) in (1) and (3). When statistical assumptions on the errors are

considered, the estimate of the pose can be computed via the extended Kalman filter (Leonard and

Durrant-Whyte 1991), or using Markov localization and Bayes rules (Fox et al. 1998). However,

real-world uncertainties may include also systematic errors or nongaussian, colored noise, whose



statistical properties are generally very difficult to estimate. In this paper, a different approach is

presented, based on the assumption that the disturbances are unknown-but-bounded (UBB), i.e.

‖w(k)‖∞ ≤ εw (5)

|vdi
(k)| ≤ εvd (6)

|vαi
(k)| ≤ εvα (7)

where εw, εvd and εvα are known positive scalars, and ‖ · ‖∞ denotes the ∞−norm (defined as

‖v‖∞ = max
i

|vi|). We observe that the above bounds need not be constant for different time

instants k, or for different components of vector w(k) (which is equivalent to consider a weighted

`∞ norm). For simplicity of notation, this feature will not be considered in the treatment of the

paper, the extension being straightforward.

Assumptions (6) and (7) allow one to define the notion of feasible state vector. Given sensor readings

Di(k), Ai(k), i = 1, . . . ,m, the feasible states are those compatible with all the measurements, i.e.

the states belonging to the measurement set

M(k) =

m
⋂

i=1

Mi(k). (8)

where

Mi(k) = {p : |Di(k) − d(p(k), li)| ≤ εvd and |Ai(k) − α(p(k), li)| ≤ εvα} . (9)

Notice that, if assumptions (6) and (7) are verified, the set M is not empty. On the other hand,

an empty intersection implies that at least one of the constraints (6) and (7) is violated. A di-

rect consequence is that the dynamic localization problem can be formulated in a set-theoretic

framework.

SM localization problem: Let P (0) ⊂ Q be a set containing the initial pose p(0). Given the

dynamical model (1) and the measurement equations (3)-(4), find at each time k = 1, 2, . . ., the

feasible pose set P (k|k) ⊂ Q containing all vehicle poses p(k) that are compatible with the robot

dynamics, the assumptions (5)-(7) on the disturbances and the measurements collected up to time

k.

The shape of each set Mi(k) depends on the nonlinear functions modeling each measurement pro-

cess. It is easily verified that for any distance measurement Di(k), the corresponding measurement

set is a portion of Q whose shape is a cylindrical circular corona, see Figure 2a. On the other hand,

relative orientation measurements provide sets that are portions of Q delimited by two helicoids

(a part of this set, limited in the (x, y) plane, is shown in Figure 2b). The intersection of the two

sets depicted in Figure 2, which corresponds to (9), is given by the roto-translation of a sector of

corona, around and along the i-th landmark position axis. The shape of such a set is reported in

Figure 3.
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Figure 2: Measurement sets associated to distance (a) and relative orientation measurements (b).

2.2 Solution to SM localization problem

The solution to the SM localization problem is given by the following recursion, which stems out

directly from (1) and (3)-(4)

P (0|0) = P (0), (10)

P (k + 1|k) = P (k|k) + u(k) + Diag[εw]B∞, (11)

P (k + 1|k + 1) = P (k + 1|k) ∩M(k + 1), (12)

where B∞ is the unit ball in the ∞−norm and Diag[v] denotes the diagonal matrix with vector v on

the diagonal. Algebraic operators in (11) and (12) are to be intended as set operators. Equation (11)

is often referred to as time update: during this step, information provided by the robot dynamic

model and odometric sensors are used to update the feasible set. The set Diag[εw]B∞ describes

all the admissible unmodeled dynamics and odometric errors satisfying assumption (5); due to

these disturbances, the size of the feasible pose set grows during the time update. Equation (12)

is known as measurement update as it exploits all the exteroceptive measurements to reduce the

total robot uncertainty. The main property of recursion (10)-(12) is to provide, at each time step,

all the pose values that are compatible with the available information: the true state is guaranteed

to belong to set P (k|k), and the size of such set gives a measure of the uncertainty associated to the

estimate. Unfortunately, the exact computation of sets P (k|k) is generally very difficult, because

the measurement set M(k) is the intersection of nonconvex sets. Nonetheless, the problem can be

tackled by applying set approximation techniques, as it will be shown in Section 3.

2.3 Matching

The localization algorithm provided by equations (10)-(12) assumes that the robot is able to cor-

rectly associate each measurement to the corresponding measured feature. For example, this hap-
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Figure 3: Measurement set Mi associated to the pair of measurements (3).

pens if the observed landmarks are distinguishable. However, in real-world applications, especially if

natural beacons are used as landmarks and sensors provide only metric information, landmarks are

indistinguishable and consequently matching between measurements and landmarks is of paramount

importance. Within the set-theoretic framework, it is possible to exploit the properties of the fea-

sible sets to evaluate all the admissible matchings, i.e. all the associations measurement-landmark

that are compatible with the assumptions.

In the following, subscripts xy and θ represent the projection of a set (or a vector) on the robot

position and orientation subspaces, respectively.

At time k, the predicted robot uncertainty set, before measurements are taken, is given by P (k|k−1).

Thus, Pxy(k|k−1) is the predicted position uncertainty set, and Pθ(k|k−1) the predicted orientation

uncertainty interval. A measurement pair Di, Ai guarantees that, in a robot centered 2D reference

system, landmark li lies in the set

Mli(k) =
{

l ∈ R
2 : |Di(k) − d(0, l)| ≤ εvd and |Ai(k) − α(0, l) + θ̂| ≤ εvα + εθ̂

}

(13)

where [θ̂−εθ̂, θ̂+εθ̂] = Pθ(k|k−1). Notice that the actual robot orientation uncertainty Pθ(k|k−1)

has been exploited in (13). Hence, the set in which the i− th landmark is guaranteed to lie on the

basis of the robot uncertainty and measurements taken at time k is Pxy(k|k − 1) + Mli(k). As a

consequence, any landmark position lj, j = 1, . . . , n such that lj ∈ Pxy(k|k − 1) + Mli(k), can be

associated to the i-th measurement (see Figure 4).

