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Abstract

The paper addresses the path planning problem in a set theoretic framework. The considered

scenario is that of a mobile robot exploiting range and bearing measurements with respect to

known landmarks to localize itself. By assuming unknown but bounded measurement noise,

set membership localization techniques are used to estimate the uncertainty of each robot pose

within the considered environment. The path planning problem is formulated and solved, with

the aim of minimizing the total uncertainty associated to the travelled path. Practical issues

such as limited sensory range and obstacle avoidance are taken into account. The proposed

technique is validated via numerical simulations.
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1 INTRODUCTION

The set membership estimation paradigm has been introduced to cope with uncertainty in a deter-

ministic framework and it has been successfully applied in a wide spectrum of application fields in

which statistical assumptions on the uncertainty sources are unreliable or difficult to be validated

(see e.g. [1, 2] and references therein). Mobile robotics has also benefited from a number of con-

tributions in the set membership framework. The problem of localizing a mobile robot within a

known environment has been addressed in several different scenarios [3, 4, 5, 6, 7]. More challenging

problems, such as simultaneous localization and map building (SLAM) [8, 9] and collaborative local-

ization for a team of mobile robots [10], have also been addressed. The main idea underlying these
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approaches is that the uncertainty sources (disturbances affecting the robot motion model, measure-

ment noise, etc.) are modelled as unknown-but-bounded (UBB) signals. Under this hypothesis, the

problem can be cast in terms of feasible sets, defined as those sets containing all the admissible robot

poses (positions and orientations) compatible with the whole available information and the bounds

on the error. The techniques proposed in the literature basically differ for the considered motion

and sensory models, and for the way feasible sets are computed or approximated.

The navigation system of a fully autonomous mobile robot has to integrate several tasks, such

as sensing, environmental mapping, localization and path planning. Motion planning has been

recognized as a key problem in mobile robotics for some time [11]. A large variety of solutions

have been proposed, which proved to be effective in practice (see [12] for a comprehensive review).

However, being the problem computationally intensive, uncertainty and disturbances have been

often neglected in the path planning phase, i.e., the robot position is usually assumed to be known

exactly. Nevertheless, in recent years the number of contributions addressing path planning with

uncertainty is steadily increasing. The objective of these works is the computation of safe paths,

ensuring that the goal is reached in spite of the uncertainty affecting the robot pose and/or the

environment map. Clearly, the path planner must be designed in order to cope with the adopted

uncertainty representation.

Similarly to what happens for other tasks, such as localization or mapping, the approaches

proposed in the literature can be classified according to the paradigm adopted for modelling un-

certainty. Probabilistic uncertainty representations have been considered by several authors (see

e.g. [13, 14, 15, 16]). In [17] a mobile robot performs measurements with respect to landmarks

to localize itself, and the pose uncertainty estimated by an extended Kalman filter is exploited to

design safe paths. Path planning based on deterministic uncertainty representations has also been

investigated. There is an extensive literature on path planners using sets to model uncertainties (see

[18] and references therein), but in most of these works uncertainty is not related to localization

errors arising from sensing and motion disturbances. One of the first papers explicitly accounting

for uncertainty both in the motion model and in the sensing process is [19]. In [20], an ellipsoidal

set membership localization technique is combined with a path planner based on evolutionary com-

putation. The computed feasible sets are used to ensure safe obstacle avoidance, rather than to

minimize the overall uncertainty along the path.

In this paper, we focus on a set theoretic approach to the path planning problem, in order

to take into account the localization uncertainty associated to the selected paths. In particular,

the problem of finding a trajectory minimizing the overall position uncertainty along the path, is
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tackled. This is motivated by applications in which it is crucial to localize the robot as precisely as

possible along the whole path and not only in the final target, typical examples being the exploration

of unknown environments or the accomplishments of several tasks requiring a prescribed precision

along the travelled path. The considered scenario is that of a mobile robot performing range and

bearing measurements with respect to known landmarks. UBB measurements errors are assumed.

