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Università di Siena
Via Roma, 56
53100 Siena - Italy
{ceccarelli, dimarco, garulli, giannitrapani, vicino}@dii.unisi.it

Summary. Autonomous navigation of mobile robots requires to continuously es-
timate the vehicle position and orientation in a given reference frame (localization
problem). When moving in unknown environments, the more challenging problem
of building a map, while at the same time localizing within it, must be faced (si-
multaneous localization and map building, SLAM). By adopting a landmark-based
description of the environment, both tasks can be cast as a state estimation problem
for an uncertain dynamic system, based on noisy measurements.

Under the assumption that both process disturbances and measurement errors
are unknown but bounded (UBB), the estimation process can be carried out in terms
of feasible sets. This work presents a review of efficient set membership localization
and mapping techniques, for different kinds of available measurements and different
classes of approximating regions. The proposed estimation algorithms are able to
provide guaranteed set-valued estimates of the robot configuration as well as of the
landmark locations. The choice of the structure of the approximating regions allows
to achieve the desired trade-off between computational complexity and estimation
accuracy. Moreover, the feasibility property of the computed estimates can be ex-
ploited to solve the measurement-to-feature matching problem, thus allowing to deal
with indistinguishable landmarks. An extension of the SLAM algorithm to the case
of a team of cooperating robots is also presented, under the additional hypotheses
of distinguishable features and absolute orientation measurements. The proposed
techniques are validated through extensive numerical simulations and experimental
tests, performed in a laboratory setup.

1 Introduction

Self-localization of a mobile robot is a fundamental issue for achieving long-
range autonomy. Almost all the tasks an autonomous agent is asked to per-
form, require the knowledge of the vehicle position within a global reference
frame. The problem has been deeply studied in the last decades, and several
solutions have been proposed, providing the estimates of the robot position,
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once a map of its surroundings is available. However, in real-world applica-
tions an autonomous agent is often called to face more challenging situations,
where the operating environment is only partially known (uncertain map)
or even completely unknown. In all these cases (e.g., exploration tasks or
missions in hostile environments) a mobile robot must build a map of the
environment it is navigating in, and simultaneously localize itself within the
map. Consequently, in recent years, a great effort has been devoted to the
development of efficient solutions to the Simultaneous Localization And Map
building (SLAM) problem.

Localization and SLAM problems can be cast as state estimation prob-
lems for an uncertain dynamic system. Depending on the assumptions on the
uncertainty, the estimation problem can be tackled in different ways. When
a statistical description of the disturbances is adopted, standard solutions
are provided by the Extended Kalman Filter (EKF) [26, 9, 31, 16, 34] or
other probabilistic techniques [11, 33, 29]. All the methods based on the EKF
generally model the uncertainty affecting the vehicle dynamics and the mea-
surement process as zero-mean, white Gaussian noise. Unfortunately, real-
world uncertainties seldom satisfy these hypotheses. Moreover, even when
these assumptions are fulfilled, the Kalman filter is guaranteed to converge,
but the EKF is not. Special care must be taken when neglecting correlated
noise or systematic errors. In these cases, the Kalman filter estimates tend
to be overoptimistic [22, 7]. These considerations motivated the adoption of
alternative data fusion techniques. One of the most popular is set-theoretic es-
timators whose main feature is that the estimation uncertainty is represented
by bounded sets in the state space.

One of the first papers in which the set-theoretic paradigm has been ap-
plied to robotic localization is [32], in which fusion of multiple sensor informa-
tion with bounded uncertainty is used to construct a geometric representation
of features in the environment. A set-based localization algorithm using images
from a stereo vision system has been proposed in [3]. To cope with non-white,
non-Gaussian noise, a set-theoretic approach to the problem of tracking a
mobile robot, based on angular measurements, has been introduced in [20].
Under the hypothesis of bounded errors, information fusion is obtained via set
intersections. This work has been later extended to a mixed stochastic/set-
theoretic framework [19], in which a probabilistic uncertainty description is
associated to ellipsoidal approximations of the admissible robot poses. In [30]
a localization method is proposed, based on goniometrical observations of in-
distinguishable landmarks, taken by a panoramic camera. The robot evolution
field is iteratively subdivided into rectangles containing at least one admissi-
ble landmark/measurement matching, until the desired estimation quality is
achieved. In [23, 21] the problem of guaranteed robot localization is addressed
via interval analysis, the optimal solution being computed via set inversion.
Recently, a new set-theoretic localization methods, based on angular measure-
ments, has been proposed in [6]. Recasting the original problem in a higher
dimensional space, yields to accurate implicit polynomial descriptions of the
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admissible vehicle positions. As far as the SLAM problem is concerned, pre-
liminary ideas on how to deal with bounded errors are given in [10, 15].