By repeating the process for each measurement pair, it is possible to build a matching matrix T ,

where all the admissible matchings measurement-landmark are listed. To do this, one can set tij = 1

if the j-th landmark lies inside Pxy(k|k − 1) + Mli(k), while tij = 0 otherwise. If on the i-th row

of matrix T there is only one non zero entry, then the i-th measurement is not ambiguous. Should
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Figure 4: Uncertainty sets can be employed to perform matching between measurements and fea-

tures. (a) Measurement i is not ambiguous, since only landmark l3 lies in Pxy(k|k − 1) + Mli(k);

(b) Measurement i is ambiguous, since it can be associated both to landmark l2 and to landmark

l3.

all the entries be null, than there is no landmark compatible with the measurement (consequently,

the i-th measurement is an outlier). Finally, a row with more than one nonzero entry, indicates an

ambiguous measurement (see Figure 5).

Even if some measurement is ambiguous, it is often possible to find a unique admissible solution

to the matching problem (see Figure 6). Indeed, the problem of determining the existence of a

perfect matching is widely studied in the operation research field, and efficient algorithms are

available to determine the solution of such problems (Korte and Vygen 2000). Uniqueness of the

perfect matching can be tested by removing from the associated graph, one at a time, each solution

branch, and verifying that no other solution is available.

In principle, even if the solution to the matching problem is not unique, the algorithm described

in (10)-(12) is still appropriate to solve the localization problem: as a matter of fact, for any

possible perfect matching µ, µ = 1, . . . , p, one has to evaluate the corresponding measurement set

Mµ(k) = ∩m
i=1M

µ
i (k) in (8). To account for all possible distinct choices in the matching step, one

has to replace equation (12) with

P (k + 1|k + 1) = P (k + 1|k) ∩
[

∪p
µ=1M

µ(k + 1)
]

, (14)

where set ∪p
µ=1M

µ replaces the single measurement set available when landmark identification is

a priori known. Notice that, when performing the matching step, robot uncertainty P (k|k − 1)
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needs to be considered in order to correctly determine all the admissible perfect matchings. Once

the aforementioned matchings are available, the evaluation of each measurement set Mµ does not

depend on the robot position uncertainty. Consequently, some of the sets Mµ may turn out to be

empty, thus allowing to deem a posteriori that matching µ is not correct.

2.4 Uncertain landmarks

In this section, we will consider the case when the position of the landmarks is not exactly known.

This situation occurs in two different problems: (i) localization with uncertain maps, in which it

is known that landmarks lie in given sets; (ii) exploration and mapping of unknown environments,

where the position of the landmarks is unknown and must be estimated together with the robot pose.

The latter is a well-known hard challenge in mobile robotics, usually addressed as Simultaneous

Localization And Map building (SLAM) problem. The two problems can be tackled within the

same framework, as explained in the following.

When landmark locations are not exactly known they are included among the quantities that must

be estimated at each time step. As a consequence, in addition to the robot motion model (1), one

has to introduce also a model for the landmarks. If static features are chosen as landmarks, the

evolution of their position li(k) can be described by the equation

li(k + 1) = li(k). (15)

Since both robot pose and landmark positions must be estimated, the resulting state estimation

problem involves a system whose state dimension can be very large, as it depends on the number of

remarkable features present in the environment, which may vary in time. Indeed, when n landmarks

are considered, the state vector is given by

ξ(k) = [p′(k) l′1(k) . . . l′n(k)]′ ∈ R
(3+2n).

From equations (1) and (15), the state update equation is

ξ(k + 1) = ξ(k) + E3u(k) + E3w(k), (16)

where E3 = [I3 0 . . . 0]′ ∈ R
(3+2n)×3.

Concerning the exteroceptive measurements, model (3) is still valid; nonetheless, it must be pointed

out that in this case each equation in (4) provides two nonlinear relations among some of the state

variables (namely the robot pose and the i-th landmark coordinates). In addition, notice that such

measurements provide only relative information: they can be thought of as the displacement of the

landmarks with respect to the robot and vice versa.

Under the UBB assumption on the disturbances, the measurement set is still given by (8) where

Mi(k) =
{

ξ ∈ R
(3+2n) : |Di(k) − d(p(k), li)| ≤ εvd and |Ai(k) − α(p(k), li)| ≤ εvα

}

. (17)

Notice that Mi(k) is an unbounded subset of R
(3+2n), because it defines constraints on only five

state variables (the other 2n − 2 being free). According to the hypotheses on the dynamics and



measurement model and on the UBB disturbances assumptions, the localization problem can be

formulated as follows.

SM Uncertain Localization Problem: Let Ξ(0) ⊂ R
(3+2n) be a set containing the initial ve-

hicle pose and landmark positions, ξ(0). Given the dynamic model (16) and the measurement

equations (3)-(4), find at each time k = 1, 2, . . . the set Ξ(k|k) of state vectors ξ(k) which are

compatible with the robot dynamics, the assumptions (5)-(7) on the disturbances, and the mea-

surements collected up to time k.

The solution to the above problem is still provided by the algorithm outlined in equations (10)-(12),

where the robot feasible pose set P (k) is replaced by the extended feasible state set Ξ(k), i.e.