The set membership localization technique proposed in [8] is employed to estimate the uncertainty

set associated to each robot pose. Then, the path planning problem is formulated as an optimal

control problem, whose objective function is the total position uncertainty of the path travelled

from the starting point to the assigned goal. The proposed technique has to be intended as a high

level planner whose output is a sequence of way points feeding a low-level trajectory generation

and tracking module. Obstacle avoidance and limited sensory range are taken into account in the

formulation of the optimization problem. A preliminary version of this work has been presented

in [21].

The paper is organized as follows. Section 2 describes the set theoretic uncertainty representation

and the related localization technique. Section 3 introduces the path planning problem in the set

theoretic framework and formulates the related optimization problems. Section 4 presents several

simulation results, while some concluding remarks are given in Section 5.

2 SET THEORETIC LOCALIZATION

Let us consider a robot navigating in a 2D environment, whose pose at time k is denoted by

p(k) = [x(k) y(k) θ(k)]′ ∈ Q,

with Q
△
= R

2× [−π, π] being the set of all possible robot configurations. The coordinates (x(k), y(k))

represent the position of the vehicle, while θ(k) denotes its orientation (view direction), with respect

to the positive x-axis. It is assumed that a map of the environment is available, in terms of n static

pointwise landmarks, having known positions:

li = [xli yli ]
′, i = 1, . . . , n.

The robot is supposed to be equipped with exteroceptive sensors, measuring m quantities yi(k) ∈

R
m related to each landmark li

yi(k) = h(p(k), li) + vi(k). (1)

In (1), the signal vi(k) ∈ R
m denotes the measurement noise and is supposed to be norm-bounded

||vi(k)||
ǫv
∞ ≤ 1, (2)
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where, for a vector w = [w1, . . . , wn]
′ with positive entries, the weighted ∞ norm ||x||w∞ is defined as

||x||w∞
△
= maxi |xi/wi|. The bounded error assumption (2) allows one to define for each measurement

yi a set

Mi(p(k)) = {p(k) ∈ Q : ||yi(k)− h(p(k), li)||
ǫv
∞ ≤ 1} . (3)

containing all robot poses compatible with the i-th measurement readings (1) and the corresponding

noise bound (2). In a set theoretic framework, data fusion is obtained via set intersection. Hence,

supposing that at time k the robot performs measurements with respect to the n landmarks, its

pose is constrained to lie in the feasible set

M(p(k)) =

n
⋂

i=1

Mi(p(k)). (4)

Notice that, if the measurement noise is within the bound (2), the set M(p(k)) is not empty. On

the contrary, an empty intersection in (4) implies that at least one of the constraints in (2) has

been violated. An appealing property of the set theoretic formulation is that, as long as the errors

verify the boundedness assumption, the actual robot pose p(k) is guaranteed to belong to the set

M(p(k)) (feasibility property), regardless of the statistical nature of the noise. Such a property

turns out to be especially useful whenever “certified” estimates are needed, e.g. in order to plan

safe paths. Moreover, a measure of the quality of the set-valued estimates is given by the size of the

corresponding feasible sets.

In this paper, the robot is supposed to have on-board sensors like laser range finders or stereo

vision systems, providing range and bearing measurements with respect to the landmarks (see Fig-

ure 1). In this case, the measurement equations (1) take on the form yi(k) = [Di(k) Ai(k)]
′, where

li

αi(p(k), li)

θ(k)

x

y

x(k), y(k)

d(p(k), li)

Figure 1: Range and bearing measurement with respect to the i-th landmark.
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Di(k) = d(p(k), li) + vdi
(k)

Ai(k) = α(p(k), li) + vαi
(k)

i = 1, . . . , n. (5)

In equations (5), Di(k) and Ai(k) are the actual sensor readings and vdi
(k), vαi

(k) model noise

affecting the distance and angular measurements, defined as

d(p(k), li)
△
=

√

(x(k)− xli)
2 + (y(k)− yli)