This paper presents a set-theoretic approach to localization and SLAM,
which has been recently developed and successfully applied to several prob-
lems in mobile robotics [17, 15, 12, 13, 14, 8] The scenario considered in
the paper consists of a mobile robot navigating in a 2D environment, whose
description is given in terms of point-wise features (landmarks). The robot
is supposed to be equipped with suitable sensors, providing only metric in-
formation related to the surrounding landmarks, which therefore turn out
to be indistinguishable. The disturbances affecting both the robot dynamic
model and the measurement process are supposed to be unknown but bounded
(UBB), while no statistical assumptions concerning the nature of the errors
are made. As a consequence, the solutions of the estimation problems related
to localization and SLAM are given in terms of feasible uncertainty regions,
i.e. sets containing the robot pose and/or the landmark positions. The basic
reference theory for the technical development of the paper relies in the re-
cently developed set membership estimation theory (see, e.g, [28, 27]). Though
most of the theory is developed for linear estimation, the specific structure of
the nonlinear localization problem can be exploited to get efficient solutions,
based on recursive approximations of the uncertainty regions.

The Chapter is organized as follows. In Sections 2 and 3, the localization
and SLAM problems, respectively, are stated in a set-theoretic framework. In
Section 4, the strategy leading to efficient approximate solutions of the above
problems is summarized. In Section 5, it is shown how to exploit the set-valued
estimates in order to tackle the matching problem in presence of indistin-
guishable features. In Section 6, the extension of the SLAM algorithm to the
case of a team of cooperating robots is outlined. In Section 7, a set-theoretic
path planning algorithm, for designing minimum uncertainty trajectories, is
presented. In Section 8, results of simulated and real-world experiments are
discussed. Finally, some conclusions are drawn in Section 9.

2 Mobile robot localization

Let us consider a robot navigating in a 2D environment, whose pose (position
and orientation) at time k is denoted by

p(k) = [x(k) y(k) θ(k)]′ ∈ Q

with Q
4
= R

2 × [−π π] being the set of all possible robot configurations.
The coordinates (x(k), y(k)) represent the position of the vehicle, while its
heading, w.r.t. the positive x-axis, is given by θ(k). Under the hypothesis of
slow robot dynamics, a simple linear model can be adopted to describe the
time evolution of the robot pose

p(k + 1) = p(k) + u(k) + w(k), (1)
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where u(k) ∈ R
3 denotes the measurements of robot displacements, coming

from the odometric sensors and w(k) ∈ R
3 models the error affecting such

measurements.
As far as the localization problem is concerned, it is assumed that an

accurate map of the environment is available, in terms of pointwise static
landmarks, whose positions are known. Let

li = [xli yli ]
′, i = 1, . . . , n

denote the coordinates of the i-th landmark. The robot is supposed to be
equipped with exteroceptive sensors, providing measurements related to each
landmark. Depending on the sensory system, this information may consist
in the distance of the vehicle from a landmark (provided by proximity sen-
sors, such as sonars), or in the visual angle under which a landmark is seen
(i.e. the angle between robot heading and the direction of the landmark, pro-
vided by panoramic cameras), or in both (provided by laser range finders or
stereocams). In general, the measurement equations are nonlinear functions
of the current robot pose p(k) and of the coordinates of the sensed landmark.
Since the latter are known, the sensor readings at time k can be described by
equations of the form

ci(k) = µi(p(k)) + vi(k), i = 1, . . . , n (2)

where µi(p(k)) models the i-th measurement process and vi(k) represents the
noise affecting that measurement. When a deterministic description of the
uncertainty is adopted, no statistical hypothesis is made on the nature of
the errors, the only assumption being that the disturbances are unknown but
bounded (UBB):

|wi(k)| ≤ εw
i (k), i = 1, 2, 3 (3)

|vi(k)| ≤ εvi(k), i = 1, . . . , n (4)

where εw
i (k) and εvi(k) are known positive scalars. 1 The assumptions (3)-(4)

naturally lead to a formulation of the localization problem in a set-theoretic
framework. As a matter of fact, from equation (4) it is possible to define, for
each measurement ci(k), a set

Mi(k) = {p(k) : |ci(k) − µi(p(k))| ≤ εvi} (5)

representing all the vehicle poses p(k) compatible with the sensor reading
ci(k) and the UBB hypothesis of bounded error (4). If at time k the robot
performs m different measurements, the admissible robot poses will be those
belonging to the measurement set

1From now on, for notational convenience, the time dependency of the error
bounds will be omitted.
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M(k) =
m
⋂

i=1

Mi(k). (6)

The set M(k) contains all the robot poses compatible with the all the mea-
surements gathered at time k and with the bounds (4). If the hypothesis (4)
of bounded errors are correct, the measurement set M(k) is not empty. Con-
versely, an empty intersection in (6) implies that at least one of the con-
straints (4) is violated.