Ξ(0|0) = Ξ(0), (18)

Ξ(k + 1|k) = Ξ(k|k) + E3u(k) + E3Diag[εw]B∞, (19)

Ξ(k + 1|k + 1) = Ξ(k + 1|k) ∩M(k + 1). (20)

The initialization step of the algorithm, i.e. the choice of the set Ξ(0), depends on the specific

problem tackled. If there is no available information on the initial position of any element of the

problem (i.e. robot and landmarks, as it happens in the SLAM case), the initial estimate set Ξ(0)

should be chosen as R
(3+2n). Nonetheless, since all measurements are relative, in this case one is

allowed to choose an arbitrary reference system. Hence, without loss of generality, it is possible to

set the origin of the reference system in the initial position of the robot, choosing as x-axis the

robot initial heading. On the other hand, when an uncertain map of the environment is a priori

given, Ξ(0) is chosen accordingly to the available information. Clearly, initialization plays a key

role, especially in the SLAM case. A possible strategy is that of using a first set of exteroceptive

measurements to construct a rough initial map (e.g., by performing a 360◦ scan of the environment

in the field of view of the robot), before starting the dynamic recursion (18)-(20).

Notice that in algorithm (18)-(20), equation (19) can be modified in order to account for different

models of landmark motion. By using equations similar to (1) to describe landmark dynamics, it

is also possible to account for moving landmarks. In (Di Marco, Garulli and Vicino 2001), this is

done to tackle the localization problem for a multi-robot system: the single-robot SLAM algorithm

above is run as a starting step by each sensing agent, then set-valued information is exchanged and

map fusion is performed to achieve cooperative localization.

It is worth remarking that the landmark matching procedure proposed in Section 2.3 can be ap-

plied also to the SLAM problem. The only difference is that each landmark lj is replaced by the

corresponding uncertainty set Ξlj . If the intersection between such set and the region Ξxy +Mli is

not empty (where Ξxy has the same meaning of Pxy in the localization problem), one can associate

landmark lj to the i-th measurement. Ambiguous measurements are defined accordingly.

As observed in Section 2.2, the algorithm solving the set membership pose estimation problem

requires the computation of complex sets whose dimension can be considerably high. The exact

computation of sums and intersection of non linear, non convex sets is generally a prohibitive task.



Therefore, the main problem consists in devising algorithms suitable for real-time applications that

tradeoff between computational complexity and accuracy of the approximations. In particular,

approximating sets belonging to a class R of regions with simple, fixed structure, will be pursued.

Section 3 illustrates some general approximation techniques suitable for the solution of the SM

localization problems considered in the paper.

3 Set membership algorithm for guaranteed localization

In order to obtain computationally tractable solutions of the SM localization problem, simple

approximations of the sets P in (10)-(12) (or Ξ in (18)-(20)) are sought. The choice of the structure

and size of the approximating regions R must be made according to the following criteria:

• recursive updating according to (10)-(12) (or (18)-(20)) must be performed through efficient

algorithms, suitable for on-line implementations;

• at each time instant k, the approximating regions R(k + 1|k), R(k|k) must contain the

corresponding exact sets P (k + 1|k), P (k + 1|k + 1) (Ξ(k + 1|k), Ξ(k + 1|k + 1), respectively)

so that the true state vector p(k) (ξ(k)) is guaranteed to belong to the approximating set.

To satisfy the above requirements, approximations are introduced at different stages of the state

estimation procedure:

1. Decomposition of the state vector into subsets of state variables.

2. Guaranteed approximations of the true feasible subsets through classes of simple regions.

We discuss the role of these approximations separately.

3.1 Set membership estimation trough state decomposition

The state vector can be decomposed into different subsets of variables: robot position (x(k), y(k)),

robot heading θ(k) and (in the case that the position of the reference features is uncertain) landmark

positions li(k), i = 1, . . . , n.

Consider the recursion (18)-(20). Let Ξxy denote the feasible robot position set, Ξθ the feasible

robot heading set, and Ξli the feasible i-th landmark position set. In addition, let Ξxy(0), Ξθ(0)

and Ξli(0) be the corresponding initial sets (they can be easily obtained by projecting Ξ(0) onto

the subspaces defined by (x, y), θ and li, respectively). The initialization equation (18) can be

decomposed as follows:

Ξxy(0|0) = Ξxy(0), Ξθ(0|0) = Ξθ(0), Ξli(0|0) = Ξli(0). (21)

The time update equation (19) readily boils down to

Ξxy(k + 1|k) = Ξxy(k|k) + uxy(k) + Diag[εwxy ]B∞, (22)



Ξθ(k + 1|k) = Ξθ(k|k) + uθ(k) + Diag[εwθ ]B∞, (23)

Ξli(k + 1|k) = Ξli(k|k), (24)

The main advantage of state decomposition is obtained in the measurement update step (20),

since it allows for sequential update of simple 2D and 1D sets. In principle, these updates can

be performed in any order; nonetheless, since distinct subsets are affected differently by the time

update, it is possible to devise an order that will generally lead to tighter sets. To do this, the

following facts need to be considered:

• Uncertainty on robot heading affects all the measurement uncertainty sets (see equation (13)).

• Bounds on robot heading uncertainty can be evaluated using robot and landmark uncertainty

sets and relative orientation measurements. Let us consider the uncertainty sets Ξxy(k|k−1),

Ξli(k|k − 1) and the orientation measurement Ai(k). It is easily verified that the sum of the

robot heading θ(k) and the relative orientation α(p(k), li) satisfies the constraint

β ≤ α(p(k), li) + θ(k) ≤ β,

where

β = min
(x,y)∈Ξxy(k|k−1)

(xli
,yli

)∈Ξli
(k|k−1)

atan2(yli − y, xli − x), (25)

and

β = max
(x,y)∈Ξxy(k|k−1)

(xli
,yli

)∈Ξli
(k|k−1)

atan2(yli − y, xli − x), (26)

(see Figure 7). As a consequence,

β − α(p(k), li) ≤ θ(k) ≤ β − α(p(k), li). (27)

Since only a noisy measurement of α(p(k), li) is available, considering the hypothesis (7) on

the measurement noise, equation (27) becomes

β − Ai(k) − εvα ≤ θ(k) ≤ β − Ai(k) + εvα . (28)

Note that equation (28) can be evaluated for each relative orientation measurement, thus

providing m intervals, where the true robot orientation is guaranteed to lie.