2, (6)

α(p(k), li)
△
= atan2(yli − y(k), xli − x(k))− θ(k). (7)

In (7), atan2(·, ·) denotes the four quadrant inverse tangent. The assumption (2) of bounded mea-

surement noise can be explicitly written as

|vdi
(k)| ≤ ǫvd , (8)

|vαi
(k)| ≤ ǫvα , (9)

with ǫvd and ǫvα denoting known (possibly time-varying) positive scalars. Consequently, the sets

Mi(p(k)) in (3) associated to each measurement pair Di(k), Ai(k) become

Mi(p(k)) = {p(k) ∈ Q : |Di(k)− d(p(k), li)| ≤ ǫvd and |Ai(k)− α(p(k), li)| ≤ ǫvα} .

The exact solution to the set theoretic localization problem involves the computation of the

feasible set M(p(k)) in (4). Unfortunately, this set turns out to be the intersection of nonlinear,

nonconvex 3D sets, whose shape can be very complex. Two major drawbacks prevent from computing

its exact expression. As far as real-time applications are concerned, the computation required by (4)

may be too expensive. Moreover, as new measurements are processed, the shape of the feasible pose

set can become arbitrarily complex, so that finding analytical expressions is a very hard problem. For

these reasons, suboptimal solutions, trying to reduce the computational burden, while at the same

time preserving the essential features of the set-valued estimates, have been devised. For instance, in

[8] outer approximations of the feasible sets via simple structure regions have been proposed. It has

been shown that, at the expense of some conservativeness, it is possible to devise efficient recursive

algorithms able to compute guaranteed set estimates.

To illustrate the main idea, let us first suppose that the robot orientation θ(k) is known. It

is easily verified that the projection on the xy-plane of each set Mi(p(k)) corresponds to a ring

sector Ci(p(k)), whose radial and angular semi-amplitude are given by ǫvα and ǫvd , respectively (see

Figure 2(a)). Then, all the admissible robot positions at time k, according to the error bounds and

the measurements Di(k), Ai(k), are constrained into the set

C(p(k)) =
n
⋂

i=1

Ci(p(k)). (10)
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The goal is to bound the set C(p(k)) by the minimum area set belonging to a class of simple regions.

li

Ci(p(k))

Ti(p(k))

B{C(p(k))}

C(p(k))

B{T (p(k))}

(a) (b)

Figure 2: (a) Trapezoidal approximation of a ring sector. (b) Outer approximation of the exact

feasible position set C(p(k)) (dashed region) related to two landmarks.

In this paper, axis-aligned boxes will be used. To this purpose, let us denote by B{Z}, the minimum

area box containing the set Z. Notice that the set in (10) is still nonconvex. Hence, to further

simplify the computation, rather than finding the smallest box containing C(p(k)), we look for the

minimum area box outbounding the set T (p(k)), defined as

T (p(k)) =

n
⋂

i=1

Ti(p(k)), (11)

where each Ti(p(k)) denotes the minimum area trapezoid containing each ring sector Ci(p(k)), as

shown in Figure 2(a). Notice that Ti(p(k)) can be analytically computed, from the landmark location

li, the sensor readings Di(k), Ai(k) and the error bounds (8)-(9). With this choice, the problem

becomes the computation of

B(p(k)) = B{T (p(k))}, (12)

which in turns boils down to the solution of four linear programming problems. It is worth remarking

that the set B(p(k)) contains, by construction, the true robot position (see Figure 2(b)).

To take into account also the uncertainty affecting the vehicle orientation estimates, the above

procedure has to be slightly modified. At each time k, an interval estimate of the actual robot

orientation can be derived, from a simple geometrical reasoning. Such uncertainty can be suitably

taken into account by enlarging the angular amplitude of each ring sector, by a quantity equal to

the width of the orientation uncertainty interval.

