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Abstract: This paper deals with spacecraft autonomous navigation in deep space
missions. The considered problem is that of spacecraft localization based on angular
measurements. The dynamic model of the spacecraft accounts for several perturbing
effects, such as Earth and Moon gravitational field asymmetry and errors associated
with the Moon ephemerides. The measurement process is based on elevation and
azimuth of Moon and Earth with respect to the spacecraft reference system. Distance
measurements are not employed. Position and velocity of the spacecraft are estimated
by using both the Extended Kalman Filter (EKF) and the Unscented Kalman Filter
(UKF). The performance of the filters are evaluated on an example of Earth-to-Moon
transfer mission.

1. INTRODUCTION

Following the successful SMART-1 mission of the
European Space Agency (ESA, 2003; Milligan et
al., 2005), a growing interest in lunar and outer
planetary explorations performed by small and
cheap spacecrafts propelled by electric propul-
sion systems is emerged in the space community.
It is a fact that the propulsive efficiency of an
electrically driven spacecraft allows to perform
planetary exploration with a minimum propel-
lant consumption when compared to traditional
chemical propulsion systems. The reduced mass
of the spacecraft permits the use of smaller and
cheaper launchers or even to share the launch
cost by installing the spacecraft as a piggy-back
of larger missions. However, the low thrust pro-
duced by an electric propulsion system leads to
a continuous thrusting strategy which, in turn,
requires an accurate knowledge of the spacecraft
position and attitude during the transfer orbit.
This aspect will substantially increase the cost
of the ground segment. Therefore, autonomous
navigation becomes a fundamental requirement
for this type of missions.
Localization of spacecrafts is usually very accurate
when GPS range measurements are available. The
problem becomes more challenging when GPS
signals are not available, like in high-Earth or-
bits or in long range missions, such as Earth-to-
Moon transfers. In these cases, spacecraft navi-
gation is often handled by ground-based track-
ing stations, thus making it unfeasible for low-

cost spacecraft missions. In order to make space-
crafts fully autonomous, it is necessary to devise
self-localization and navigation algorithms relying
only on measurements provided by on-board sen-
sors (see e.g. (Tuckness and Young, 1995; Long et
al., 2000)).
In this paper, the problem of spacecraft self-
localization is addressed using angular measure-
ments. First, a dynamic model of the spacecraft is
formulated, which takes into account several per-
turbing effects such as Earth and Moon gravita-
tional field asymmetry and errors associated with
the Moon ephemerides. It is assumed that the
navigation system is able to estimate the space-
craft attitude (e.g., by using a star tracker sen-
sor), and the spacecraft is equipped with sensors
providing measurements of elevation and azimuth
of Moon and Earth with respect to the spacecraft
reference system. Range measurements, which are
often difficult to obtain or not sufficiently reliable,
are not required. Then, position and velocity of
the spacecraft are estimated by employing both
the classical Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF) (see e.g.
(Crassidis and Junkins, 2004)). The filters have
been tested on simulated data concerning an ex-
ample of lunar transfer mission, and the results
have been compared with those provided by an
accurate mission simulator. Two different types of
sensors, with different accuracy levels, have been
considered. The size of the obtained localization
errors, and the associated confidence intervals,
show that the proposed algorithms provide reli-



able estimates, whose precision is sufficiently ac-
curate for autonomous navigation of spacecrafts
in the considered class of missions.

2. SPACECRAFT MODEL

The following dynamic model for the spacecraft is
considered

r̈ = −
µ

ρ3
r + µ$

(

rs$

ρ3
s$

−
r$

ρ3
$

)

+ u, (1)

where r = [x, y, z], r$ = [x$, y$, z$] are re-
spectively the spacecraft and Moon positions in
the Earth Centered Inertial reference system (ECI
(M. D. Griffin, 2004)), see Figure 1. In equa-
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Fig. 1. The ECI reference system

tion (1), µ = 398600.4415 km3/s2 and µ$ =
4902.801 km3/s2 are the gravitational parame-
ters; ρ = ‖r‖, ρ$ = ‖r$‖ are respectively the
distances of the spacecraft and the Moon from
the earth; rs$ = r$ − r is the moon position
with respect to the spacecraft, and ρs$ = ‖rs$‖.
The input u is the acceleration provided by the
propulsion system. If we denote the thrust vector
and its norm by T and T respectively, then the
input is u = T

m
, where m is the spacecraft mass,

evolving as ṁ = − T
Isp·g

, and Isp is the specific

impulse (see (M. D. Griffin, 2004)).
Although model (1) takes into account the most
relevant gravitational terms, there are several pos-
sible sources of model errors deriving from per-
turbing effects, such as Earth and Moon gravita-
tional field asymmetry, air drag, sun attraction,
and errors associated with the Moon ephemerides
(King-Hele, 1987). According to Cowell’s formu-
lation, process disturbances are modelled by an
additive term ξ in the right hand side of (1). We
consider an error term given by:

