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Abstract: Remote labs are increasingly being used as an effective tool for letting students
practicing with real experiments, with limited effort and cost. A multi-robot setup, based on
the LEGOMindstorms technology and the Matlab environment, allowing students to experiment
with real robots through the Internet, has been developed. In this paper, a novel feature of this
setup is presented. The concept of virtual obstacles is introduced, and some obstacle avoidance
experiments are reported in order to illustrate the main features of the proposed experimental
environment.
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1. INTRODUCTION

The potential benefits of interactive classes, where stu-
dents actively take part in the pedagogical process by
doing things while acquiring skills, are widely acknowl-
edged (the so-called “learning by doing” paradigm). The
importance of practical activities is especially true in en-
gineering curricula, featuring technology-oriented courses
like control systems or robotics. Laboratory sessions with
hands-on experiments are currently scheduled in many
such courses. Unfortunately, letting students practicing
with real physical processes can be a very expensive task,
in terms of both time and cost. Things get worse in case of
large classes. When the number of students grows, labora-
tory experiences, although highly instructive, quickly be-
come unfeasible. In these cases, the progress of information
technology and the diffusion of the Internet can be of help.
As a matter of fact, remote labs are playing an increasingly
important role in technical education (e.g., see Dormido
[2004] for a thorough discussion on technology enhanced
learning in the automatic control field). Enjoying all the
advantages of a real laboratory, remote labs make available
to students a number of physical processes to remotely ex-
periment with. Typically, users run their own experiments
and collect data by simply connecting to the lab through
the Internet with a common web browser, thus allowing
a vast audience of learners to gain access to a variety
of (possibly expensive) educational experiments. Nowa-
days, remote laboratories represent a successful trade-off
between the need of practical experiences and the shortage
of available resources.

Over the last decade, a remote lab focused on robotics
and control systems curricula has been developed at the
University of Siena (Casini et al. [2004]). The Automatic
Control Telelab (ACT) puts a number of different teaching

experiences at users’ disposal, ranging from basic electric
motor identification and control experiments to more ad-
vanced control problems of nonlinear mechanical systems
(e.g., magnetic levitator or helicopter). Recently, a new
teaching experience has been added to the ACT, which al-
lows students to work with teams of mobile robots (Casini
et al. [2009, 2011]). The setup consists of four vehicles
and a supervisor which monitors the system and manages
the user interaction. Robots are built with the LEGO
Mindstorms technology, which is widely used for teach-
ing purposes (Filippov and Fradkov [2009], Valera et al.
[2011]) and research activities (Benedettelli et al. [2010]),
allowing for the rapid prototyping of small footprint vehi-
cles with limited cost. A web page allows users to interact
with the lab and a graphical interface provides the online
visualization of the selected experiment. Several predefined
activities with the multi-robot team are available, but
it is also possible to run a user-defined experiment by
uploading a suitable Matlab function which implements
the robot control laws.

In this paper, a novel feature of the multi-robot system
embedded in the ACT is presented. In order to enable
more complex experiments, while at the same time pre-
serving the easiness of use, the concept of virtual obstacles
is introduced. Besides specifying the robot controllers,
now students may define polygonal regions which model
obstacles present in the robot workspace. At each time
step, in addition to the robot poses, the supervisor com-
putes the distance of each robot to the obstacles. With
this information, a user can embed in his/her controller
also an obstacle avoidance module to prevent vehicles to
collide with the virtual obstacles or among each other. The
choice of having virtual obstacles rather than real objects
improves the versatility of the system and reduces the risk
of dangerous physical impacts. Some experiments carried



out within the proposed framework are described, in order
to illustrate the relevant features of the developed setup.

The paper is structured as follows. Section 2 provides a
brief overview of the multi-robot system developed within
the ACT remote lab. The concept of virtual obstacles
and their implementation are described in Section 3.
A collection of possible experiments concerning obstacle
avoidance algorithms is presented in Section 4. Some
concluding remarks and future extensions are sketched in
Section 5.