The framework described above can easily incorporate also a dynamic model of the robot, in

which uncertainties are modelled as UBB disturbances. In this case, the set estimate B(k) can be
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recursively updated by using prediction-correction schemes analogous to that adopted in EKF. The

interested reader is referred to [8] for a detailed treatment of set membership localization algorithms.

3 SET THEORETIC PATH PLANNING

In this section, the problem of computing minimum uncertainty paths is addressed, exploiting the

set theoretic localization framework illustrated in Section 2. First, the problem is cast as an optimal

control problem for generic robot motion models and measurement equations. Then, the problem

is specialized to meet the specific scenario considered in this paper. The resulting optimization

problem is later relaxed in order to reduce its computational burden. This is achieved by modifying

the cost function to make it independent from the robot orientation, and by replacing the exact

feasible sets with approximating boxes, like it has been done in Section 2.

Consider a robot with initial pose p0 and whose target is to reach a pose pT , after T moves. The

objective is to plan a path P = [p(0), p(1), . . . , p(T )], such that the average uncertainty associated

to the path is minimized. Let

p(k + 1) = f(p(k), u(k)) (13)

be a dynamic model of the robot pose, where u(k) ∈ R
p is the control input and p(k) represents

the state. Since the objective is to find a path minimizing the localization uncertainty, let us choose

as cost function the volume V [M(p(k))] of the feasible set M(p(k)) defined in (4). Now, the path

planning problem can be cast as the optimal control problem

min
u(0),...,u(T−1)

1

T

T−1
∑

k=0

V [M(p(k))]

s.t.

p(k + 1) = f(p(k), u(k)), k = 0, . . . , T − 1,

||u(k)||b∞ ≤ 1, k = 0, . . . , T − 1,

p(0) = p0, p(T ) = pT .

(14)

In (14), the weight vector b = [b1, . . . , bm]′ contains the bounds on each component of the control

input u(k), i.e. |ui(k)| ≤ bi. The complexity of the previous optimization problem depends on: i)

the kind of measurements available (which define the shape of the set M(p(k))); ii) the robot motion

model (13). For instance, nonlinear robot dynamics result in nonlinear equality constraints in (14).

Since our objective is to find an optimal sequence of way points in the configuration space that the

planner provides to the low-level motion control unit, a simple robot motion model can be adopted
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in place of (13)

p(k + 1) = p(k) + u(k) (15)

where the control input u(k) = [ux(k), uy(k), uθ(k)]
′ now represents the x−, y− and θ− dis-

placement between two consecutive way points. Hence, the constraints on the input become simply

constraints on the maximum pose variation at each move, i.e.

|ux(k)| ≤ bx, |uy(k)| ≤ by, |uθ(k)| ≤ bθ, (16)

where bx > 0 and by > 0. The bound bθ on the orientation is set to π. This basically means that

bounds on the maximum rotation in a sample interval are neglected. It is assumed that the time step

for a single move is such that the robot succeeds to perform the required rotation during each move,

which is in agreement with the considered planning setup. According to the assumptions (15)-(16),

the optimal control problem (14) reduces to

min
u(0),...,u(T−1)

1

T

T−1
∑

k=0

V [M(p(k))]

s.t.

p(k + 1) = p(k) + u(k), k = 0, . . . , T − 1,

|ux(k)| ≤ bx, k = 0, . . . , T − 1,

|uy(k)| ≤ by, k = 0, . . . , T − 1,

p(0) = p0, p(T ) = pT .

(17)

The optimization problem (17) is still hard to solve, due to the complexity of the cost function.

For instance, if range and bearing measurements are used, M(p(k)) are nonlinear, nonconvex sets.

Moreover, additional difficulties make the solution of (17) even more challenging. In particular:

a) the set M(k) is a function of the sensor readings Di(k), Ai(k), which in turn depend on the

actual realization of measurement noises;

b) the size of M(k) does not depend on the robot orientation θ(k) if the visibility range is

unlimited and all landmarks can be seen from any robot pose; in the more realistic situation

of limited field of view, V
[

M(k)
]

depends on which landmarks fall in the robot field of view.

