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Abstract

In this paper, the repeat-groundtrack orbit maintenance problem is addressed

for spacecraft driven by electric propulsion. An adaptive solution is proposed,

which combines an hysteresis controller and a recursive least squares filter. The

controller provides a pulse-width modulated command to the thruster, in com-

pliance with the peculiarities of the electric propulsion technology. The filter

takes care of estimating a set of environmental disturbance parameters, from

inertial position and velocity measurements. The resulting control scheme is

able to compensate for the groundtrack drift due to atmospheric drag, in a fully

autonomous manner. A numerical study of a low Earth orbit mission confirms

the effectiveness of the proposed method.
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1. Introduction

Recent years have seen a growing trend in the development of Low Earth

Orbit (LEO) space missions for commercial, strategic, and scientific purposes.

Examples include Earth Observation programs such as DMC, RapidEye and

Pléiades-Neo [1, 2], as well as broadband constellations like OneWeb, Starlink
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and Telesat [3]. As opposed to geostationary spacecraft, a LEO satellite can-

not stay always pointed towards a fixed spot on Earth. Nevertheless, it can

revisit the same location periodically, by using a repeat-groundtrack orbit con-

figuration. Besides its utility in traditional remote sensing applications, such

a configuration can be exploited to deploy satellite constellations supporting

global, regional and reconnaissance services [4, 5]. Thus, a repeat-groundtrack

orbit design is ubiquitous in the above-mentioned type of missions.

Due to environmental perturbations and, in particular, to atmospheric drag,

the groundtrack of a LEO satellite tends to drift away from the nominal repeat

condition. This undesired effect must be compensated for by means of a suitable

groundtrack maintenance program. Depending on the required control accuracy,

the program may involve a tight maneuvering schedule, which makes ground-

based control inefficient and risky. In order to overcome this issue, a variety of

autonomous on-board control strategies have been proposed, see e.g., [6, 7, 8, 9].

Groundtrack maintenance operations require an adequately sized propulsion

unit. The unit must produce the delta-v associated to the maintenance program,

in addition to the one reserved for orbit acquisition and de-orbiting maneuvers.

The latter, in particular, are mandatory within present regulations [10]. For

very low altitude orbits, drag compensation can be the dominant factor in the

mission delta-v budget, while the contribution due to de-orbiting becomes more

pronounced at higher altitudes. In any case, the total delta-v may grow to a

level justifying the adoption of a high specific impulse, low-thrust technology

such as Electric Propulsion (EP) [11, 12, 13, 14]. Indeed, a number of EP-based

LEO missions have been recently launched [15].

The maintenance of repeat-groundtrack orbits is a well-established topic in

astrodynamics. The classical open-loop solution to the maintenance problem is

described, for instance, in [16]. Several modifications to this method have been

proposed in the literature. In [17], a feedback implementation is presented. The

effect of a moderate orbital eccentricity is analyzed in [18]. The application to

successive-coverage orbits is discussed in [19]. A high-precision design is pre-

sented in [20]. In all these works, each engine burn is modeled as an impulsive

velocity change. Such an approximation is not well suited for EP engines, whose

thrust profile is usually modeled as a rectangular pulse. In light of this consid-
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eration, some recent studies [21, 22] have started adopting a piecewise-constant

parametrization of the control command.

In this paper, an autonomous groundtrack maintenance strategy is devel-

oped for EP-based LEO missions. In compliance with the peculiarities of the

EP technology, it is assumed that the thruster is either operated at a constant

set-point or switched off, thus requiring a pulse-width modulated control in-

put signal. It is shown that, for small deviations about a circular orbit, the

groundtrack error dynamics is that of a perturbed double integrator. The per-

turbation term is modeled as a periodic signal with non-zero mean, according

to what is observed in the literature [16]. Within this setting, an adaptive

feedback scheme is derived. The idea underpinning the design is to combine

an hysteresis controller with a recursive least squares (RLS) filter. The RLS

filter is in charge of estimating a set of parameters of the error system. The

controller provides a suitable on/off engine switching signal based on the filter

estimates. The control law builds upon recent results on minimum switching

control in [23, 24]. Although both RLS estimation and switching control are

well established methodologies, the main contribution of this work is to suit-

ably adapt these techniques to the specific application of repeat-groundtrack

orbit maintenance.