2. MULTI-ROBOT REMOTE LAB

The developed multi-robot remote lab consists of four
identical mobile robots built with the LEGO Mindstorms
technology (see Figure 1). The vehicles feature a differen-
tial drive with two independent motors directly coupled to
the left and right wheel. A third support guaranteeing the
stability of the robot is provided by a passive ball transfer
unit. Motors are commanded by a NXT brick which runs
a PID controller in charge of tracking the reference signals
of the wheel speed. The kinematics of the i-th vehicle can
be well approximated by that of a unicycle

ẋi(t) = vi(t) cos(θi(t))

ẏi(t) = vi(t) sin(θi(t)) (1)

θ̇i(t) = ωi(t)

where [xi(t) yi(t)]
T is the robot position, θi(t) its orien-

tation, and vi(t) and ωi(t) denote the linear and angular
speed of the vehicle.

Fig. 1. LEGO NXT mobile robot.

Two wide-angle webcams, placed on the lab ceiling and
pointing downwards, cover the whole experimental area
(approximately 4.5× 3 meters). Their purpose is to detect
position and orientation of each robot, by extracting from
the acquired images the circular markers placed on the
top of each robot (see Figure 1). Each NXT microcon-
troller communicates through a Bluetooth link with the
Centralized Supervision System (CSS), which manages the
overall multi-robot system. Among other tasks, the CSS
is responsible for the image processing, the generation of
the speed reference signals to be sent to each robot and
the management of the user interaction. A user willing to
run a multi-robot experiment can connect to the system
through a dedicated web server. From the starting page it
is possible to choose whether to run a predefined experi-
ment or proceed with a user-defined one. In the latter case,

the user uploads a Matlab function which implements the
desired control law. Such a function, which will be invoked
by the CSS during the experiment at each sampling time,
must return the linear and angular speed reference sig-
nals to be sent to the robot. A graphical user interface,
implemented as a Java applet, allows the user to monitor
the experiment through a graphical panel showing online
the robot positions and possible virtual obstacles placed
in the workspace (see Figure 2). An additional feedback is
provided by a live streaming of the actual robots moving
in the lab (right bottom picture in Figure 2). At the end

Fig. 2. Graphical user interface.

of an experiment the user can download all the data for
offline analysis (robot poses and control inputs at each
sampling time). To reproduce a graphical animation of a
real experiment from the downloaded data, a Matlab script
is also provided (Experiment Player). Analogously, to test
a controller before uploading it for a real experiment,
a Matlab simulator of the multi-robot team is available
(Experiment Simulator). To make the lab available 24
hours a day, an automatic recharge system has been devel-
oped. When the battery voltage of a robot goes below an
alert threshold, the CSS takes control of the vehicle and
drives it to the charging station. The reader interested
in technical details on the implementation of the multi-
robot experimental setup is referred to Casini et al. [2009].
The Automatic Control Telelab is freely accessible through
http://act.dii.unisi.it.

3. VIRTUAL OBSTACLES

In this section, it is described how users can define virtual
obstacles as well as which information useful to design
the controller is returned by the CSS. As mentioned in
Section 2, users have to upload a Matlab function in order
to perform a personalized experiment. The syntax of this
function is

function [U,N_robot,Pose_init,Obstacle]=
user_function(Time,Pose,Ts,Map)

At each time step, Time denotes the experiment time, Pose
is a matrix containing the poses (xi, yi, θi) of each robot,
Ts is the sampling time, and Map is a structure regarding
virtual obstacles which will be described in details later.
Regarding output variables, at each time t, U contains the
forward and angular velocity reference for each vehicle.
Variables N robot, Pose init and Obstacle denote the



number of robots used in the experiment (up to four),
their initial poses, and the definition of virtual obstacles
in the environment; such variables are not changed during
the experiment but are useful for experiment initialization.