ξ = ω♁ + ω$ + ωt. (2)

The terms ω♁ and ω$ represent the disturbances
associated with the Earth and Moon gravitational
field asymmetries. These disturbances are mod-
elled as Gaussian noises. The standard deviation
of ω♁ has been estimated by evaluating the differ-
ence between the gravitational force predicted by
the nominal model µ

ρ3 r and the one yielded by the

Earth gravitational model JGM-2 (ECSS, 2000).
For each fixed value of ρ, the empirical standard
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Fig. 2. Standard deviations associated with Earth
and Moon gravitational field asymmetries

deviation has been computed at 900 different
spacecraft positions, uniformly distributed on a
sphere of radius ρ centered at the Earth. In Fig.
2(a) the standard deviation along each coordinate
has been reported as a function of ρ. The behavior
can be approximated by the model ω♁ = G♁ωe,

where G♁ = diag
([

1.68·1010

ρ4 , 1.68·1010

ρ4 , 2.71·1010

ρ4

])

and ωe ∈ R
3 is an independent white noise with

standard normal distribution N (0, I). The same
has been done for the Moon by considering the
model LP-150 (Konopliv et al., 2001). The stan-
dard deviations of the modelled disturbance as a
function of ρs$, reported in Fig. 2(b), can be ap-

proximated by ω$ = G$ωm, where G$ = 109

ρ4

s$
I

and ωm ∈ R
3 is an independent white noise with

distribution N (0, I).
The last term ωt in (2), is a white noise with
zero mean and covariance σ2

t I, which takes into
account unmodelled effects such as sun attraction,
radiation pressure, dragging, integration errors.
The variance σ2

t will play the role of a tuning knob
in the design of the filters.
It is also assumed that the propulsion system
generates a perturbed thrust T̂ = (1+ωu)T, with
ωu white noise distributed as N (0, σ2

u). Hence the
resulting perturbed input is û = (1+ωu)u. Notice
that the thrust perturbation affects also the fuel
mass evolution.
Another error source is due to the fact that the
Moon position is not known exactly. The Moon
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Fig. 3. Angle measurements in the spacecraft
reference system

ephemerides algorithm (Vallado, 2001) has been
used to estimate the Moon position. Hence, the
Moon position is affected by the error vector e$ =
[εx$, εy$, εz$]′, where each component is an in-
dependent noise signal distributed as N (0, σ2

ε$
),

with σε$
= 10 km (Seidelmann et al., 1985).

Therefore, if r̂$ is the Moon position provided
by the ephemerides, one has

r̂$ = r$ + e$. (3)

By including all the perturbation terms and error
sources into the nominal model (1), one obtains
the perturbed dynamic model

r̈ = −
µ

ρ3
r + µ$

(

r̂$ − e$ − r

‖r̂$ − e$ − r‖3
−

r̂$ − e$

‖r̂$ − e$‖3

)

+ (1 + ωu)u + G♁ωe + G$ωm + ωt.

(4)
Similarly, the perturbed spacecraft mass evolution
is given by

ṁ = −(1 + ωu)
T

Isp · g
. (5)

The spacecraft is equipped with sensors that pro-
vide angular measurements of azimuth and el-
evation of Moon and Earth, with respect to a
local reference system centered at the spacecraft
and aligned to ECI, see Fig. 3 (recall that it is
assumed that the attitude of the spacecraft is
known). Hence, by taking into account (3), the
measurements equations are given by

θ♁ = atan2 (−y,−x) + vθ
♁

(6)

φ♁ = atan

(

−z
√

x2 + y2

)

+ vφ
♁

(7)

θ$ = atan2

(

ŷ$ − εy$ − y, x̂$ − εx$ − x
)

+ vθ$
(8)

φ$ = atan

(

ẑ$ − εz$ − z
√

(x̂$ − εx$ − x)2 + (ŷ$ − εy$ − y)2

)

+vφ$

(9)

where vθ
♁
,vφ

♁
,vθ$

and vφ$
are independent dis-

turbances with distribution N (0, σ2
v).