The proposed control scheme is evaluated on a simulation case study featur-

ing a 460 km altitude orbit. Simulation results show that the desired repeat-

groundtrack pattern is acquired successfully and that the tracking error is main-

tained within prescribed limits, relying only on GPS measurements.

The rest of the paper is organized as follows. In Section 2, the repeat-

groundtrack control problem is reviewed. Section 3 presents the dynamic model

which is employed for control design. The adaptive groundtrack control scheme

is described in Section 4. The simulation case study is discussed in Section 5,

and conclusions are drawn in Section 6.

2. Problem Formulation

Repeat-groundtrack orbits depend on the commensurability between the

satellite nodal period (the time interval it takes a satellite to make two con-

secutive ascending node crossings), and the nodal period of Greenwich (the
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period of the Earth’s rotation with respect to the ascending node). The nodal

period is defined as

Tγ =
2π

γ̇
, (1)

where γ = M + ω is the satellite mean latitude, i.e., the sum of the mean

anomaly M and of the argument of periapsis ω. The nodal period of Greenwich

is given by

TG =
2π

ω⊕ − Ω̇
, (2)

where ω⊕ is the Earth’s rotation rate, and Ω is the satellite right ascension of

the ascending node. Thus, the repeat-groundtrack condition can be formalized

as

Tγ = r TG, (3)

where r > 0 is a rational number, representing the ratio between the number of

days and the number of satellite revolutions within the repeat cycle. For LEO

orbits, r is typically in the order of 1/15.

The groundtrack spacing λS between two consecutive ascending node cross-

ings is given by

λS = 2π
Tγ

TG

. (4)

Ideally, λS = 2πr. However, in the presence of perturbations such as atmo-

spheric drag and third-body gravity, λS drifts away from the nominal value.

In standard repeat-groundtrack control schemes, a sequence of impulsive orbit

adjustment maneuvers is commanded to counteract this change [16]. In this

paper, a different approach is proposed.

Besides enforcing (3), the control scheme must guarantee that the satellite

repeatedly crosses the equator at a desired longitude λ∗ ∈ [0, 2π), east of Green-

wich. Let λG(t) = λG(0) + ω⊕t be the instantaneous longitude of Greenwich.

Then, the groundtrack error x(t) is defined as

x(t) := r γ(t) + Ω(t)− λG(t)− λ∗, (5)

where all angular quantities are unwrapped. Notice that when x(t) is constant,

i.e. ẋ(t) = 0, one has

r γ̇ + Ω̇− ω⊕ = 0, (6)
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which in turn, by using (1) and (2), implies that (3) is satisfied. Moreover, if

x(t) = 0, then the satellite crosses the equator at the desired east longitude λ∗.

In fact, by definition γ = 2πN, with N ∈ N, whenever the satellite crosses the

ascending node. Being r in (3) a rational number, there exists an ascending

node crossing time tc, at which

[r γ(tc)] mod 2π = 0. (7)

By using (7) and x(t) = 0, it follows from (5) that

[Ω(tc)− λG(tc)] mod 2π = λ∗, (8)

where the expression on the left hand side is indeed the satellite east longitude

at the equator crossing time tc.

The requirement x(t) = 0, ∀t, cannot be achieved with a on/off thrusting

strategy. Therefore, the following relaxed control problem is addressed.

Problem 1. Find an on/off thrusting scheme, ensuring that

|x(t)| ≤ xlim for all t ≥ t̃ > 0, (9)

where xlim > 0 is a predefined longitude error tolerance, and t̃ is a finite settling

time.