The shape of each set Mi(k) depends on the nonlinear functions µi(p(k))
modeling each measurement process. Hence, Mi(k) is, in general, a non convex
set, bounded by nonlinear curves.

Since also process disturbances are supposed to be UBB, it is possible
to introduce the notion of feasible pose set P (k|k), defined as the set of all
robot poses at time k compatible with all the information collected up to that
time. Now, the set membership dynamic localization problem can be stated
as follows.
SM Localization Problem. Let P (0) ⊂ Q be a set containing the initial pose
p(0). Given the dynamic model (1) and the measurement equation (2), find at
each time k = 1, 2, . . . , the feasible pose set P (k|k) ⊂ Q containing all vehicle
poses p(k) that are compatible with the robot dynamics, the assumptions (3)-
(4) on the disturbances and the measurements collected up to time k.

The exact solution to the SM localization problem is given by the following
recursion, which stems out directly from the robot dynamics (1) and the UBB
assumptions (3)-(4)

P (0|0) = P (0) (7)

P (k + 1|k) = P (k|k) + u(k) + Diag[εw]B∞ (8)

P (k + 1|k + 1) = P (k + 1|k) ∩M(k + 1) (9)

where εw = [εw
1 εw

2 εw
3 ]′, Diag[v] denotes the diagonal matrix with vector v on

the diagonal and B∞ is the unit ball in the ∞-norm.
The update of the feasible pose set is carried out within a prediction-

correction scheme, as in the Kalman filter, processing at each time step the
current odometric and exteroceptive measurements. Equation (8) is often re-
ferred to as time update: during this step, information provided by the robot
dynamic model and odometric sensors are used to update the feasible set. The
set Diag[εw]B∞ describes all the admissible unmodeled dynamics and odomet-
ric errors satisfying assumption (3); due to these disturbances, the size of the
feasible pose set grows during the time update (see Figure 1.a).

Equation (9) is known as measurement update as it exploits all the ex-
teroceptive measurements to reduce the total robot uncertainty. The main
property of recursion (7)-(9) is to provide, at each time step, all the pose
values that are compatible with the available information: the true state is
guaranteed to belong to set P (k|k), and the size of such set gives a measure
of the uncertainty associated to the estimate (see Figure 1.b).
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Fig. 1. Updating the feasible pose set: time update (a) and measurement update
(b)

3 Simultaneous localization and map building

In several real world applications a map of the working space is not avail-
able. In those cases, the harder Simultaneous Localization And Map building
(SLAM) problem has to be faced.

Let us consider the scenario outlined in Section 2. In order to state the
SLAM problem as a state estimation problem, a model describing the time
evolution of the landmark positions is needed. As long as only static landmarks
are considered, their coordinates li(k) satisfy the equations

li(k + 1) = li(k). (10)

Since both robot pose and landmark positions are unknown, the dimension
of the state vector to be estimated can be very large, as it depends on the
number of remarkable features present in the environment. Indeed, when n

landmarks are considered, the state vector is given by

ξ(k) = [p′(k) l′1(k) . . . l′n(k)]′ ∈ R
(3+2n). (11)

From equations (1) and (10), the state update equation is

ξ(k + 1) = ξ(k) + E3u(k) + E3w(k), (12)

where E3 = [I3 0 . . . 0]′ ∈ R
(3+2n)×3. Concerning the exteroceptive measure-

ments, equation (2) can be properly rewritten as

ci(k) = µi(p(k), li(k)) + vi(k), i = 1, . . . , n (13)

to emphasize the dependence of the measurement process µi on the landmark
position li(k). Notice that in this case each equation (13) provides a nonlinear
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relations among some of the state variables (namely the robot pose and the
i-th landmark coordinates).