To define virtual obstacles, one has to create a structure
Obstacle with the following syntax:

Obstacle(i).vertex=V

where i denotes the progressive number of each obstacle
and V is a matrix v × 2 whose rows contain the x − y
coordinates of the v vertices of the polygon. There is no
limitation on the number of obstacles as well as on the
number of vertices of each obstacle. Since each vertex is
connected to the adjacent one, the resulting polygon can
be both convex and nonconvex. If the variable Obstacle is
not set inside the user-defined function, the environment
is assumed without obstacles, unless differently set by the
user in the web page of the experiment (e.g., by choosing
a predefined or a random environment).

During the experiment, at each time step, information
regarding the environment are stored in the structure Map.
Such a structure contains the following fields:

• Obstacle. It is a copy of the previously defined
homonymous structure, useful when the environment
is not defined inside the user function (i.e., for random
and predefined environments).

• Obstacle Grid. It is a matrix 300 × 450 containing
the occupancy grid of the environment with the
resolution of 1 cm. The value of each entry denotes
if the corresponding location is free or if it is taken
by an obstacle. Thus, information contained in such
a matrix can be easily used inside the user-defined
algorithm.

• Obstacle Distance. It is a matrix whose rows and
columns denote the robot identity and the obsta-
cle identity, respectively. Each entry is a structure
which contains the minimum distance of the selected
robot from the chosen obstacle (field min) and the
corresponding point of the obstacle with minimum
distance (field p min). For instance,
Map.Obstacle Distance(2,3).min
denotes the minimum distance between Robot#2 and
Obstacle#3, while
Map.Obstacle Distance(2,3).p min
contains the nearest point of the obstacle to the robot.
In Fig. 3, an example of computation of such distances
is reported.

• Robot Grid. It is a matrix similar to Obstacle Grid
but referred to other robots instead of obstacles. Since
the matrix dimensions are still 300×450, it is possible
to obtain the occupancy grid for both obstacles and
robots by just combining the information in matrices
Obstacle Grid and Robot Grid.

• Robot Distance. Like Obstacle Distance but re-
ferred to robots.

Note that while information stored in Obstacle Distance
(and in Robot Distance) represent the essential knowl-
edge for developing a path planning algorithm, the occu-
pancy grids are useful for the implementation of algorithms
based on a discrete representation of the environment (see,
e.g. Barraquand and Latombe [1991]). It is worthwhile to
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Fig. 3. Distance computation. For each robot, the mini-
mum euclidean distance from each obstacle (di, i =
1, 2) and the point of minimum distance (pi, i = 1, 2)
are computed and stored into the Map structure.

note that all the distance and occupancy grid information
could be computed within the user-defined function on the
basis of the actual robot poses and the obstacles definition.
However, in principle, such computations can be quite
involved and they may not be suitable for educational
purposes.

4. EXPERIMENTAL TESTS

In this section, some experiments carried out with real
robots are presented, in order to illustrate some of the
possible teaching experiences which can be worked out
within the remote lab described so far. The availability
of virtual obstacles naturally leads to consider motion
planning and collision avoidance algorithms.

One of the most basic issues to be addressed in au-
tonomous navigation is the obstacle avoidance problem.
An essential condition for the successful operation of
robots moving in non-empty environments is the safety
requirement, i.e. the ability of avoiding collisions which
could cause damages to things or people. As a matter of
fact, several collision avoidance algorithms have been in-
vestigated since long time, for different kinds of robots and
environments (see the book Latombe [1991] for a compre-
hensive treatment of robot motion planning techniques).
One of the first and most intuitive obstacle avoidance
algorithms is based on the concept of artificial potential
field, originally proposed in Khatib [1986]. In this frame-
work, the robot is assimilated to a particle immersed in a
potential field, and, as such, it moves according to a force
which is the negative gradient of the potential function.
By suitably shaping the artificial potential it is possible to
drive the robot towards the target, while at the same time
avoiding collisions with the obstacles. In the analogy with
the gravitational field, the robot is like a ball free to move
in an uneven terrain with mountains (the obstacles) and
valleys whose lowest point is at the target. Like the ball
runs through the valleys and is repulsed by the mountains
due to the gravitational force, similarly the robot is driven
to the target and pushed faraway from the obstacles.