3. STATE ESTIMATION

In order to tackle the spacecraft localization prob-
lem via off-the-shelf estimation algorithms, it is

convenient to rewrite the dynamic model (4)-(5)
and the measurement equations (6)-(9) in a more
compact form. To this purpose let us introduce
the state vector X = [x, y, z, ẋ, ẏ, ż, m]′ containing
the spacecraft position and velocity, as well as
its mass. If we stack all the uncertainty sources
of the dynamic model in a disturbance vector
w = [ω′

e ω′
m ω′

t ωu e′$]′, then the time evolution
of the state vector can be written as

Ẋ = f(X,u,w, t), (10)

with f(·, ·, ·, ·) defined according to (4)-(5). Simi-
larly, if the errors affecting the measurements are
grouped as v = [vθ

♁
vφ

♁
vθ$

vφ$
e′$]′, the

measurement equations (6)-(9) can be cast as

Y = h(X,v, t), (11)

where Y = [θ♁ φ♁ θ$ φ$]′. Notice that the
explicit dependence of the functions f(·, ·, ·, ·) and
h(·, ·, ·) on time t is due to the presence of the pre-
dicted Moon position r̂$(t) in the expressions (4)
and (8)-(9). Actually, r̂$(t) can be thought of as
a known time-varying parameter or a given input.
A further step towards the implementation of
recursive state estimation algorithms is the dis-
cretization of equation (10). Let us denote by ∆T
the sampling time. Then a discrete-time version
of equation (10) is given by

X((k + 1)∆T ) = X(k∆T )
+∆Tf(X(k∆T ),u(k∆T ),w(k∆T ), k∆T )
4
= fd(X(k∆T ),u(k∆T ),w(k∆T ), k∆T )).

In the following, for ease of notation, we will get
rid of the dependence on the sampling time ∆T
and will refer to the discrete-time model

X(k + 1) = fd(X(k),u(k),w(k), k)
Y(k) = h(X(k),v(k), k).

(12)

The estimation of the spacecraft position and ve-
locity boils down to a state estimation problem
for system (12). In this work, two different estima-
tors are considered: the Extended Kalman Filter
(EKF) and the Unscented Kalman Filter (UKF).

3.1 Extended Kalman Filter

The EKF is a classic recursive state estimator for
nonlinear systems. Hereafter, the EKF equations
are reported for model (12). Let us denote the
covariance matrix of the process disturbance by
Q = E{ww′} and that of the measurement noise
by R = E{vv′}. Notice that the error e$ affects
both the dynamic model and the measurement
equation, i.e. it is included both in w and in v.
To account for the correlation between w and v

let us denote their cross-covariance matrix by S =

E{wv′} =

[

010×4 010×3

03×4 Se

]

with Se = E{e$e′$}.

Finally, let X̂+
k be the state estimate at time k and

let P+
k be the estimation error covariance matrix



at the same time. Then, the EKF prediction and
correction equations are as follows (Crassidis and
Junkins, 2004).

Prediction

X̂−
k+1 = fd(X̂

+
k ,uk,0, k)

P−
k+1 = FkP+

k F ′
k + GkQG′

k

Correction

X̂+
k+1 = X̂−

k+1 + Kk+1[Yk+1 − h(X̂−
k+1,0, k + 1)]

P+
k+1 = [I − Kk+1Hk+1]P

−
k+1

−Kk+1Vk+1S
′G′

k

Kk+1 = [P−
k+1H

′
k+1 + GkSV ′

k+1]

[Hk+1P
−
k+1H

′
k+1 + Vk+1RV ′

k+1

+Hk+1GkSV ′
k+1 + Vk+1S

′G′
kH ′

k+1]
−1

where the superscript “-” denotes the prediction
of the corresponding quantity before the measure-
ment at time k + 1 is taken, and

Fk
4
=

∂fd

∂X









X̂
+

k
,uk,0

, Gk
4
=

∂fd

∂w









X̂
+

k
,uk,0

,

Hk
4
=

∂h

∂X









X̂
−

k
,0

, Vk
4
=

∂h

∂v









X̂
−

k
,0

.

Clearly, if the measurements are available with a
frequency lower than the sampling one (e.g., every
N∆T ), then the intermediate state estimates are
updated according only to the prediction step
(i.e., N prediction steps are performed between
two consecutive correction steps).