• Uncertainty on static landmarks does not grow during the time update.

The aforementioned remarks naturally lead to the following approximated measurement update

procedure, to be used in place of (20). First, all the orientation measurements at time k + 1

are processed in order to reduce the uncertainty on robot orientation (thus allowing for smaller

measurement uncertainty sets). From equation (28) one obtains m intervals, [θ i, θi], where the true
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Figure 7: Bounds on robot orientation can be evaluated from the position uncertainty sets and the

exteroceptive measurements.

robot orientation is constrained to lie. As a consequence, it is possible to update the robot heading

according to

Ξθ(k + 1|k + 1) = Ξθ(k + 1|k)
⋂

{

m
⋂

i=1

[θi, θi]

}

. (29)

In the following, we will denote by θ̂(k + 1) the center of Ξθ(k + 1|k + 1) and by εθ̂(k + 1) its

semi-amplitude.

Now, let us consider robot position. Since each distance and orientation measurement is relative,

it is clear that landmark li “sees” the robot under the angle α(p(k + 1), li(k + 1)) + π. It turns

out that, using the measurement taken with respect to the i-th landmark and the current robot

heading, the position of the vehicle can be written as
{

x(k + 1) = xli(k + 1) − d(p(k + 1), li(k + 1)) cos{θ(k + 1) + α(p(k + 1), li(k + 1))}

y(k + 1) = yli(k + 1) − d(p(k + 1), li(k + 1)) sin{θ(k + 1) + α(p(k + 1), li(k + 1))}
. (30)

Since (xli , yli) ∈ Ξli(k +1), θ(k +1) ∈ Ξθ(k +1|k +1), and noises affecting measurements Di(k +1)

and Ai(k+1) are bounded, as assumed in (6)-(7), it turns out that each measurement pair provides

a feasible set CRi
(k + 1) where the robot position must lie. This set is given by

CRi
(k + 1) = Ξli(k + 1|k) + MRi

(k + 1), (31)

where
MRi

(k + 1) =
{

(x, y) ∈ R
2 : |Di(k + 1) − d(p, 0)| ≤ εvd and

|Ai(k + 1) − atan2(−y,−x) + θ̂(k + 1)| ≤ εvα + εθ̂(k + 1)
} (32)



is the robot position uncertainty set relative to the i-th measurement pair, for a landmark placed at

the origin of the reference system. Since this process can be repeated for every detected landmark,

the robot position is constrained to lie in the set

CR(k + 1) =

m
⋂

i=1

CRi
(k + 1). (33)

Consequently, it turns out that measurement update for robot position can be performed as

Ξxy(k + 1|k + 1) = Ξxy(k + 1|k)
⋂

CR(k + 1). (34)

As a third step, we consider again each measurement performed at time k + 1, this time trying to

reduce uncertainty on the landmarks. Note that, since each measurement provides a relationship

between sets and no statistical assumption is made, it is possible to use the same measurements to

update the uncertainty sets relative to landmarks position. Using an approach similar to the one

adopted for robot position, one has that, due to measurements at time k + 1, the i-th landmark

will lie in the set defined by

Cli(k + 1) = Ξxy(k + 1|k + 1) + Mli(k + 1), (35)

where
Mli(k + 1) =

{

l ∈ R
2 : |Di(k + 1) − d(0, l)| ≤ εvd and

|Ai(k + 1) − atan2(yl, xl) + θ̂(k + 1)| ≤ εvα + εθ̂(k + 1)
} (36)

is the i-th landmark uncertainty set, for a robot placed at the origin of the reference system.

Consequently, measurement update of the i-th landmark position can be performed as

Ξli(k + 1|k + 1) = Ξli(k + 1|k)
⋂

Cli(k + 1). (37)

Notice that sets MRi
(k) and Mli(k) are sectors of corona; some examples of Mli(k) are shown

in Figure 8, while Figure 9 shows how sets Cli are computed. Sets CRi
(k) are obtained through a

similar procedure. In addition, Figure 10 reports an example of the second and third step of the

measurement update (33)-(37).

Since the evaluation of each set is based on the previously determined approximations, a further

refinement of the estimated sets can be achieved by iteratively repeating the three step measurement

update. The whole approximated process is summarized in Figure 11. The guiding idea of this

approach is similar to the Baum-Welch algorithm (Thrun et al. 1998), where map and robot location

are alternatively updated by maximization in the likelihood space. The main difference is that in this

case no probabilistic information on the measurements is assumed. Hence, the same measurements

are processed several times, in order to iteratively reduce the size of the approximated uncertainty

sets. Heuristic criteria can be formulated to stop the recursion in Figure 11. In practice, very few

iterations are generally sufficient to significantly reduce the size of the uncertainty sets.

The proposed approach allows one to simplify the measurement update process, but it also in-

troduces an approximation because information about correlation between robot and landmark
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Figure 8: Examples of landmark uncertainty sets associated to distance and relative orientation

uncertain measurements (∗: robot position; ×: nominal landmark position).
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Figure 9: Example of set Cli , given by the sum of sets Ξxy(k + 1|k + 1) and Mli(k + 1).

position is lost. Indeed, the approximated measurement update described in this section is more

conservative than the original set membership algorithm presented in Sections 2.2 and 2.4, where

only the state vectors satisfying equations (19)-(20) are deemed feasible for Ξ(k|k). On the other

hand, notice that the set

Ξxy(k|k) ⊗ Ξθ(k|k) ⊗ Ξl1(k|k) ⊗ . . . ⊗ Ξln(k|k),

where ⊗ denotes the Cartesian product, is guaranteed to include the true feasible set Ξ(k|k), and

hence to contain the actual robot pose and landmark positions.