Following a common practice, we consider tangential thrust only. In fact,

radial and out-of-plane maneuvers are often deemed too expensive in terms of

fuel consumption [16]. In this regard, it should be noticed that Problem 1 does

not account for the grountrack deviation resulting from inclination errors (which

is zero at the equator and increases with the latitude). Such contribution can

be compensated for separately, if required, via out-of-plane maneuvers. More-

over, attention is restricted to the case of a near-circular orbit, since most LEO

spacecraft are flown in this type of orbit.

3. Groundtrack Error Dynamics

The dynamics of the groundtrack error are obtained by taking the second

derivative of (5) with respect to time, resulting in

ẍ(t) = r γ̈(t) + Ω̈(t). (10)
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Let the scalar uT (t) be a tangential control acceleration and the vector d(t) =

[dR dT dN ]T describe the radial, tangential and normal components of a per-

turbation due to environmental sources. The effect of uT and d on system (10)

can be modeled through the following variational equations, adapted for nearly

circular orbits (see, e.g., [7, 25])

d

dt
γ = n−

√

a

µ

[

2dR + sin(γ) cot(i) dN

]

d

dt
n = −

3

a
(dT + uT )

d

dt
Ω =

√

a

µ

sin(γ)

sin(i)
dN

d

dt
i =

√

a

µ
cos(γ) dN ,

(11)

where the dependence on time is left implicit, n =
√

µ/a3 denotes the mean

motion, a and i indicate the semi-major axis and inclination, respectively, and

µ is the gravitational parameter. By using (11), it can be verified that, for small

deviations about an orbit with semi-major axis a∗, (10) takes on the form

ẍ(t) = pd(t)−
3 r

a∗
uT (t), (12)

where the time varying quantity pd(t) describes the cumulative effect of envi-

ronmental perturbations.

Finding an analytical expression for pd(t) is in general a formidable task.

Moreover, such an expression will unavoidably suffer form inaccuracies in the

perturbation model adopted for the term d(t). For the problem at hand, it is

known that pd(t) is approximately constant, on average, over few orbital periods

[16]. Hence, within such a time scale, pd(t) can be modeled as

pd(t) = p+ p∆(t), (13)

where p denotes the average contribution of perturbations, and the term p∆(t)

accounts for zero-mean periodic effects.

It is worth noticing that the tangential acceleration due to atmospheric drag

usually represents the major contribution to the disturbance component p in

(13). More specifically, one has that p ≃ −3 r d̄T /a
∗ > 0, where d̄T < 0 denotes

the average drag acceleration. Conversely, secular perturbations on γ and Ω

have a limited impact on (13). For instance, a secular drift of Ω due to the

6



Sun-synchronicity condition Ω̇ = 2π rad/year would result in Ω̈ = 0 in (10),

which in turn does not provide any contribution to (13).

4. Repeat-Groundtrack Control Scheme

In this section, an on/off control law is presented for Problem 1, under the

assumption that full state information is available and considering an averaged

model of the groundtrack error dynamics. Then, a RLS filter is derived, which

estimates both the system state and the average disturbance p. Finally, the im-

plementation of an adaptive control scheme based on this modules is discussed,

together with a tuning strategy which minimizes the variation of the orbital

eccentricity due to thrusting.

4.1. Controller Design

In order to compensate for a constant positive disturbance pd(t) = p in (12),

consider a on/off control input of the form

uT = umax v(t), (14)

where umax > 0 is the maximum acceleration which can be delivered by the

propulsion system and v(t) ∈ {0, 1} is the engine activation signal. By enforcing

(14) and taking into account that p∆(t) is a zero-mean signal, the following

averaged model is obtained from (12)-(13)

ÿ(t) = p− k v(t), (15)

where

k =
3 r umax

a∗
, (16)

and y(t) denotes the average groundtrack error.