3.2 Unscented Kalman Filter

The UKF is a recursive state estimator based on
the Unscented Transform, which is a method to
approximate the mean and covariance of a ran-
dom variable undergoing a nonlinear transforma-
tion (Julier and Uhlmann, 1997; Wan and van der
Merwe, 2001). The underlying idea is to estimate
the statistics of the transformed variable from a
set of 2n + 1 points (called sigma points), with
n being the dimension of the considered random
variable. Sigma points are generated determin-
istically, on the basis of the (known) covariance
matrix of the initial random variable and depend-
ing on the parameters of the filter. Unlike the
EKF, the UKF does not require the evaluation of
the Jacobians, since the gains to be used during
the estimation are computed directly from the
sigma points. In the following the UKF update
equations are reported for the dynamic model (12)
(Wan and van der Merwe, 2001). Let us define the
augmented state vector Xa = [X′ w′ v′]′ ∈ R

L.
Denote by X̂a

k and P a
k the state estimate and the

corresponding error covariance matrix

X̂a
k = [(X̂+

k )′ 0 0]′ P a
k =





P+
k 0 0
0 Q S
0 S′ R





Sigma-point generation. For i = 0, . . . , 2L:

χa
i,k =























X̂a
k i = 0

X̂a
k +

(

√

(L + λ)P a
k

)

i

i = 1, . . . , L

X̂a
k −

(

√

(L + λ)P a
k

)

i−L

i = L + 1, . . . , 2L

4
= [(χx

i,k)′ (χw
i,k)′ (χv

i,k)′]′

where (P )i denotes the i-th column of matrix P .

Prediction

χx
i,k+1|k = fd(χ

x
i,k,uk, χw

i,k
, k) i = 0, . . . , 2L

X̂−
k+1 =

2L
∑

i=0

W
(m)
i χx

i,k+1|k

P−
k+1 =

2L
∑

i=0

W
(c)
i [χx

i,k+1|k − X̂−
k+1][χ

x
i,k+1|k − X̂−

k+1]
′

Yi,k+1|k = h(χx
i,k+1|k, χv

i,k
, k + 1) i = 0, . . . , 2L

Ŷ−
k+1 =

2L
∑

i=0

W
(m)
i Yi,k+1|k

Correction

PY Y =

2L
∑

i=0

W
(c)
i [Yi,k+1|k − Ŷ−

k+1][Yi,k+1|k − Ŷ−
k+1]

′

PXY =

2L
∑

i=0

W
(c)
i [χx

i,k+1|k − X̂−
k+1][Yi,k+1|k − Ŷ−

k+1]
′

X̂+
k+1 = X̂−

k+1 + PXY P−1
Y Y (Yk+1 − Ŷ−

k+1)

P+
k+1 = P−

k+1 − PXY P−1
Y Y P ′

XY

The weights W
(·)
i are computed as follows

W
(m)
0 =

λ

L + λ
, W

(c)
0 =

λ

L + λ
(1 − α2 + β),

W
(m)
i = W

(c)
i =

1

2(L + λ)
, i = 1, . . . , 2L

where λ = α2(L + κ)−L, and α, β and κ are the
tuning parameters of the filter.

4. SIMULATION RESULTS

In this section, the performance of the filters is
analyzed by simulating an example of Earth-to-
Moon transfer mission, with initial eccentricity
e = 0.5, inclination i = 10o, altitude perigee a =
3·104Km. The forcing input is a continuous thrust
tangential to the trajectory, with T = T ṙ

‖ṙ‖ , and

T = 50mN . The filters have been tested for
70 days of mission. The sampling time used to
discretize the dynamic model (10) is ∆T = 15 s,
whereas the angular measurements (11) are sup-
posed to be available once per hour. This means
that both filters perform a correction step every
240 prediction steps. The standard deviations of
ωe, ωm and e$ have been chosen as pointed out
in section 2, that of ωu is σu = 0.01, while σt acts
as a tuning parameter of the filters.
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Fig. 4. EKF: x, y, z estimation errors (solid) and
99% confidence intervals (dashed).

Although sensor modelling is not an issue ad-
dressed in this work, two different kinds of pos-
sible devices have been considered: a sensor based
on standard vision system technology (hereafter
sensor A) and a star tracker sensor (sensor B).
The standard deviation of the measurement errors
is assumed to be σv = 0.01 π

180 for sensor A, and
σv = 10−4 π

180 for sensor B.