3.2 Set approximation

Computing exact sums and intersections of nonconvex regions bounded by nonlinear curves, as

required by the aforementioned approximated measurement update procedure, implies a high com-

putational burden. Since we are interested in fast algorithms, which are able to provide regions
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Figure 10: Example of second and third step of the approximated measurement update procedure:

a) robot position update, (dashed region is Ξxy(k + 1|k + 1) given by (34)) b) landmark position

update (dashed sets are Ξli(k + 1|k + 1) given by (37)).

guaranteed to contain the robot pose and landmark positions, outer approximations of the feasible

sets will be looked for. The approximating sets will belong to classes of simple structure sets. The

choice of the specific element in the approximating class must be performed according to some

criterion. Since one is usually interested in reducing as much as possible the size of the uncertainty

affecting the estimated positions, minimum area sets in the chosen class containing Ξxy(k + 1|k),

Ξxy(k + 1|k + 1) and Ξli(k + 1|k + 1) will be selected.

Let us consider a class of regions R of fixed structure, and let us denote by R{Z} the minimum vol-

ume set in the class R containing the set Z. For the general set membership localization procedure

described by (18)-(20), the desired outer approximation is given by the following recursion

R(0|0) = R{Ξ(0)} (38)

R(k + 1|k) = R{R(k|k) + E3u(k) + E3Diag{εw}B∞} (39)

R(k + 1|k + 1) = R{R(k + 1|k) ∩M(k + 1)} (40)

i.e., by computing the minimum volume element R in the class R for each step of the proposed

algorithm. Notice that, with the introduction of the approximating class, all the set operations

in (38)-(40) are now performed on sets of known and simple structure. The proposed approximation

algorithm can be applied together with the state decomposition proposed in Section 3.1: in this

case, the desired approximation is obtained by computing R for each set in the right-hand side of

equations (21)-(24), (29), (34) and (37).

The choice of the class R of approximating regions is performed taking into account the trade-off

between accuracy and computational complexity. As it has been outlined in the previous section, for

each step of the set membership localization algorithm, several computations need to be performed
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localization problem.

on the uncertainty sets (sums, intersections, minimization of suitable functions). Common choices

found in the literature are ellipsoids (Deller, Nayeri and Odeh 1993), orthotopes (axis aligned boxes)

(Pshenichnyi and Pokotilo 1983) and parallelotopes (Chisci, Garulli, Vicino and Zappa 1998). More

specifically, let us consider the last two classes of sets. The following results are available:

1. From set membership linear estimation theory, fast approximated algorithms performing set

sums and outer approximations required by (39), are given in (Garulli and Vicino 2001, Chisci,

Garulli and Zappa 1996, Vicino and Zappa 1996).

2. The computation of the intersection of the approximated state space set R(k + 1|k) with

the measurement set M(k + 1) strongly depends on the choice of the sensors, since different

kinds of sensors provide differently shaped sets (cf. Figures 2-3). As a matter of fact, in

order to have computationally tractable problems, state decomposition has to be employed.

Algorithms providing approximations of the sets described in equations (34) and (37) have

been developed for angular distance measurements (Garulli and Vicino 2001) and for the pair

distance-angle measurements (3) (Di Marco et al. 2000).

3. Concerning the problem of finding bounds on robot orientation θ, as required by equa-

tions (28)-(29), we point out that, when orthotopes or parallelotopes are employed as ap-

proximating sets, the extrema defined in (25) and (26) are reached when both the robot and

landmark position lie in one of the vertices of those sets. Consequently, the two aforemen-

tioned optimization problems boil down to evaluating the function atan2 on a finite number

of points (16, if 2D orthotopic or parallelotopic set approximations are employed).

These results allow one to obtain computationally efficient algorithms which provide guaranteed

set-valued solutions to the SM localization problem.



3.3 Computational complexity

It is interesting to analyze the computational complexity of the proposed SM localization pro-

cedures. With respect to the number of landmarks, the algorithms perform a fixed number of

operations for each measurement pair, i.e. for each of the m landmarks detected and correctly

associated to the corresponding measurements, at time k. Since m ≤ n (the total number of land-

marks), the complexity at each time step is at most O(n). Clearly, if n is large and fast robot

dynamics are required, one can restrict the maximum number of landmarks actually processed at

each measurement update to a prescribed number m̄, thus limiting complexity to O(m̄).

It is also worth performing a deeper complexity analysis, in terms of low-level operations that the

localization algorithm has to perform at each time k. Thanks to state decomposition, the basic

tasks of the algorithm are approximations of 2D regions via simple sets like boxes or parallelotopes

(a typical example being the computation of the minimum area box containing the intersection

between a box and the region Cli , as required by the approximation of equation (37) through

boxes). Efficient algorithms for performing these approximations have been reviewed in Section 3.2

and require very few simple algebraic operations. For this reason, we will denote them as Elementary

Set Updates (ESU) in the following. At time k, m landmarks are detected and a measurement pair

Di, Ai is performed for each landmark. Each measurement pair corresponds to one elementary

region MRi
(or Mli). If the procedure outlined in Section 3.1 is adopted, each measurement pair

is processed twice: once for robot position update (31)-(34) and once for landmark position update

(35)-(37). Moreover, orientation measurements Di are used also for updating uncertainty on robot

heading, according to (29). Therefore, 3m ESUs are performed at time k. If the procedure is iterated

ρ times, according to the scheme in Figure 11, one has that 3ρm ESUs are required. Hence, 3ρn

is the maximum number of ESUs that the localization algorithm must perform at each time step.

Notice that ρ is a tuning parameter that can be used to trade-off computational complexity and

quality of the approximations (i.e., localization precision).

4 Experimental testing

In this section, results from both numerical simulations and experimental tests are presented.

4.1 Numerical simulations

In order to get a quantitative evaluation of the proposed localization algorithm, extensive simu-

lations have been performed. First, a static setting has been considered. At a fixed time k = 0,

the vehicle is supposed to lie at the center of a square room of 20 meters size, having no a priori

information on its pose. Under these assumptions, the true vehicle pose is p(0) = [0 0 0] ′ in a robot

centered reference system and R(0|−1) is a 3D box of sides 10m, 10m and 180◦, respectively. The

robot is able to correctly identify a certain number of known landmarks present in the surround-

ing environment and to collect angular and distance measurements with respect to these features.