Under the UBB assumptions (3)-(4), the definition of measurement set
M(k) is still given by (6), provided that equation (5) is replaced by

Mi(k) = {ξ(k) : |ci(k) − µi(p(k), li(k))| ≤ εvi} . (14)

Hence, the SLAM problem can be phrased in a set membership framework as
follows.
SM SLAM Problem. Let Ξ(0) ⊂ R

(3+2n) be a set containing the initial
vehicle pose and landmark positions, ξ(0). Given the dynamic model (12) and
the measurement equations (13), find at each time k = 1, 2, . . . the set Ξ(k|k)
of state vectors ξ(k) which are compatible with the robot dynamics, the as-
sumptions (3)-(4) on the disturbances and the measurements collected up to
time k.

The solution to the above problem is still provided by the algorithm out-
lined in equations (7)-(9), where the robot feasible pose set P (k) is replaced
by the extended feasible state set Ξ(k)

Ξ(0|0) = Ξ(0) (15)

Ξ(k + 1|k) = Ξ(k|k) + E3u(k) + E3Diag[εw]B∞ (16)

Ξ(k + 1|k + 1) = Ξ(k + 1|k) ∩M(k + 1) (17)

The initialization step of the algorithm, i.e. the choice of the set Ξ(0), de-
pends on the specific problem tackled. If there is no available information on
the initial position of any element of the problem (i.e. robot and landmarks,
as it happens in the SLAM case), the initial estimate set Ξ(0) should be cho-
sen as R

(3+2n). Nonetheless, since all measurements are relative, in this case
one is allowed to choose an arbitrary reference frame. Hence, without loss of
generality, it is possible to set the origin of the reference frame in the initial
position of the robot, choosing as x-axis the robot initial heading. On the
other hand, when an uncertain map of the environment is a priori given, Ξ(0)
can be chosen accordingly to the available information.

4 Suboptimal solutions

The major drawback of the above localization and SLAM algorithms is their
high computational burden. The main reason of this is intimately related to
the nature of the measurement sets M(k), defined in equations (5), (6) and
(14). As already mentioned, such a set is given by the intersection of nonlinear
and nonconvex sets, so that its shape can become arbitrarily complex. During
the measurement update steps (9) and (17), such complexity affects the feasi-
ble state set, making the overall recursion too computationally demanding for
real-time applications. Moreover, the exact feasible set is not only expensive to
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compute, but also its explicit, analytical expression is hard to maintain, since
as new measurements are processed, the complexity of its shape increases.
Finally, as far as the SLAM problem is concerned, computational issues are
worsened by the high dimension of the true state space. For these reasons,
suboptimal solutions to the SM localization and SLAM problems, trading off
computational complexity and estimation accuracy, are sought.

The guidelines inspiring the suboptimal strategy can be summarized as
follows.

• The devised algorithm should provide a recursive, efficient solution, suit-
able for on-line implementation.

• The set-valued estimates should be guaranteed to contain the actual robot
pose and landmark locations.

• Simple, analytical expressions of the feasible sets are desired.

To meet the above requirements, outer approximations of the feasible sets,
through simple structure regions, are adopted. Specifically, two approxima-
tions are introduced at different stages, leading to suboptimal solutions:

• decomposition of the state vector into subsets of state variables;
• outer approximations of the true feasible subsets through classes of simple

regions.

The computation of the feasible sets in the entire state space, can be
replaced by the evaluation of their projections on suitable subspaces, whose
Cartesian product gives an outer approximation of the overall feasible sets.
This policy allows to perform sums and intersections in lower dimensional
subspaces, yielding a significant reduction of the computational burden. This
proves to be especially useful in the SLAM context, where a high dimensional
state vector is involved. A natural choice is to estimate separately the feasible
robot position set Ξxy, the feasible robot orientation set Ξθ and, in the SLAM
case, the feasible landmark position sets Ξli . With this strategy, sequential
updates of only 1D and 2D sets are required.

The exact computation of the intersections required during the measure-
ment update, although performed in low dimensional spaces, is still compu-
tationally demanding, due to the complex shape of the measurement sets. In
order to improve the algorithm efficiency, as well as to come up with tractable
analytical expressions for the set-valued estimates, the exact feasible subsets
can be approximated through regions belonging to a class R of fixed and
simple structure sets. In order to minimize the estimation uncertainty, the
minimum volume region in the chosen class, containing the corresponding
feasible set, is selected (see Figures 2-3).