Problem a) can be faced in a worst-case approach, by maximizing V
[

M(k)
]

over all possible noise

realizations. However, this would lead to an untractable high-dimensional min-max optimization

problem. A more viable approach is that of neglecting the noise realizations in the planning phase,
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which amounts to consider measurements Di(k), Ai(k) produced by a zero noise realization. Notice

that this is generally an unfavorable case in set theoretic localization, where the maximum uncer-

tainty reduction is usually achieved when the noise sequence takes values on the boundary as often

as possible.

In order to cope with problem b), a suitable partition of the orientation interval is introduced next.

As it will become clear in the following, this will also lead to a useful simplification of the cost

function in (17).

3.1 Limited visibility

In a real-world scenario, sensors usually feature limited field of view. For example, a mobile robot

using a laser rangefinder can only detect landmarks lying inside a given circular sector, which is

determined by the maximum range and bearing that the sensor can measure.

In this work, we assume that a robot can see all the landmarks li such that |α(p(k), li)| ≤ α and

d(p(k), li) ≤ d, where α and d denotes the angular and linear visibility, respectively. This assumption

implies that, given a position z = [x, y]′, the robot perceives different sets of landmarks depending

on both its orientation θ and its visibility region given by α and d. Therefore, the intersections in

(4), (10) and (11) do not involve all the landmarks, but only those that are actually seen from the

current pose p(k).

In order to establish which landmarks are seen from a given pose, we look for a partition of the

orientation interval [−π, π] into subsets hi, such that each subset hi is associated to a unique set of

visible landmarks from the position z and for all orientations θ ∈ hi. For a fixed position z, let us

introduce the set

τh = {lj : |α(p, lj)| ≤ α and d(p(k), lj) ≤ d ∀p = [x, y, θ] with θ ∈ h} (18)

which represents the set of visible landmarks, from position z and orientation θ ∈ h, with h ⊆ [−π, π].

Then, the sought partition of [−π, π] is given by

H(z) = {hi ⊆ [−π, π] :

⋃

hi ≡ [−π, π]

hi ∩ hj = ∅ ∀i 6= j

τhi
6= τhj

∀i 6= j

τa ≡ τhi
∀a ⊆ hi }.

(19)

Notice that H(z) is a partition of the interval [−π, π] into disjoint sets, such that the landmarks

perceived by any couple of orientations θi ∈ hi and θj ∈ hj are different if hi 6= hj . Moreover, the
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landmarks perceived is the same in every subset of hi. This makes the partition defined by (18)-(19)

unique.

To clarify how the partition H(z) is constructed, let us consider the example depicted in Figure

3, concerning a 4 landmarks scenario with unbounded linear visibility (d = ∞) and limited angular

visibility (α = π
2 ). In this case, one gets the partition H(z) = {h1, h2, h3, h4, h5, h6}. Table 1 reports

the sets of visible landmarks τhj
, from pose p = [x, y, θ] with θ ∈ hj .

l1l1l1l1l1l2

l3
l4l4l4l4l4l4

h1

h2

h3 h4

h5

h6

x

y

Figure 3: Example of orientation partition: asterisk denotes the robot position z = [x, y]′, circles

represent landmark positions, solid lines bound the angular subsets hi.

Table 1: Sets of visible landmarks τhi
for the example in Figure 3.