Such measurements are corrupted by additive noises vdi
(k) and vαi

(k) generated as independent

uniformly distributed (i.u.d.) signals satisfying (6) and (7). Assuming as nominal pose estimate

the center of the box R(0|0), the estimation error and the size of the associated uncertainty re-

gion, have been computed for different values of εvd and εvα ranging from 0.05 to 0.25 meters and

from 0.5◦ to 2.5◦, respectively. In Figure 12 these quantities, averaged over 1000 different landmark

configurations, are reported for 5 known landmarks.
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Figure 12: Static simulation results with 5 known landmarks.

Another set of simulation experiments has been performed to evaluate the performances of the

SLAM algorithm. The robot moves in a square room of about 50m2 area, where a number of

landmarks is randomly spread. The robot is not able to detect landmarks which are farther than

6 meters, and it does not have any initial information on landmark positions. While the robot

moves in the room, it builds a map centered in its own initial position. Tables 1a-1b report the

simulation results, averaged over 25 experiments, for different numbers of landmarks present in the

scene. In the experiments reported in the Table 1a, all the noises are i.u.d. with εvd = 0.1 m and

εvα = 2.5◦. The bounds on the errors affecting odometric sensors are supposed to be essentially



proportional to the nominal relative displacement, εw(k) = 0.05|u(k)| + δ, δ = [0.02m 0.02m 1◦]′,

with δ accounting for possible errors along nominal steady axes. In Table 1b, noises have been

generated according to truncated Gaussian distributions, with standard deviation σ chosen such

that 3σ equals the above mentioned bounds. Note that the behavior of the algorithm is similar in

the two cases. Nevertheless, when measurements are affected by uniformly distributed noises, the

nominal errors are larger than in the case of Gaussian noises, while the uncertainty bounds are

tighter. This is in accordance with the theory of set membership estimation, which delivers smaller

uncertainty regions when “boundary visiting” noises affect the measurements.

Uniformly distributed disturbances

Nland NPE PUA NLE ALUA NOE OUW ADL

5 0.075 0.269 0.083 0.194 1.966 15.986 4.449

7 0.069 0.214 0.087 0.165 1.133 16.630 6.212

10 0.059 0.186 0.078 0.153 0.982 13.593 8.952

15 0.055 0.115 0.071 0.108 0.926 10.658 13.818

20 0.049 0.101 0.068 0.112 0.860 9.873 17.673

(a)

Gaussian disturbances

Nland NPE PUA NLE ALUA NOE OUW ADL

5 0.069 0.346 0.066 0.335 1.692 18.233 4.362

7 0.065 0.269 0.058 0.198 0.852 16.152 6.219

10 0.057 0.234 0.053 0.184 0.742 14.866 8.842

15 0.049 0.206 0.055 0.199 0.708 14.155 13.358

20 0.045 0.183 0.052 0.191 0.549 13.563 17.706

(b)

Table 1: Results from simulation experiments performed on the SLAM algorithm. Nland: number

of landmarks present in the room, NPE: nominal robot position error (m), PUA: robot position

uncertainty area (m2), NLE: nominal landmark position error (m), ALUA: average landmarks

uncertainty area (m2), NOE: nominal robot orientation error (deg), OUW: orientation uncertainty

width (deg), ADL: average number of detected landmarks at each measurement scan.

4.2 Comparison with Kalman filter

In Sections 2.1 and 2.4, it has been pointed out that both the localization and the SLAM problems

can be cast as the state estimation of a dynamical system. Therefore, the Kalman filter represents

a natural way of addressing the problem. Being the measurement process (3)-(4) nonlinear, the



Extended Kalman Filter (EKF) must be employed.

In this section, the performance of the SM technique is compared to that of an EKF-based algorithm.

Specifically, both nominal estimation errors and estimation uncertainties are taken into account. To

this purpose, several simulations were run, with different number and configuration of landmarks.

All the results are averaged over 100 different noise realizations.

A crucial issue, for the comparison to be fair, is the choice of the tuning parameters of the EKF,

i.e. the matrices Q and R representing process disturbance and measurement error covariances,

respectively. The theoretical values of noise covariances will be used, unless otherwise specified.

The scenario of the tests is similar to the one outlined in Section 4.1: the robot covers rough

square paths in environments where a certain number of landmarks are spread. Depending on the

problem considered, landmark positions are supposed to be known (localization problem) or they

are quantities to be estimated (SLAM problem).

Both proprioceptive and exteroceptive measurements are corrupted by additive noises generated

as i.u.d. signals satisfying (5)-(7), with εvd = 0.2m, εvα = 2.5◦ and εw(k) = 0.05|u(k)| + δ, δ =

[0.02m 0.02m 1◦]′.

For each set of simulations, the errors on robot position and orientation (and on landmark position,

in the SLAM case) of the estimates delivered by the EKF are compared to the errors provided by

the SM algorithm (the nominal estimates being computed as in Section 4.1). The Kalman filter

provides both the state estimate ξ̂(k|k) and the covariance matrix P (k|k) of the estimation error

ξ̃(k|k) = ξ(k|k) − ξ̂(k|k). For white Gaussian noises and linear models, this information allows one

to compute confidence ellipsoids with a given probability of containing the actual state vector.1

The area of the 99% confidence ellipses for robot position (and for landmark position, in the SLAM

case) and the width of the 99% confidence interval for robot orientation, are compared to the size

of the corresponding guaranteed uncertainty regions, as computed by the SM algorithm.

Figures 13a and 13b show the results of the comparison, for localization with 5 known landmarks.