Efficient algorithms for localization and SLAM, using boxes or parallelo-
topes as approximating regions, have been proposed in [17, 12, 14]. The main
features of the devised techniques can be summarized as follows.
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Fig. 3. Time update (a) and measurement update (b) using parallelotopes.
P{M(k + 1)} denotes the minimum volume parallelotope containing the measure-
ment set M(k + 1)

• The estimation algorithms provide guaranteed set-valued estimates, in the
sense that the actual state vector is guaranteed to belong to the computed
uncertainty regions (feasibility property).

• No statistical assumptions on the nature of the errors are required, only
an upper bound is assumed to be available.

• The suboptimal strategy adopted leads to fast algorithms suitable for on
line implementation. Low computationally demanding estimates are ob-
tained at the price of some conservativeness. This feature turns out to be
especially useful when the SLAM problem has to be faced. In this case,
the storage requirements of the proposed set membership techniques grows
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linearly in the number of landmarks present in the environment, whereas
its computational burden is linear in the number of features sensed at
each time instant (as opposed to the quadratic complexity required by
EKF-based algorithms).

• The desired trade off between computational effort and estimation accu-
racy can be achieved by a suitable choice of the class of approximating
regions.

• Set approximations involved in the measurement update can be iteratively
repeated, by processing several times the same measurements. This gen-
erally leads to more accurate approximations, at the price of a higher
computational load. Moreover, in the SLAM problem this allows to im-
plicitly account for the relationships between different state variables (see
[14] for details).

The formulation of the localization and mapping problems presented so far
implicitly assume that the robot is able to correctly associate each measure-
ment to the corresponding sensed feature. For example, this happens if the
observed landmarks are distinguishable. However, in real-world applications,
especially if natural beacons are used as landmarks and sensors provide only
metric information, landmarks are indistinguishable and consequently match-
ing between measurements and landmarks is of paramount importance. In
the next section, we will describe a data association algorithm exploiting the
feasibility property of the set membership estimates [14].

5 Data association

At each time instant k + 1, before the measurements are taken, the SM local-
ization algorithm computes a region Rxy(k + 1|k) containing the prediction
of the feasible robot positions according to the dynamic model (1) and the
error bounds (3). Since measurement noise is supposed to be bounded, for
each measurement ci it is possible to define a set Mli(k + 1) containing all
the admissible i-th landmark locations (in a robot-centered reference frame)
compatible with the noise bounds (4). Since the robot position is known up
to an uncertainty region Rxy(k + 1|k), the set in which the i-th landmark is
guaranteed to lie is

Rxy(k + 1|k) + Mli(k + 1).

As a consequence, any landmark position lj , j = 1, . . . , n such that

lj ∈ Rxy(k + 1|k) + Mli(k + 1), (18)

can be associated to the i-th measurement. An example of such a set is de-
picted in Figure 4, when boxes are used as approximating regions and range
and bearing measurements are available.

By considering each measurement, it is possible to build a matching matrix
T , where all the admissible matchings measurement-landmark are listed. For



Set membership localization and map building for mobile robots 11

PSfrag replacements

xx

yy

(a) (b)

l1
l1

l2

l2

l3

l3

l4

l4

Rxy(k + 1|k)Rxy(k + 1|k)

Rxy(k + 1|k) + Mli(k + 1)Rxy(k + 1|k) + Mli(k + 1)

Fig. 4. Uncertainty sets can be employed to perform matching between measure-
ments and features: (a) measurement i is not ambiguous, since only landmark l3
lies in Rxy(k + 1|k) + Mli(k + 1); (b) measurement i is ambiguous, since it can be
associated both to landmark l2 and to landmark l3

instance, one can set tij = 1 if the j-th landmark lies inside Rxy(k + 1|k) +
Mli(k+1), while tij = 0 otherwise. If on the i-th row of matrix T there is only
one non zero entry, then the i-th measurement is not ambiguous. Should all the
entries be null, than there is no landmark compatible with the measurement
(consequently, the i-th measurement is a spurious one). Finally, a row with
more than one nonzero entry, corresponds to an ambiguous measurement (see
Figure 5a).

Even if some measurements are ambiguous, it is often possible to find a
unique admissible solution to the matching problem (see Figure 5b). Indeed,
the problem of determining the existence of a perfect matching is widely
studied in the operation research field, and efficient algorithms are available
to determine the solution of such problems [24].