Let y(t) be the solution to system (15) starting from the initial conditions

y(0) = x(0) and ẏ(0) = ẋ(0). Clearly, the relationship between y(t) and the

solution x(t) of system (12) is

y(t) = x(t) − α(t), (17)

where

α(t) =
∫∫ t

0
p∆(τ) dτ (18)
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ẏ

s(y, ẏ; p) =−ylim s(y, ẏ; p) = ylim

ylim−ylim

Figure 1: Switching curves (solid) and example of a trajectory (dotted) resulting from the

application of the control scheme (22).

is a zero-mean periodic signal. By using (15)-(17), Problem 1 can be recast as

that of finding a switching signal v(t), guaranteeing that

|y(t)| ≤ ylim for all t ≥ t̄ > 0, (19)

where

0 < ylim ≤ xlim −max
t

|α(t)|. (20)

Notice from (15) that the condition k > p must be met, in order for the problem

to be solvable. Moreover, by (20), one must have xlim > maxt |α(t)|, which is

typically the case in real-world applications (since high-frequency disturbances

p∆(t) are attenuated by the double integrator system (12)-(13)).

A minimum fuel and minimum switching solution to the above control prob-

lem is obtained by exploiting the results in [23]. Consider the switching function

s(y, ẏ; p) =















y −
1

2(p− k)
ẏ2 if ẏ ≥ 0

y −
1

2p
ẏ2 if ẏ < 0.

(21)

Let the on/off input v(t) be specified according to the hysteresis function

v(t) =



















1 if s(y(t), ẏ(t); p) ≥ ylim

0 if s(y(t), ẏ(t); p) ≤ −ylim

vh otherwise,

(22)
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where vh = 1 if s(y, ẏ; p) ≥ ylim occurred more recently than s(y, ẏ; p) ≤−ylim,

vh = 0 otherwise. By applying the control law (22) to system (15), a limit

cycle trajectory with amplitude 2ylim is reached in finite time from any initial

condition. An example is shown in the phase plane portrait reported in Fig. 1.

The limit cycle period is given by TL = 4
√

k ylim

p k−p2 . It is divided into a firing

period of length TF = DTL and a coasting period of length TC = (1 − D)TL,

where D = p/k denotes the actuator duty cycle. Thus, the firing time turns out

to be

TF =
4p

k

√

k ylim
p k − p2

= 4

√

p ylim
k2 − k p

. (23)

4.2. RLS Filter Design

The control law (22) requires the real-time knowledge of y(t), ẏ(t) and p.

Given the parameter p and the initial conditions y(0), ẏ(0), one can compute

y(t) and ẏ(t) just by integrating system (15). However, using this solution would

result in an open-loop control strategy. Moreover, the exact value of y(0), ẏ(0)

and p is, in general, unknown.

An alternative approach consists in estimating y(t), ẏ(t) and p by using

values of x(t) obtained from inertial measurements. More specifically, the orbital

elements γ(t) and Ω(t) in (5) can be computed from absolute position and

velocity measurements, by using standard analytical methods [16], while the

quantities λG(t), r and λ∗ are known.

Let the obtained values of x(t) be denoted as x̃(tj), where {tj}j∈N is the

sequence of time samples at which measurements are taken. Now, observe that

the solution to (15), with either v = 0 or v = 1, can be parameterized as

y(t) = ϕT (t)θ, (24)

where ϕ(t) = [t2 t 1]T and θ = [θ1 θ2 θ3]
T is a vector of unknown parameters to

be determined. Hence, a least squares estimation problem can be cast as follows

θ̂ = argmin
θ

∑

j

[ x̃(tj)− ϕT (tj) θ ]
2. (25)

A recursive solution to (25) is provided by the exponentially weighted RLS
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algorithm [26]

θ̂(tj) = θ̂(tj−1) +
P (tj−1)ϕ(tj)

η + ϕ(tj)TP (tj−1)ϕ(tj)

[

x̃(tj)− ϕT (tj)θ̂(tj−1)
]

(26)

P (tj) =
1

η

[

P (tj−1)−
P (tj−1)ϕ(tj)ϕ

T (tj)P (tj−1)

η + ϕT (tj)P (tj−1)ϕ(tj)

]

, (27)

initialized at P (t0) and θ̂(t0), where η is the forgetting factor.