Both techniques exhibit comparable performance, in terms of nominal estimation error and esti-

mation uncertainty. The SM algorithm seems to better estimate robot orientation, while the EKF

shows a smaller robot position error. Note that the spikes in the width of the 99% confidence inter-

vals of orientation estimation are due to the proportional nature of the errors affecting odometry:

when the vehicle reaches a corner of the square path and makes a 90◦ rotation, the information

on relative orientation movement, provided by encoders, is supposed to be significantly more noisy

than the one gathered along the edges of the nominal trajectory.

To evaluate the transient behavior of the localization algorithms, a set of simulations was carried

out in which the initial estimate of vehicle position is set 3 meters away from the true one. In the SM

approach, the inaccuracy of the a priori knowledge is taken into account by the initial uncertainty

1Note that in the setting considered here the assumptions of model linearity and Gaussian disturbances are

not satisfied. Therefore, ξ̃(k|k)′P−1(k|k)ξ̃(k|k) is not a χ2 distributed random variable with n degrees of freedom.

Nonetheless, confidence ellipsoids are a standard way of evaluating the quality of the estimate, thus being a suitable

tool for comparison purposes.
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Figure 13: Comparison between SM (solid lines) and EKF (dashed lines) for a localization problem

with 5 landmarks: nominal robot position errors and area of uncertainty regions (a), nominal robot

orientation errors and width of uncertainty intervals (b).

region R(0|−1), while the EKF includes this information in the initial covariance matrix P (0|−1).

Choosing the initial robot x − y coordinates as i.u.d. random variables in an interval of 10 meters

width centered at the initial estimate, and the robot orientation u.d. in [−π, π), P (0| − 1) is set as

a diagonal matrix with [25/3 25/3 π2/3] on its diagonal.
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Figure 14: Comparison between SM (solid lines) and EKF (dashed lines) for a localization problem

with 5 landmarks: transient response.

The mean square error of the robot pose estimation is depicted in Figure 14. The SM algorithm

clearly exhibits a better transient response. As a matter of fact, just the first collected exteroceptive

measurements are necessary to correct the poor initial estimate, while the error made by the EKF



reaches its steady state value after about 6 measurements. This property of the SM approach turns

out to be very useful not only at the beginning of a robot localization run, but whenever the

estimation error (and the corresponding estimation uncertainty) experiences a significant increase

(e.g. because of temporary measurement unavailability, due to transient sensor faults or lack of

landmarks in sight).

Other simulations were aimed to assess the performance of the deterministic and statistical ap-

proaches in presence of slightly time-correlated bounded noise (see Figure 15).
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Figure 15: Correlated noise. Top: a typical realization. Bottom: estimated covariance function and

corresponding whiteness test bounds.

Not surprisingly, these simulations reveal an increase of nominal errors for both techniques (actually,

more evident in the EKF) with respect to the white noise scenario, while the estimation uncertainty

remains basically the same. More interestingly, about 11% of the the true robot positions lie outside

the 99% confidence ellipses computed by the EKF (while, by construction, the true robot state

always belongs to the uncertainty regions computed by SM algorithm). This observation suggests

that, under these conditions, the EKF tends to overrate the quality of its estimates. Such conjecture

is supported by the comparison of the actual mean square error and the one predicted by the filter

(see Figure 16). A typical way to preserve the consistency of the estimate is to suitably tune the

EKF by enlarging the noise covariance matrices Q and R. Accordingly, new experiments were

performed by increasing Q and R until no more than 1% of true robot positions be outside the

EKF 99% confidence ellipses. The results, summarized in Figures 17a and 17b, show the better

performance of SM algorithm, especially in terms of estimation uncertainty.

Analogously to the localization problem, also the SM and EKF techniques have been compared

via numerical simulations on the SLAM problem. In this case, the dimension of the state to be

estimated dynamically grows, in order to encompass also the position of the landmarks present in

the surrounding environment. The exteroceptive sensors the robot is equipped with are supposed

to have a limited field of view (specifically, they are not able to sense landmarks farther than 8
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Figure 16: Actual (solid line) and predicted by EKF (dashed line) mean square error, in presence

of correlated noise.

meters from the current vehicle location). During the exploration, the robot incrementally detects

new features and updates the map. As mentioned in Section 2.4, the estimate of the initial robot

pose can be fixed arbitrarily and the corresponding uncertainty is set to zero (i.e., the map is built

in a reference system centered at the initial vehicle configuration). Since a key performance index

for such a problem is the quality of the constructed map, the comparison is focused on the nominal

error and the associated uncertainty of the final landmark position estimates.

The robot explores an area of about 300 m2 where 9 landmarks are present. All noises are i.u.d.

signals bounded as described at the beginning of this Section. When the theoretical noise variances

are used, even with white noises, the EKF delivers inconsistent estimates: 18% of robot position and

34% of final landmark position estimates were found to be outside the corresponding 99% confidence

ellipses. Of course, such behavior is even more remarkable in presence of correlated disturbances.

Tuning the filter covariances so that no more than 3% of final landmark positions lie outside the

associated confidence ellipse, leads to the results summarized in Figures 18-19. Concerning the

final maps built by the two algorithms, the SM approach provides tighter uncertainty regions for

the landmark positions, the average nominal error of the estimates being comparable. Concerning

the robot pose, the estimates provided by EKF exhibit smaller nominal estimation error but are

affected by higher uncertainty. 2

This comparison shows that the SM approach represents a valuable alternative to statistical lo-

calization and map building methods whenever the bounded error assumption is verified. A major

advantage of the SM SLAM algorithm lies in its reduced computational burden (see Section 3.3)

2The uncertainty on the EKF robot pose estimates is probably overestimated, since the filter was tuned basically

to guarantee a 97% confidence level of landmark position estimates. Different choices of Q and R lead to smaller

robot uncertainty at the price of less reliable information on the quality of landmark position estimates.
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Figure 17: Comparison between SM (solid lines) and tuned EKF (dashed lines) for a localization

problem with 5 landmarks: nominal robot position errors and area of uncertainty regions (a),

nominal robot orientation errors and width of uncertainty intervals (b).

and memory requirements (O(n) as opposed to O(n2) for EKF). Such a feature is of paramount

importance when exploring large areas (and consequently detecting a large number of landmarks).