τh1
l1, l2

τh2
l2, l3

τh3
l2, l3, l4

τh4
l3, l4

τh5
l1, l4

τh6
l1

3.2 A simplified optimization problem

The previous discussion suggests that the problem of choosing the robot orientation along the path

can be simplified into that of selecting a suitable orientation subset hj . In fact, given a robot
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orientation θ(k) ∈ hj , the feasible set (4) associated to the robot pose p(k) becomes

M(j)(p(k)) =
⋂

li∈τhj

Mi(p(k)) (20)

where hj ∈ H(z) is an element of the partition (19). Clearly, the size of M(j)(p(k)) in (20) depends

on τhj
, and hence on the partition subset hj in which the robot orientation lies, but it does not

depend on the exact value θ(k) of the orientation itself. For this reason, one can get rid of the

dependence on θ(k) in the cost function (17), by choosing the subset hj for which the size of the

feasible set M(j)(p(k)) in (20) is minimum. This amounts to consider for each position z(k) the cost

function

J (z(k)) = min
hj∈H(z(k))

V
[

M(j)(p(k))
]

. (21)

If V [M(p(k))] in (17) is replaced by J (z(k)), the number of free variables in the optimization

problem is reduced from 3T to 2T . However, the cost function (21) is still very difficult to compute,

since the M(j)(p(k)) are nonlinear, nonconvex 3D sets.

A further simplification is achieved by considering only the position uncertainty and exploiting

the set approximation introduced in Section 2. In particular, the feasible set approximation worked

out in (11)-(12) becomes

B(j)(z(k)) = B







⋂

li∈τhj

Ti(p(k))







.

Hence, one can replace J (z(k)) with the new cost

J2(z(k)) = min
hj∈H(z(k))

A
[

B(j)(z(k))
]

. (22)

where A[·] denotes the area of the set within square brackets. Notice that, according to the discussion

in Section 2, in (22) the uncertainty in robot orientation is neglected: this means that in the planning

phase one assumes to know exactly the orientation of the robot when computing the size of the

(approximate) feasible position set.

At this point, the optimal control problem (17) boils down to the following optimization problem

min
w(0),...,w(T−1)

1

T

T−1
∑

k=0

J2(z(k))

s.t.

z(k + 1) = z(k) + w(k), k = 0, . . . , T − 1,

|wx(k)| ≤ bx, k = 0, . . . , T − 1,

|wy(k)| ≤ by, k = 0, . . . , T − 1,

z(0) = Πp0, z(T ) = ΠpT .

(23)
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where Π = [I2 02×1] and w(k) = [wx(k), wy(k)]
′ = Πu(k).

The optimization problem (23) is in general non convex. In this paper, the problem is solved

by applying Sequential Quadratic Programming (SQP). The solution w∗(0), . . . , w∗(T − 1) of (23)

provides a sequence of positions z∗(1), . . . , z∗(T ). To solve completely the path planning problem

one has to specify the orientations θ∗(k) associated to the positions z∗(k). In order to minimize the

uncertainty along the path one should consider the set of orientations for which the minimum in

(22) is achieved, i.e.

hj∗(k) = arg min
hj∈H(z∗(k))

A
[

B(j)(z(k))
]

. (24)

Any value within hj∗(k) can be selected as the robot orientation θ∗(k) at the k-th step of the

computed path. In this paper, the orientations θ∗(k) are chosen as the centers of the intervals

hj∗(k) defined in (24).

3.3 Obstacle avoidance

In real-world applications, the path planner must also deal with the presence of obstacles. In

case of stationary obstacles with known position, one of the most popular techniques for tackling

this problem is the potential field approach [12], where artificial potential functions are generated

according to the shape and the location of the obstacles. Once such functions are generated, they

can be combined with the cost function in (22), in order to produce a new cost to be minimized in

(23). A possible choice, is to replace J2(z) in (23) by

J2(z) + ρO(z) (25)

whereO(z) is the artificial potential function associated to the obstacles, and ρ is a suitable weighting

coefficient. Clearly, the resulting cost function accounts both for uncertainty along the path and

for the presence of obstacles in the scene. On the other hand the use of potential functions usually

complicates the solution of (23) increasing the occurrence of local minima, which represent a well-

known drawback of such approaches (e.g., see [22]).

4 SIMULATION RESULTS

In this section, simulation results concerning the proposed path planning strategy are presented.

The computed path has been used to simulate a mobile robot navigation, during which the local-

ization algorithm sketched in Section 2 is applied. Different path choices are compared in terms of

localization accuracy.