The algorithm (26)-(27) is re-initialized each time that the right hand side

of (15) changes sign, i.e., whenever the input switches, in order to prevent

divergence in the estimates. Let t̄ be an input switching time, such that ts−1 <

t̄ ≤ ts. At time t̄, the parameter vector is reset according to

θ̂3(t̄) = ϕT (t̄) θ̂(ts−1)

θ̂2(t̄) = 2 θ̂1(ts−1) t̄+ θ̂2(ts−1)

θ̂1(t̄) = θ̂1(ts−1) + k[v(ts−1)− v(t̄)]/2.

(28)

Then, (26)-(27) is applied by replacing ϕ(tj) with ϕ(tj − t̄), for tj ≥ ts, and by

setting the initial condition to θ̂(t̄) given by (28). This ensures the continuity

of ϕT θ̂ and of its first time derivative.

The continuous-time estimates of y(t), ẏ(t) and p returned by the filter are

obtained by interpolation, as follows

ŷ(t) = ϕT(t− t̄) θ̂(tj)

ˆ̇y(t) = 2(t− t̄) θ̂1(tj) + θ̂2(tj)

p̂(t) = 2 θ̂1(tj) + k v(t),

(29)

where tj and t̄ denotes the most recent measurement time and the most recent

input switching time, respectively.

4.3. Adaptive Control Scheme Implementation

A real-time feedback control scheme is obtained by replacing y(t), ẏ(t) and

p in (22), with the corresponding estimates ŷ(t), ˆ̇y(t) and p̂(t) provided by (29).

The resulting adaptive control system is shown in Fig. 2.

It should now be remarked that the relationship (20) leaves some freedom

in the choice of the control specification ylim. Such degree of freedom can be

exploited to optimize other relevant performance criteria. Specifically, some

applications require the satellite altitude to vary as little as possible, which
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Figure 2: Block diagram of the closed-loop system.

corresponds to maintaining a near-zero orbital eccentricity. In this regard, at-

mospheric drag is know to have a stabilizing effect, as it tends to circularize

the orbit. However, repeated groundtrack adjustment maneuvers can lead to

a secular eccentricity growth. For nearly circular orbits, the variation in the

orbital eccentricity due to the control acceleration uT can be modeled as [19]

ė = 2

√

a

µ
cos(f)uT , (30)

where e indicates the orbital eccentricity and f denotes the true anomaly. For

small deviations about a = a∗, equation (30) can be approximated as

ė ≈ 2

√

a∗

µ
cos(n∗t+ f0)uT , (31)

where n∗ =
√

µ/(a∗)3 is the reference mean motion.

The net change in e, ∆e = e(T ) − e(0), obtained by applying a constant

input uT = umax over a time interval of length T , can be computed from (31)

according to

∆e = 2 umax

√

a∗

µ

∫ T

0

cos(n∗t+ f0) dt =
2(a∗)2umax

µ

[

sin(n∗T + f0)− sin(f0)
]

.

(32)

From (32) it follows that one possibility to enforce a zero secular growth ∆e = 0

of the eccentricity is to set T = T (m) = m 2π
n∗

, i.e. to fire the engine for an integer

multiple m of the orbital period. Another possibility is to initiate the maneuver

at f0 = 0 or f0 = π (assuming the periapsis exists) and set T (m) = m π
n∗

,

which amounts to firing for a multiple of half the orbital period (in particular,

T = π/n∗ may be adopted to avoid firing the engine during eclipses). The

corresponding ylim can be found by equating T (m) to the firing time TF in (23),
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thus resulting in

ylim =
k(k − p)

16 p
T 2(m). (33)

In order for the above strategy to be feasible, ylim must satisfy condition (20).