The filters have been initialized with X̂+
0 = X(0)

and P+
0 = diag

([

1, 1, 1, 10−4, 10−4, 10−4, 10−6
])

.
For each filter both the estimation errors and
the corresponding standard deviations are eval-
uated by comparing the state estimates to the
output of an accurate mission simulator, jointly
developed by Aerospazio Tecnologie s.r.l. and the
Dipartimento di Ingegneria dell’Informazione of
the Università di Siena.
For the EKF, the standard deviation of the pro-
cess disturbance ωt has been tuned to σt = 10−5.
Smaller values of σt resulted in a significant lack of
consistency of the filter (estimation errors remark-
ably outside the 99% confidence intervals). Figure
4 shows the EKF estimation errors for coordinates
x, y, z, and the corresponding 99% confidence in-
tervals, for sensors A and B. In Table 1 the sample
standard deviation of the estimation errors are
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Fig. 5. UKF: x, y, z estimation errors (solid) and
99% confidence intervals (dashed).

reported (results are averaged over 10 simulation
runs). The overall average localization error turns
out to be 48.82 km for sensor A, and 9.33 km for
sensor B.

sensor A sensor B

x 36.80 km 8.75 km
y 42.55 km 9.53 km
z 10.81 km 1.66 km
ẋ 1.33 · 10−3km/s 4.00 · 10−4km/s
ẏ 1.51 · 10−3km/s 5.78 · 10−4km/s
ż 3.43 · 10−4km/s 1.18 · 10−4km/s

Table 1. EKF: sample standard devia-
tion of estimation errors.

For the UKF, the following parameters have been
used for the generation of the sigma points: α =
10−3, κ = 0, β = 2. The standard deviation
of the process disturbance ωt has been tuned to
σt = 10−7. In Figure 5 the x, y, z estimation
errors and the 99%, confidence intervals are shown
for sensors A and B. Table 2 reports the sample
standard deviation of the estimation errors, aver-
aged over 10 simulation runs. The overall average
localization error is now 38.00 km for sensor A
and 8.02 km for sensor B. Hence, with respect to
the EKF the localization error has been reduced
of about 20% in the former case, and about 15%
in the latter. Moreover, Figures 4 and 5 show



that UKF features better consistency properties
(error almost always inside the 99% confidence
intervals). It is worth remarking that these results
have been obtained with a smaller value of σt with
respect to the EKF.

sensor A sensor B

x 31.59 km 8.07 km
y 31.57 km 7.09 km
z 10.94 km 1.26 km
ẋ 1.07 · 10−3km/s 4.27 · 10−4km/s
ẏ 1.18 · 10−3km/s 5.08 · 10−4km/s
ż 4.48 · 10−4km/s 1.44 · 10−4km/s

Table 2. UKF: sample standard devia-
tion of estimation errors.

Figures 4-5 show a periodic behavior of the po-
sition estimation errors. Intuition suggests that
the peaks are relative to configurations in which
Earth, Moon and the spacecraft are aligned. This
is confirmed by Fig. 6, where the mean square
localization error (MSE) is plotted against the
alignment angle. The figure refers to the UKF
with sensor B, but a similar phenomenon occurs
in the other settings. The error peaks are mostly
grouped around angles zero (Moon and Earth
aligned on opposite side respect to the spacecraft)
and ±π (Moon and Earth aligned on the same side
respect to the spacecraft) Conversely, the lowest
values correspond to angles close to ±π
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Fig. 6. Mean square error of position estimation
vs. spacecraft-Earth-Moon alignment

5. CONCLUSIONS AND FUTURE WORK

A preliminary investigation on the performance
of recursive estimation techniques for autonomous
navigation of low-cost deep space missions has
been presented. The localization procedure is
based only on angular measurements of celestial
bodies with respect to the spacecraft reference
system, and does not require range measurements
which are often difficult to obtain. Both filters
considered in the paper, EKF and UKF, provide
localization errors which are reasonably small for
the considered type of missions. Although both
techniques resulted in the same order of errors,
the UKF has shown better performance in terms
of average localization precision and consistency

of the estimates. Moreover, the tuning of the UKF
has led to smaller values of the process distur-
bance covariance with respect to the EKF.
The ongoing work concerns different topics. The
dynamic model should be enriched in order to
consider eclipse effects. Sun azimuth and elevation
measurements will be added to improve the lo-
calization precision. The development of accurate
sensor models for the measurement process and
the integration of an attitude estimation proce-
dure in the autonomous navigation module are
further issues to be addressed.
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