Let q ∈ R
2 denote a point of the environment and pt ∈

R
2 be the target location. Then, the artificial potential

function U(·) evaluated at q is the sum of an attractive
term Ua(q) and a repulsive term Ur(q), i.e.

U(q) = Ua(q) + Ur(q), (2)

where, in turn, the total repulsive potential can be com-
puted as the sum of the potential Uri(q) associated to each
obstacle

Ur(q) =

no
∑

i=1

Uri(q), (3)

with no being the total number of obstacles. Depending
on the shape of Ua(q) and Ur(q), different robot motions
are obtained. The most common choice for the attractive
term is a parabolic well with its minimum at the target

Ua(q) =
1

2
ka||q − pt||

2, (4)

where ka is a positive scaling factor. The repulsive term
has to be designed by taking into consideration a couple
of objectives. The repulsive force has to be stronger and
stronger as the robot approaches to an obstacle, and
faraway obstacles should have little or no influence. A
possible function satisfying such requirements is

Uri(q) =







1

2
kri

(

1

ρi(q)
−

1

ρ0

)2

if ρi(q) ≤ ρ0

0 if ρi(q) > ρ0

, (5)

where kri is a positive scaling factor. The function ρi(q)
denotes the distance from q to the i-th obstacle, whereas
the positive constant ρ0 determines the region of influence
of an obstacle. Notice that Uri(q) tends to infinity as q gets
closer to the obstacle and is null when the robot is farther
than ρ0 from the obstacle. Given the artificial potential
field U(q) defined through (2)-(5), the corresponding vir-
tual force at position q can be computed as

F (q) = −∇U(q). (6)

At each time step t, the obstacle avoidance algorithm
based on the artificial potential field method computes
the desired velocity vector ṗ(t) of a robot placed in the
position p(t) proportional to the resulting force F (p(t))
in (6), i.e. ṗ(t) = k F (p(t)).

This algorithm has been implemented as a Matlab function
and tested in the developed remote lab. Since the actual
robots have a unicycle-like kinematics as described in (1),
their velocity vector cannot be arbitrarily set due to
the nonholonomic constraints. Hence, a further step is
necessary to generate the references of the linear speed
v and angular speed ω, given the nominal velocity ṗ(t)
provided by the planning algorithm. For this purpose, a
proportional controller has been implemented as follows

v(t) = kv||ṗ(t)||, (7)

ω(t) = kω(θr(t)− θ(t)), (8)

where θr(t) = atan2(ṗy(t), ṗx(t)) represent the nominal
direction of motion computed by the obstacle avoidance
module, and kv and kω are positive gains. Figure 4 shows
the path of an experiment involving one robot and four
virtual polygonal obstacles (Experiment A). The robot
starts at position pi = [4.28 2.39]T (the default initial
position of the first robot of the team) and has to reach
the target placed at pt = [0.45 0.45]T (all coordinates are
expressed in meters). It can be observed that in 90 s the

robot succeeds in reaching the desired target while at the
same time avoiding the virtual obstacles. The effects of
the discrete-time implementation of the algorithm (with a
sampling time Ts = 1 s prescribed by the vision system),
as well as of the nonholonomic kinematics of the vehicle,
are clearly visible in the second half of the robot path. The
unnatural oscillation between the last two obstacles is due
to impossibility for the robot to follow exactly the direction
of fastest descent of the potential function, because of
kinematic constraints and discrete-time velocity updates.
The final robot position (denoted by a small light point
inside the black circle in Figure 4) is slightly different from
the desired one, since the task is considered accomplished
when the robot is close enough to the target (in this
experiment, the threshold is set to 1 cm). The plots of
robot coordinates against time are reported in Fig. 5.
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Fig. 4. Experiment A. Single-robot and four obstacles
(shaded regions): initial robot pose (empty circle),
final robot pose (filled circle), robot path (solid line).
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Fig. 5. Experiment A. Time plots of robot coordinates.