The above procedure can be applied, with minor changes, also to the
SLAM problem. As long as a map of the environment is not exactly known, in
order to check whether a previously sensed landmark lj can be accountable for
the i-th measurement, the uncertainty of its current estimate must be suitably
taken into account. Denoting by Rlj (k + 1|k) the region approximating the
feasible j-th landmark set at time k+1, this amounts to replace condition (18)
by

Rlj (k + 1|k) ∩ (Rxy(k + 1|k) + Mli(k + 1)) 6= ∅ (19)

Accordingly, each landmark lj satisfying (19) is eligible for the i-th mea-
surement. The most significant difference with respect to the scenario of
known landmarks, concerns the definition of spurious measurement. In a typ-
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Fig. 5. Example of matching matrix T : (a) matrix with ambiguous measurements;
(b) unique admissible matching

ical exploration task, where neither the locations nor the total number of
remarkable features is a priori known, the landmarks to be mapped are usu-
ally incrementally discovered. In this case, an empty intersection between
Rxy(k + 1|k) + Mli(k + 1) and every Rlj (k + 1|k), may occur because:

• the i-th measurement is spurious, or
• the i-th measurement is related to a newly discovered landmark.

In the first case, one would simply discard the uninformative measurement.
On the contrary, if a new feature is detected, the state vector should be prop-
erly augmented and the set-valued estimate of the new landmark should be
initialized according to the set Rxy(k+1|k)+Mli(k+1). Unfortunately, there
is no chance to certainly discriminate between these two options. Nonetheless,
some heuristic techniques borrowed from statistical approach can be adopted,
in order to avoid the introduction of spurious landmarks. The inclusion of a
new feature into the state vector may be deferred until sufficient evidence of
its presence is gathered, using a tentative list (see, e.g., [16]). A tentative land-
mark is initialized on receipt of a measurement and is then inserted into the
state vector when a sufficiently high number of consecutive hits is reached. A
possible alternative is to generate many data association hypotheses whenever
a measurement is taken, and later discard all of them but one as more sensor
data are collected (see, e.g., [5]).
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6 Cooperative SLAM

In recent years, the employment of a team of cooperating agents to carry
out complex tasks, has received more and more attention by the robotics
research community (see, e.g., the special issues [2, 4, 1]). Fusion of information
provided by different robots moving in the same area can indeed improve the
exploration performance for several reasons. At each time instant the same
feature can be perceived by more than one robot. If the robots share mapping
information, this can lead to a more accurate, faster converging global map.
Moreover, each robot plays the role of a moving landmark for all other agents,
thus improving localization accuracy in poorly informative environments. For
instance, if only one robot at a time is moving, the others can act as a landmark
base in regions where it is difficult to extract reliable features [18].

The SM localization and SLAM algorithms can be naturally extended to
the cooperative scenario. Let

pj(k) = [xj(k) yj(k) θj(k)]′

denote the pose of the j-th robot at time k. The setting hereafter considered
consists of M agents, moving in an environment containing n unknown static
landmarks l1, . . . , ln. Then, the state vector to be estimated becomes

X(k) = [p′1(k) . . . p′M (k) l′1 . . . l′n]′ ∈ R
3M+2n. (20)

Following the suboptimal approach illustrated in Section 4, the underlying
idea is to decompose the approximation of the overall feasible set into M + n

approximations of 2D feasible subsets for the position of each feature in the
environment, plus M interval approximations for the feasible orientation of
each robot.

The main issue to be addressed is the fusion of the local maps, built by
each agent, into a global one, when the relative starting positions of the agents
are completely unknown. To this purpose, two additional assumptions are
needed: (i) each feature is supposed to have a unique signature (distinguishable
landmarks); (ii) absolute orientation measurements (such as the ones provided
by compasses) are available. Nonetheless, according to the devised algorithm,
map fusion is performed only once, at the beginning of the exploration in
order to generate a common map, in a global reference frame. Afterwards,
each agent is able to consistently update the global map even in presence of
indistinguishable features and only relative bearing information.

In the single robot SLAM problem, since all measurements are relative,
the initial position of the exploring agent can be fixed arbitrarily (in the robot
centered reference frame) and all the environment features are then estimated
with respect to that initial position. When operating with multiple agents,
whose initial positions are not known, the global reference frame shared by
all the robots must be chosen carefully. Assuming that absolute orientation
measurements are available, it is possible to rotate the initial 2D uncertain
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maps onto an absolute orientation reference frame. By computing the initial
2D feasible position sets of each feature, the j-th agent is able to produce a
self-centered initial map of the environment, within an absolute orientation
reference system. This means that only relative translation among the different
initial maps produced by the robots is unknown. Clearly, all the single-robot
maps are a valid, suboptimal representation of the environment. The quality
of the maps will generally vary from robot to robot. While it is possible to
choose the “most accurate” map as a global one for all the robots, this choice
does not use all the available information. Exploiting the feasibility property,
it is possible to obtain a global refined map, by finding the minimum uncer-
tainty description which satisfies all the constraints of each map. Moreover,
when box-based approximations are adopted, the 2D map fusion can be de-
composed into two 1D problems, whose solutions can be efficiently computed
via linear programming algorithms. The interested reader is referred to [13],
for a detailed description of SM cooperative SLAM.