For typical values of xlim, k and p, this requirement can be met by adopting a

sufficiently small value of m in (33). In this work, (33) is evaluated on-line, by

using the disturbance estimate p̂ returned by the RLS filter.

Finally, notice that the control law (21)-(22) by itself does not guarantee the

firing sequence to be initiated at a specific true anomaly location f0. In order

to do so, once the condition s(y, ẏ; p) ≥ ylim is met, one has to postpone the

engine activation v = 1 until f reaches f0. The groundtrack error will grow only

slightly during this time interval, since the true longitude dynamics are usually

much faster than the error ones.

5. Simulation Case Study

An Earth observation mission performed by a 200 kg minisatellite equipped

with EP has been simulated numerically, in order to validate the proposed ap-

proach. The spacecraft bus layout is modeled as a cube with side-length equal

to 1 m. The truth model for the simulation consists of a numerical propagation

routine based on Cowell’s method, which accounts for the most relevant envi-

ronmental perturbations affecting LEO satellites. Table 1 describes the main

features of the simulation environment.

Table 1: Main features of the simulation model

Contribution Model

Earth’s Gravity EGM96 9× 9

Atmospheric Drag NRLMSISE-00, F10.7 = 220, Ap = 15

Third Body Luni-solar point mass gravity

Solar Pressure Cannonball model with eclipses

The satellite is released in a near-circular sun-synchronous orbit with an

altitude of about 460 km. The initial orbital elements, reported in Table 2,

are chosen so as to achieve a repeat-groundtrack period of 3 days (r = 3/46

days/revs). Hence, the reference semi-major axis in (12) is a∗ = a(0). It is

12



Table 2: Initial conditions for the simulation

Orbital element Initial value

Semi-major axis a(0) = 6838 km

Eccentricity e(0) = 0.001

Inclination i(0) = 97.28 deg

RAAN Ω(0) = 0 deg

Argument of periapsis ω(0) = 90 deg

True anomaly f(0) = 270 deg

required to keep groundtrack within a maximum deviation of 2 km from the

nominal one at the equator, which corresponds to the error tolerance xlim =

2/R⊕ = 3.136 · 10−4 rad, where R⊕ denotes the Earth’s equatorial radius. This

level of accuracy is compatible with advanced scientific missions such as ICEsat

[27].

The groundtrack control system relies on a GPS receiver providing position

and velocity measurements, and on a low-power Hall Effect Thruster (HET).

Table 3 reports the characteristics of the model used for the GPS and the HET.

It is assumed that the thruster is aligned with the direction tangential to the

orbit. The nominal acceleration provided by the HET amounts to umax =

Fmax/msat = 5 · 10−5 m/s2, where Fmax = 0.01 N and msat = 200 kg.

The measured values x̃(tj) of x(t) are computed by first expressing GPS

position and velocity measurements in terms of osculating orbital elements, and

then transforming osculating elements into mean ones according to [28]. The

forgetting factor of the RLS algorithm (26)-(27) is set to η = 0.9999. This

provides a good trade-off between the sensitivity of the filter to high-frequency

Table 3: Characteristics of the control system

Device Output Std dev Update time

GPS
Inertial position

Inertial velocity

20 m

0.1 m/s
30 sec

HET
ON: 10 mN thrust

OFF: no thrust

0.5 mN

-
30 sec
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Figure 3: Tracking error x(t) (solid) and error tolerance ±xlim (dashed) .
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Figure 4: Switching command v(t).

oscillations in x(t) and its responsiveness to long-period drifts in pd(t) (e.g.,

due to seasonal changes in the atmospheric density), which are not modeled

by (13). The error tolerance ylim in (19) is set according to (33), with T =

T (m) = 2π/n∗ and p = p̂, resulting in ylim ≃ 2 · 10−4 rad. This ensures that

condition (20) is met with a good safety margin; at the same time, it allows

one to successfully counteract the eccentricity variation in (32), according to

the discussion in Section 4.3.