12



The first set of simulations has been carried out in a scenario involving 4 landmarks (scenario

A). The aim is to solve the path planning problem (23) with the constraints p0 = [−3 −4 0]′,

pT = [5 4 π], bx = by = 1, and T = 14. The cost function J2(z) in (22) has been computed via the

set approximation techniques described in Section 2, assuming the noise bounds in (8)-(9) given by:

ǫvd = 0.1 (m),

ǫvα = 5 (deg),

The on-board sensor is supposed to have unbounded linear visibility (d = ∞) and limited angu-

lar visibility α = π/2. The resulting J2(z) for this scenario is shown in Figure 4(a), while the

corresponding orientations are reported in Figure 4(b). The computed path is shown in Figure 4(c).

Figure 5 shows the cost function and the computed path for the same scenario, in which two

rectangular obstacles have been added. It is supposed that the obstacles do not prevent detection of

landmarks (this is the case, e.g.,of radio frequency beacons. The cost function has been generated

according to equation (25). The resulting path has been analyzed by simulating the motion of a

mobile robot performing self-localization along the path. The localization algorithm combines the

set approximation techniques outlined in Section 2 for processing range and bearing measurements,

with a simple kinematic model for robot motion. In particular, it is assumed that the robot pose

evolves as

p(k + 1) = p(k) + u(k) + w(k) (26)

where u(k) represents translation and rotation measurements from odometric sensors, and w(k)

models the errors affecting u(k). Also the disturbance w(k) are supposed to be UBB. Specifically,

bounds on translation errors are set to 10% of the x−, y−displacement, respectively, while bounds

on rotation errors are set to 5% of the variation of θ. At each move, the set of feasible robot poses is

enlarged according to the model (26); each time measurements are performed, such a set is reduced

by intersecting it with the set B(k) in (12). A detailed description of the dynamic localization

algorithm can be found in [8].

The performance of the localization algorithm has been compared for three different paths:

topt: the path obtained by solving problem (23);

td1
: the direct path joining p0 to pT , where the orientations are chosen as the center of the interval

hj∗ in (24);

td2
: the direct path joining p0 to pT , where the orientation is kept equal to the one pointing from

z(0) to z(T ).
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Figure 4: Scenario A: (a) cost function (22), (b) associated orientations, (c) path calculated by

solving the optimization problem (23). White triangles represent the selected robot poses, white

circles denote the landmarks. Contour lines of the cost function are reported in background.

It is worth remarking that, while the path planning is performed assuming zero measurement noise

realizations, in the simulations the disturbance signals vdi
, vαi

, w are generated as independent

uniformly distributed random variables within the given bounds. In each simulation run, the uncer-

tainty affecting the robot pose is computed in terms of boxes containing the robot position z(k) and

intervals containing the robot orientation θ(k), for each k. Simulation results are averaged over 100

runs with different noise realizations. Figure 6 reports the result of typical runs for the considered

paths topt, td1
and td2

. It can be noticed that the uncertainty on the robot position is smaller along

the path topt, as expected. The comparison between the two direct paths td1
and td2

in Figures

6(b) and 6(c) confirms that the choice of orientations along the path plays an important role in

uncertainty reduction. Average uncertainties on position and orientation are shown in Figure 7. It

can be noticed that, although the uncertainty values are similar at the endpoints of the path, the

overall uncertainty is significantly smaller along the selected path topt.