7 Set membership approach to path planning

Motion planning is recognized to be a hard problem since long time. Nonethe-
less, as far as mobile robots (characterized by few degrees of freedom) are
concerned, several solutions have been proposed, which proved to be effective
in practice (see [25] for a comprehensive review). While uncertainty and dis-
turbances are crucial issues in localization and map building, they have been
often neglected in the path planning phase, i.e., the robot pose is usually
assumed to be perfectly known.

In this section, we briefly show how the set-theoretic framework is well-
suited to design minimum uncertainty paths. In particular, the problem of
finding a trajectory minimizing the overall position uncertainty along the
path, is tackled. This is motivated by applications in which it is crucial to
localize the robot as precisely as possible along the whole path and not only
in the final target, typical examples being the exploration of unknown en-
vironments or the accomplishments of several tasks requiring a prescribed
precision along the travelled path. The appealing property of SM localization
algorithms of delivering guaranteed set estimates, provides a simple way of
quantifying the estimation uncertainty in terms of the size of the feasible pose
sets.

Consider a robot with initial pose p0 and whose target is to reach a pose
pT , after T moves. The objective is to plan a path P = [p(0), p(1), . . . , p(T )],
such that the average uncertainty associated to the path is minimized. This
corresponds to tackle the following problem:
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min
P

1

T

T
∑

k=1

V
[

M(k)
]

s.t.
|x(k + 1) − x(k)| ≤ bx ∀k = 0 . . . T − 1
|y(k + 1) − y(k)| ≤ by ∀k = 0 . . . T − 1
p(0) = p0 p(T ) = pT

(21)

where V
[

M(k)
]

is the volume of the feasible set M(k), and bx, by are bounds
on the maximum x− and y−displacement for each move, respectively.

The solution of problem (21) presents several difficulties, since:

a) the sets M(k) depend on the actual realization of measurement noises;
b) the size of M(k) does not depend on the robot orientation θ(k) if the

visibility range is unlimited and all landmarks can be seen from any robot
pose; in the more realistic situation of limited field of view, V

[

M(k)
]

depends on the subset of features falling in the robot field of view.

Facing problem a) in a worst-case scenario, i.e. by maximizing V
[

M(k)
]

over
all possible noise realizations, would lead to an intractable high-dimensional
min-max optimization problem. A more viable approach is that of neglecting
the measurement errors in the planning phase, which amounts to consider
zero noise realization. Notice that this is generally an unfavorable case in
set-theoretic estimation, where the maximum uncertainty reduction is usu-
ally achieved when the noise sequence takes values on the boundary as often
as possible. In order to cope with problem b), the orientation interval can be
suitably partitioned according to the subset of visible landmarks. By choosing
the orientation subset for which the size of the feasible set M(k) is minimum,
one can get rid of the dependence on θ in the cost function (21), thus re-
ducing the number of optimization variables from 3T to 2T . Moreover, the
minimization problem can be further simplified if set membership localization
techniques are used to approximate the feasible sets M(k). Notice that the
proposed method is flexible enough to incorporate a priori knowledge on the
robot working space. For instance, obstacles in the environment can be easily
taken into account by combining artificial potential functions with the cost
function in (21) (see Figure 6). Further details can be found in [8].

8 Experimental validation

The SM localization and SLAM algorithms outlined so far have been exten-
sively tested in both simulated and real experiments.

Montecarlo simulations have shown that the SM localization algorithms
are characterized by a good accuracy, fairly degrading with the increase of
the measurement error bounds. Thanks to their flexibility, parallelotopic ap-
proximations usually delivers better performance, w.r.t. box-based ones. Ex-
tensive simulations have been performed also in different scenarios, showing
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Fig. 6. Cost function (a) and computed path (b), for a scenario including two
rectangular obstacles and four landmarks (white circles). Triangles represent the
chosen robot poses along the optimal path

that SM algorithms are able to face the localization problem with different
robot motion models and different exteroceptive sensors. Specifically, guar-
anteed estimates have been computed even in presence of correlated process
disturbances or measurement noise. Moreover, the uncertainty affecting the
set estimates turns out to rapidly approach its steady state value, especially
when parallelotopic approximations are adopted (see [17, 12, 14]).