The mission is simulated for 30 days. The tracking error x(t) resulting from

the simulation is reported in Fig. 3. The corresponding switching command v(t)

is reported in Fig. 4. The controller is activated at t ≃ 1 day (after the RLS
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Figure 5: Estimates ŷ(t), ˆ̇y(t) and p̂(t) returned by the RLS filter.

filter transient has elapsed), in correspondence of the first peak in Fig 3. It can

bee seen that a limit cycle with amplitude 2 ylim is established from the second

input transition onwards, and that the error is kept well within the maximum

allowed deviation xlim (represented by the dashed lines in Fig. 3). The HET

engine is fired once about every 4 days, for a time interval of approximately 94

minutes. The duty cycle is equal to D = 0.0156: such a small value is due to

the fact that the atmospheric drag force is much smaller than the 10 mN thrust

force produced by the engine.

The signals ŷ(t), ˆ̇y(t) and p̂(t) estimated by the RLS filter are shown in

Fig. 5. A zoom of the initial transient is depicted in Fig. 6, which reports also

the average disturbance value p and the error signals y(t), ẏ(t) resulting from

the solution of (15). It can be seen that the estimates converge in approximately

one day. In particular, p̂(t) settles to a value which is very close to the average

acceleration due to drag, as explained in Section 3. To better illustrate this

fact, Figure 7 compares the estimated disturbance force F̂ = msat a
∗ p̂(t)/(3 r)

with the absolute value Fdrag of the drag force returned by the NRLMSISE-

00 model, on the time interval t ∈ [0, 36] hours. The oscillations in Fdrag are

due to changes in the atmospheric density induced by diurnal, latitudinal, and

altitude variations. It is confirmed that the RLS filter is able to average out
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Figure 6: Estimates ŷ(t), ˆ̇y(t) and p̂(t) (solid) vs. reference signals y(t), ẏ(t) and p(t) (dashed).
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Figure 7: Profiles of Fdrag (solid) and F̂ (dash-dotted).

these effects, at steady-state. This is a key requirement for the implementation

of the proposed control scheme.

The evolution of the orbital eccentricity is reported in Fig. 8. As expected,

the proposed thrusting strategy has a negligible impact on this element, which

shows a slow decrease due to environmental perturbations. Hence, the orbit

of the spacecraft remains approximately circular during the entire simulation

interval.
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Finally, the groundtrack profile resulting from the simulation has been com-

pared to the uncontrolled one. As seen from Figs 9-10, the proposed method is

able to compensate for the groundtrack drift due to perturbation effects, thus

ensuring precise repeatability. It is worth stressing that the method requires nei-

ther a gravitational nor an atmospheric drag model: the controlled groundtrack

automatically settles to the desired repeat condition, given only the parameter

r in (5) and the measurements provided by the GPS. Moreover, notice that one

may consider updating the parameter k in (16) on a periodic basis, should the

engine acceleration deviate significantly from the nominal design value umax.

6. Conclusions

A simple and effective groundtrack maintenance strategy has been presented

for low Earth orbiting satellites driven by low-thrust propulsion. The proposed

adaptive control scheme consists of an hysteresis controller paired with a recur-

sive least squares filter. It can be readily implemented within an autonomous

guidance, navigation and control system. The results of a simulation case study

show that the desired repeat-groundtrack pattern is acquired successfully and

then maintained consistently by the control system. Such type of technology

may play a key role in a number of future scientific and commercial space mis-

sions equipped with electric propulsion.
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Figure 9: Controlled groundtrack.

Figure 10: Uncontrolled groundtrack.
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