A second set of simulations has been performed in an environment with 7 landmarks and two

obstacles (scenario B). In this test, the sensor is supposed to have both linear and angular limited

visibility, with d = 3 and α = π/2. The number of steps is T = 15 and the maximum displacement

during each robot move is bx = by = 2. The other parameters are the same as before. The resulting

path, superimposed to the contour plot of the cost function, is shown in Figure 8. In this case, given

the limited range of the sensor, there exist regions of the environment where the robot does not

perceive any landmark (see the homogeneous gray area in Figure 8). Since in these locations the

robot is not able to localize itself, the potential J2(z) in (23) is very high and the planner correctly

attempts to avoid these zones. The comparison of the localization uncertainty along the optimal

path topt and the direct path with optimal orientation td1
is shown in Figure 9. As before, the robot
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Figure 5: Scenario A with obstacles: (a) cost function (25), (b) path calculated by solving the

optimization problem (23) with the cost function (25)

performs self-localization using the motion model (26). The statistics of the process disturbance

w(k) and of the measurement noise vdi
, vαi

are equal to those of the previous scenario. In this case,

due to the limited linear visibility of the sensor, the improvement in terms of localization accuracy

yielded by an optimal planning is even more evident than before.

Finally, several simulations have been done in environments populated with a larger number of

landmarks. Scenario C refers to the case of 28 landmarks, spread over an area of about 800 m2

(see Figure 10). Such a configuration aims at modelling an outdoor environment with pointwise

landmarks (e.g., trees, corners of buildings, etc.) mostly grouped in three different regions. This

kind of environments are commonly found in practice and can be considered a sort of testbed for

localization and mapping purposes (see, e.g., the well known Victoria Park data set introduced

in [23]). The parameters used in the simulations are equal to those adopted in scenario B, except

for the maximum displacement bx = by = 4 and the linear visibility of the sensor d = 7. In this case,

the optimal path topt passes through the landmark clusters, which correspond to highly informative

regions for localization purposes. On the contrary, the linear path td1
, connecting starting and ending

point, lies in an area of the environment where only few landmarks are visible (if any), resulting

in poor localization accuracy. This phenomenon is confirmed by the comparison of the localization

uncertainty along the two paths, as shown in Figure 11.
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(a) path topt (b) path td1 (c) path td2

Figure 6: Scenario A with obstacles (thick boxes): comparison of localization uncertainty along

three different paths. Gray disks indicate the landmarks, thin boxes represent the uncertainty on

the robot position, triangles correspond to the true robot pose.
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Figure 7: Scenario A with obstacles: (a) area of uncertainty boxes, (b) width of orientation intervals.

Results are averaged over 100 simulation runs, for each of the three paths of Figure 6.
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Figure 8: Scenario B: cost function (25) and optimal path.
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Figure 9: Scenario B: (a) area of uncertainty boxes, (b) width of orientation intervals during a run

of the localization algorithm, along the optimal path (solid line) and the direct path with optimal

orientation (dotted line).
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Figure 10: Scenario C: cost function (22) and optimal path.
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Figure 11: Scenario C: (a) area of uncertainty boxes, (b) width of orientation intervals during a run

of the localization algorithm, along the optimal path (solid line) and the direct path with optimal

orientation (dotted line).
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5 CONCLUSIONS

A path planning algorithm which minimizes the localization uncertainty affecting the robot along the

travelled path has been proposed. A deterministic description of the uncertainty has been adopted,

leading to set-valued pose estimates whose size concurs to the definition of a suitable potential

function to be minimized. Limited sensory range and obstacle avoidance are naturally accounted

for in the considered problem formulation.

Although the considered scenario has been kept deliberately simple, in order to illustrate the main

idea, several developments can be foreseen. More realistic motion models, including for example

nonholonomic constraints or bounded odometric errors, can be incorporated. Different types of

sensors and measurement models can also be treated. More efficient computational methods for

tackling the resulting optimization problem and able to deal with discontinuous and/or disconnected

solution sets should also be considered.

Along the road towards the integration of different tasks, such as localization, map building and

path planning, within a fully autonomous navigation system, a challenging objective to be pursued

is path planning within an environment which is unknown or only partially known. In this scenario,

the uncertainty associated to each robot pose has to be evaluated by solving a SLAM problem, and

the planner has to update the cost function in real-time according to the new information available

in the map. This calls for further research involving both new techniques for uncertainty estimation

and efficient methods for computing the objective function to be optimized.
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