Although the artificial potential field method is very
appealing for its simplicity and efficiency, it suffers from
a major drawback. Analogously to the gradient methods
developed for numerical optimization, a robot moving
according to the force induced by the potential function
can get stuck in a local minimum. Wherever the attractive



force balances the repulsive force, the potential function
U(q) presents a local minimum in which the vehicle can
get trapped. This especially happens in the presence of
non-convex obstacles or complex environments giving rise
to symmetric attractive and repulsive forces. Notice that
the attractive potential depends on the target position.
Hence, a robot moving in a given workspace can end
up in a local minimum or not depending on the target
location. An example of such phenomenon is observed in
Figure 6, which shows the results of a second experiment
(Experiment B) carried out with one robot in the same
virtual environment of Experiment A. The robot initial
position is the same as before, but this time the target is
placed at pt = [3.0 0.8]T . In this case, a local minimum
arises somewhere between the two rightmost obstacles
which catch the vehicle, thus hampering the reaching of
the target. Again, due to the discretization of the controller
and the kinematics of the vehicle, rather than stopping at
the local minimum the robot keeps moving around it. It
is worth remarking that since the seminal paper Khatib
[1986] several improvements to this method have been
proposed (see, e.g., Khatib and Chatila [1995]), mainly
aiming at mitigating the problem of local minima through
the selection of suitable artificial potential functions. The
interested reader is referred to the book Latombe [1991],
Ch. 7, and references therein for further information.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

2500

3000

x (mm)

y
(m

m
)

t = 200.0 (s)

Fig. 6. Experiment B. Single-robot and four obstacles
(shaded regions): initial robot pose (empty circle),
final robot pose (filled circle), robot path (solid line),
desired target (black cross).

A nice feature of the potential field method is the possibil-
ity of computing beforehand the repulsive potential at each
point of the environment, thus speeding up the planning
when dealing with complex environments. Moreover, this
collision avoidance technique can naturally address the
case of moving obstacles, as long as the robot is equipped
with sensors measuring the distance from the obstacles and
their direction. The versatility of the developed remote lab
allows users to test their obstacle avoidance algorithms
also in presence of non static obstacles. Figures 7(a)-7(c)
show three snapshots taken during an experiment carried
out with two robots in an environment containing one
virtual rectangular obstacle (Experiment C). In this case,
each agent must reach a target position while avoiding
both the static obstacle and the other robot, which plays

the role of a moving obstacle. Recall that among the input
parameters passed to the user-defined Matlab function
there is also the distance and the direction of a vehicle
with respect to all the others. Hence, the potential field
method described so far needs just minor modifications to
prevent robots from colliding each other. As a matter of
fact, it suffices to add a new term like (5) in the repulsive
potential (3) to account for the moving obstacle repre-
sented by the other vehicle. With such modified motion
planning algorithm, both robots have safely reached the
desired target without collision. Notice that after about
27 s the robots face each other nearly colliding. When they
get too close, the repulsive force prevails and the vehicles
swerve, thus avoiding the impact.

Several other trials have been run, with different num-
ber of robots and virtual obstacles. Modified versions of
the techniques illustrated in this section have also been
tested, with various results, ranging from safe but slow
paths to more aggressive trajectories eventually leading
to collisions. From an educational viewpoint, this is a
key feature of the proposed setup. As it happens with
virtual robot simulators (e.g., see Guzmán et al. [2008]),
the possibility of playing safely with the parameters of the
algorithms under investigation, without risking dangerous
and expensive crashes, greatly improves the understanding
of the role of each parameter.

5. CONCLUSIONS

In this paper, a multi-robot setup including virtual ob-
stacles has been presented. The developed architecture,
embedded in the ACT remote lab, allows students to test
motion planning algorithms for single- or multi-robot sys-
tems, moving in environments with static and/or dynamic
obstacles.

An additional feature currently under investigation is
the development of virtual sensors, which will complete
the process of building an augmented reality multi-robot
setup, where real robots equipped with virtual sensors
move in real environments populated with virtual obsta-
cles. Moreover, given the encouraging results obtained in
the past (Casini et al. [2005]), such experimental setup will
be exploited to organize student competitions on relevant
multi-robot problems.
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