Similar simulation results have been obtained for the SM SLAM algorithm
(see [15]). SM SLAM techniques have been compared to EKF-based algo-
rithms, taking into account different noise models. Since a key performance
index is the quality of the constructed map, the comparison is focused on the
nominal error and the associated uncertainty of the final landmark position es-
timates. When measurement errors are modelled as white Gaussian noise, SM
and EKF algorithms yields map estimates with comparable accuracy, whereas,
in case of non-Gaussian, colored noise the SM approach performs usually bet-
ter (see [14]). It is worth noticing that the set-theoretic framework requires a
limited modelling effort (only upper bounds on the involved errors have to be
set), while in the statistical context the noise covariance matrices have to be
carefully tuned, in order to preserve EKF consistency. Moreover, a major ad-
vantage of the SM SLAM algorithm lies in its low computational burden and
memory requirements. At each time step, the SM algorithm performs a num-
ber of operations proportional to the number of currently sensed landmark,
whereas the EKF requires the propagation of the whole covariance matrix (a
very expensive task when the number of landmarks increases). Such a feature
is of paramount importance when exploring large areas, densely populated of
landmarks.

Concerning the cooperative SLAM problem, simulations of the map fusion
step have been run to evaluate the accuracy improvement of the global map
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Fig. 7. Experimental setup: the mobile robots Nomad XR4000 (left) and Pioneer
3AT (right)

with respect to the maps built by each single robot. It turns out that the
uncertainty reduction becomes more significant when the number M of robots
(and consequently of available maps) increases. This happens because more
maps will generally provide overall tighter constraints, in the map fusion step.
In addition, for a fixed number of robots, improvements get less remarkable
as the number n of non-sensing features increases, since adding non-sensing
features to the environment increases the map uncertainty without providing
additional means for uncertainty reduction. The SLAM algorithm has been
simulated in a dynamic setting, in order to evaluate the accuracy improvement
of robot localization and map estimation. The adoption of the cooperative
scheme results in a faster convergence of landmark estimation accuracy to its
steady-state value. In addition, each robot is able to precisely localize itself
also at large distances from its starting point, thanks to the accurate map of
initially faraway areas built by the other agents (see [13]).

The SM localization and SLAM techniques have been validated in a lab-
oratory setup, featuring the mobile robots Nomad XR4000 and Pioneer 3AT
(see Figure 7). These vehicles have different kinematics, the latter being a non-
holonomic platform, while the former having a fully holonomic drive system.
Both robots are equipped with a laser rangefinder and all the experiments in-
volved indistinguishable, artificial landmarks, easily detectable from the laser
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scans. The proposed techniques are flexible enough to handle different vehicle
motion models. The bounded error assumption turns out to be a reasonable
description of the disturbances involved. The SM estimation techniques allow
the robots to safely localize and navigate in spite of odometric error accumu-
lation, and the data association algorithm proved to be effective when dealing
with indistinguishable features. The results of the experimental tests are gen-
erally in good agreement with simulations and confirm the effectiveness of SM
approach in real world applications (see [14]).

9 Conclusions

In this paper, a set-theoretic framework for addressing some relevant prob-
lems of autonomous navigation has been presented. Specifically, the attention
has been mainly focused focused on localization and map building problems,
for a single robot or a team of cooperating agents. Such problems can be
cast as a state estimation problem for an uncertain dynamic system, based
on non linear observations. Under the hypothesis of bounded model distur-
bances and measurement noise, the estimation process can be naturally stated
in terms of feasible sets. Since real-time suitability represents an essential re-
quirement, one of the main results is the design of efficient algorithms, trading
off computational complexity and estimation accuracy. The extensive numeri-
cal simulations and experimental tests carried out, show that the set-theoretic
approach represents a valuable alternative to statistical localization and map
building methods, whenever the bounded error assumption holds.

A path planning algorithm for holonomic vehicles, which explicitly takes
into account the localization uncertainty affecting the robot along its trajec-
tory, has been devised. The proposed design procedure represents an attempt
to consider in the planning stage the whole information available along the
path. The next goal is the extension of the proposed planner when the more
challenging simultaneous localization and map building problem has to be
addressed. This should be intended as a first step toward the development of
advanced exploration strategies, through the integrated solution of different
tasks, like localization, map building and path planning. It is believed that
set membership techniques provide a suitable framework for dealing with es-
timation uncertainty in such complex scenarios.
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