At each step, the SM algorithm performs a number of operation proportional to the number of cur-

rently sensed landmark, whereas the EKF requires the propagation of the whole covariance matrix

(a very expensive task when the number of landmarks increases). Moreover, the suboptimal solution

devised (based on state decomposition and set approximation), although introducing some conser-

vativeness, provides state estimates whose uncertainty is often smaller than the corresponding one

computed by the EKF (especially in case of non Gaussian, non white noise).

4.3 Experimental results

The proposed localization technique has been tested in a laboratory setup featuring the mobile

robot Nomad XR4000. This vehicle has a holonomic drive system and is equipped with a SICK

LMS 200 laser rangefinder, whose scanning angle width is 180◦ with a resolution of 0.5◦.

The robot was programmed to follow a nominal path in an empty room with 10 artificial landmarks

(see Figure 20), using only information provided by the encoders. Periodically, laser scans of the

environment were taken in order to estimate the vehicle pose. The signal provided by the rangefinder

was first processed by a derivative filter and then compared to a threshold (see Figure 21). By

properly setting the threshold value, it was possible to reliably detect the presence of landmarks.

As a byproduct of this feature extraction phase, bounds εvα on the angular measurement error

were obtained. Afterwards, the collected measurements were associated to the respective landmarks

according to the procedure presented in Section 2.3. Exploiting the guaranteed uncertainty region of
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Figure 18: Comparison between SM (black) and tuned EKF (gray) for a SLAM problem with 9

landmarks: final nominal landmark position error (top) and area of uncertainty regions (bottom).

the vehicle configuration (and of the landmarks position, in the SLAM case), the proposed strategy

allowed to find the correct matching even in cases in which ambiguous measurements were present.

Finally, the robot pose uncertainty set (and the landmark uncertainty sets, for the SLAM problem)

was updated using the localization technique in Section 3. The overall measurement update step

is summarized in Figure 22, where the Map building module handles map updating in the SLAM

problem.

In Figure 23 the results of a typical experiment, with known landmarks, are shown. The odometry

error bound was set to εw(k) = 0.05|u(k)| + [0.08 0.08 1◦]′, while εvd = 0.05m was used as distance

measurement error bound (from the rangefinder data sheet).

To allow for initial landmark matching, a bounded region for the initial pose was used, assuming

R(0) equal to a 3D box of sides 1m, 1m and 10◦, respectively.

To evaluate the performances of the proposed algorithm, three trajectories are considered: the

nominal one, provided by the odometers, the one provided by the proposed algorithm, and a “true”

trajectory, obtained by processing multiple measurements for each landmark, at each robot move.

As expected, the true trajectory (solid line) followed by the vehicle rapidly drifts away from the

nominal one (dashed line), due to error accumulation typical of odometric sensors. On the other

hand, the SM algorithm provides an accurate estimate of the vehicle pose. The estimated trajectory

(dash-dotted line, nearly invisible in Figure 23a) is almost indistinguishable from the true one, with

an average position and heading error less than 2 cm and 0.1◦. Moreover, the associated uncertainty

regions are very small, with average values of 0.016m2 and 3.4◦ for position and orientation,

respectively, in good agreement with the simulation results. Notice that the nominal trajectory

is often outside the estimated feasible set (see Figure 23b).

Similar experiments were repeated for the SLAM problem (see Figure 24). Even without any a
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Figure 19: Comparison between SM (solid lines) and tuned EKF (dashed lines) for a SLAM problem

with 9 landmarks: nominal robot position errors and area of uncertainty regions (a), nominal robot

orientation errors and width of uncertainty intervals (b).

priori map, the proposed localization algorithm exhibits a good behavior, providing an estimated

trajectory quite close to the true one, with average position and heading errors equal to 7 cm and

1.2◦, respectively. Clearly, the lack of a priori information on the surrounding environment causes

an increase of the average robot position and orientation uncertainty regions, equal to 0.11m2 and

8◦, respectively. Landmark positions are estimated with an average nominal error of 7 cm and an

associated uncertainty region of 0.13 m2.

Notice that, due to the kind of sensor used to extract environment information, only a 180◦ scan

of the surrounding environment was visible to the vehicle at a given time. This means that at

each measurement step only a subset of the landmarks was detected. Nevertheless, the matching

strategy employed turned out to be very effective, allowing every extracted landmark to be correctly

identified and available to the localization procedure.

Concerning the computational burden, a non-optimized Matlab code performing a typical localiza-

tion step in presence of 7 landmarks (consisting of a time-update and a measurement-update as in

Figure 22, iterating twice the refinement procedure in Figure 11), took about 0.1 s on a 1.3GHz

Athlon processor, thus confirming the suitability of this technique for on-line implementation.

5 Conclusions

In this paper, a set-theoretic approach to mobile robot localization has been introduced, analyzed

and validated via numerical simulations and experimental testing. The approach is able to cope

with both localization based on a given map and the much harder SLAM problem.

The use of indistinguishable landmarks is possible, thanks to the set membership uncertainty



Figure 20: Experimental setup.
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Figure 21: A typical laser scan (top) and the corresponding filtered signal (bottom).
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Figure 22: Measurement update.

representation which allows the robot to associate each collected measurement to the corresponding

landmark. Efficient set approximation techniques exploiting the specific geometry of the involved

sets lead to limited complexity localization algorithms which proved to be effective in real-time

experiments.

Ongoing research concerns the use of set membership techniques to tackle some of the most signif-

icant hard challenges in autonomous mobile robotics, like cooperative SLAM for a team of agents

with different sensing equipments and coordinate motion planning based on set-valued uncertainty

representation.
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